Denote the norm in B by $\| \cdot \|_1$. Using inequality (7), we can show by an argument similar to that in [14, p. 273] that there is a norm reducing algebra isomorphism T' of A onto a dense subalgebra of B. This completes the proof.

References

Factoring the identity operator on a subspace of l_n^∞

by

PIOTR MANKIEWICZ (Warsaw)

Abstract. It is proved that a "random n-dimensional subspace E of l_2^n has the property that for every factorization of the identity on E through a Banach space Y, $S_1: E \rightarrow Y$ and $S_2: Y \rightarrow E$, one has $bc(Y) \|S_1\| \|S_2\| \geq c n^{1/2}/\dim Y$, where $c > 0$ is a numerical constant.

A. Pełczyński ([4], Prop. 11.1) proved that for every n-dimensional Banach space X_n there is a Banach space Y with basis constant $bc(Y) = 1$, dim $Y \leq n^{3/2}$, and there are operators $S_1: X_n \rightarrow Y$, $S_2: Y \rightarrow X_n$, such that $S_2S_1 = 1_{X_n}$, and $\|S_1\| \|S_2\| \leq 3$. In this context he asked whether the estimate on the dimension of Y is optimal. Essentially the same proof yields the following more general result:

For every n-dimensional Banach space X_n and every $m \leq \text{nbc}(X_n)$ there is an m-dimensional Banach space Y_m and operators $S_1: X_n \rightarrow Y_m$, $S_2: Y_m \rightarrow X_n$ such that $S_2S_1 = 1_{X_n}$, and

$$bc(Y_m) \|S_1\| \|S_2\| \leq 3n \text{bc}(X_n)/m.$$

One can ask whether the estimate (1) is optimal. S. J. Szarek ([6], Prop. 5.1), using the technique introduced in [1] and developed in [5], proved that there are real n-dimensional Banach spaces X_n such that for every factorization of identity on X_n through an m-dimensional Banach space one has (in the notation above)

$$bc(Y_m) \|S_1\| \|S_2\| \geq \frac{cm}{m} \log^{3/2} n,$$

where $c > 0$ is a numerical constant. The complex variant of (2) was done in a similar way in [2] by the author. The aim of this note is to show that (both in the real and complex case) the estimate (1) is optimal "up to a multiplicative numerical constant" even if we restrict our interest to the case when X_n is an n-dimensional subspace of l_2^n with basis constant of order \sqrt{n}. The same argument yields that (1) is optimal "up to a multiplicative numerical constant" for n-dimensional subspaces of l_2^n with basis constant of order $n^{1/2-1/p}$ for $p \geq 2$.

Received April 28, 1987
Revised version November 29, 1988
1. Preliminaries. Our notation and terminology are standard. To fix the notation we shall consider real Banach spaces only. However, exactly the same arguments yield the complex case. We shall deal mainly with linear operators acting on \(R^n \) equipped with different norms. If \(x = (x_1, \ldots, x_n) \in R^n \), then
\[
\|x\|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{1/p}
\]
for \(p \in [1, \infty) \). If \(\| \cdot \| \) is a norm on \(R^n \) and \(X_n = (R^n, \| \cdot \|) \), then for \(T \in L(R^n) \) we shall denote by \(\|T\|_{X_n} \) the norm of \(T \) as an operator from \(X_n \) into itself, while \(\|T\|_p \) will stand for the norm of \(T \) as an operator from \(l_p^n = (R^n, \| \cdot \|_p) \) into itself. If \(E \) is a linear subspace of \(R^n \) and \(T : E \to E \), then \(\text{tr}T \) will denote the trace of \(T \), and \(\|T\|_{\text{Hilb-Schm}} \) will stand for the Hilbert–Schmidt norm of \(T \). Note that in such a case both \(\text{tr}T \) and \(\|T\|_{\text{Hilb-Schm}} \) depend only on \(E \) and \(T \) (i.e. do not depend on the way we isometrically embed \(E \) in \(R^n \)). In particular, we may identify \(E \) with \(R^{\dim E} \). For a linear subspace \(E \subset R^n \) we shall denote by \(E^\perp \) and \(P_E \) the orthogonal complement of \(E \) and the orthogonal projection on \(E \) in \(R^n \), respectively. For a subset \(A \subset R^n \) by \([A]\) we shall mean the linear hull of \(A \).

Let us recall the following definition ([5], cf. also [2]).

Definition. For an operator \(T \in L(R^n) \) we write \(T \in M_\infty(x, \beta) \) for \(\alpha, \beta > 0 \) if there is a linear subspace \(E \subset R^n \) with \(\dim E \geq \alpha \) such that
\[
\|P_E \cdot T \cdot x\|_2 \geq \beta \|x\|_2 \quad \text{for every } x \in E.
\]

Observe that \(T \in M_\infty(x, \beta) \) for some \(\alpha, \beta > 0 \) iff \(T - \lambda \cdot \text{Id}_{R^n} \in M_\infty(x, \beta) \) for every \(\lambda \in R \) iff \(T - \lambda \cdot \text{Id}_{R^n} \in M_\infty(x, \beta) \) for some \(\lambda \in R \).

2. Technical proposition. The following lemma concerning the properties of operators on \(R^n \) which do not belong to \(M_\infty(\frac{1}{2} n, \frac{1}{2}) \) seems to be crucial for the results of this paper. However, a similar argument can be found in [2], and the lemma itself (with different numerical constants) can easily be deduced in the real case from the results in [5] and in the complex case from the results in [7]. The proof presented here works in both cases. In the complex case one has only to use a complex version of results in [2].

Lemma 2.1. Let \(T \in L(R^n) \) be such that for every \(\lambda \in R \) and for every linear subspace \(E \subset R^n \) with \(\dim E \geq \frac{1}{2}n \) we have
\[
\|(T - \lambda \cdot \text{Id}_{R^n}) \cdot E\|_2 \geq 1.
\]

Then \(T \in M_\infty(\frac{1}{2} n, \frac{1}{2}) \).

Proof. Take \(T \in L(R^n) \) satisfying the assumption of the lemma and assume to the contrary that \(T \notin M_\infty(\frac{1}{2} n, \frac{1}{2}) \). Let \(F \subset R^n \) be a linear subspace of maximal dimension satisfying
\[
\|P_F \cdot T \cdot x\|_2 \geq \frac{1}{2} \|x\|_2 \quad \text{for every } x \in F
\]
and set \(E = [F \cup TF \cup T^*F \cup T^*TF]^{-1} \). Since \(T \notin M_\infty(\frac{1}{2} n, \frac{1}{2}) \) we infer that \(\dim F < \frac{1}{2} n \) and therefore \(\dim E \geq \frac{1}{2} n \). Let \(\lambda = (\dim F)^{-1} \cdot \text{tr}(P_E T \cdot E) \) and define
\[
T_1 = T - \lambda \text{Id}_{R^n},
\]
Note that by the definition of \(E \) it is enough to find an \(x_0 \in E \) with \(\|x_0\|_2 = 1 \), such that
\[
\|P_{[x_0]} T_1 x_0\|_2 \leq \frac{1}{2}
\]
(for every \(x \in R^n \) we have \(\|P_{[x]} T_1 x\|_2 \leq \|P_{[x]} T \cdot x\|_2 \) to get a contradiction with the maximality of the dimension of \(F \). Indeed, in such a case we would have
\[
\|P \cdot T \cdot x\|_2 \geq \frac{1}{2} \|x\|_2 \quad \text{for every } x \in F \setminus F_1,
\]
where \(F_1 = [F \cup x_0] \).

To this end consider \(T_1 |E \). By the assumption \(\|T_1 |E\|_2 \geq 1 \). Let \(x_0 \in E \), \(\|x_0\|_2 = 1 \), be such that \(\|T_1 x_0\|_2 \geq 1 \). If \(\|P_E T_1 x_0\|_2 \geq \frac{1}{2} \), then since
\[
\|P_{[x_0]} T_1 x_0\|_2 \geq \|P_{[x_0]} T \cdot x_0\|_2 \geq \frac{1}{2},
\]
we get a contradiction. Hence \(\|P_E T_1 x_0\|_2 \geq \frac{1}{2} \). Now, if there is an \(x \in E \), \(\|x\|_2 = 1 \), such that \(\|P_E T_1 x\|_2 \leq \frac{1}{2} \), then, applying Lemma 2.6 in [2] for the operator \(P_E T_1 |E \) considered as an operator on \(R^{\dim E} \), we infer that there exists an \(x_1 \in E \) with \(\|x_1\|_2 = 1 \), such that
\[
\|P_{[x_1]} P_E T_1 x_1\|_2 \geq \frac{1}{2}.
\]
Since trivially
\[
\|P_{[x_1]} T_1 x_1\|_2 \geq \|P_{[x_1]} P_E T_1 x_1\|_2 = \|P_{[x_1]} P_E T_1 x_1\|_2
\]
we get a contradiction once again. Thus the only remaining case is that \(\|P_E T_1 x\|_2 \geq \frac{1}{2} \|x\|_2 \) for every \(x \in E \). But in this case we have
\[
\|P_E T_1 |E\|_2 \geq \frac{1}{2} \left(\dim E \right)^{1/2},
\]
while \(\text{tr}(P_E T_1 |E) = 0 \). Hence, again considering \(P_E T_1 |E \) as an operator on \(R^{\dim E} \), by [2], Cor. 2.2, we obtain
\[
\|P_{[x]} P_E T_1 |E\|_2 \geq \left(\frac{1}{2} \left(\dim E \right)^{1/2} \right)^{-1} \geq \frac{1}{8}
\]
for some \(x \in E \). This in the same way as above yields a contradiction and completes the proof.

In the sequel we shall need the following basic result on properties of "random quotients of \(l_2^n \) (= Gluskin spaces) due to S. J. Szarek ([2], Th. 1.4).

Proposition 2.2. There is a numerical constant \(c_1 > 0 \) such that for every \(n \geq 2 \) there is a norm \(\| \cdot \|_{x_n} \) on \(R^n \) such that
(i) the Banach space \(X_n = (R^n, \| \cdot \|_{x_n}) \) is isometrically isomorphic to a quotient of \(l_2^n \),
(ii) \(\|x\|_2 \leq \|x\|_{x_n} \leq \|x\|_2 \) (\(\leq \sqrt{n} \|x\|_2 \)) for every \(x \in R^n \\
(iii) \(T \|x_n\| \geq c_1 \|x\|_2 \) for every \(T \in M_\infty(\frac{1}{2} n, \frac{1}{2}) \).
3. Main results. The theorem below states that in the Banach spaces from Prop. 2.3 it is impossible to represent the identity operator as a sum of a “small number of operators with small rank” in such a way that all partial sums will have “small norms”. More precisely, we have

Theorem 3.1. There is a numerical constant \(c_0 > 0 \) such that for each \(n \geq 2 \) there is a norm \(\| \cdot \| \) on \(\mathbb{R}^n \) such that

(i) \(X_n = (\mathbb{R}^n, \| \cdot \|) \) is isometrically isomorphic to a quotient of \(l_{\infty}^n \)

(ii) \(\| x \|_2 \leq \| x \|_n \leq \| x \|_1 \) for every \(x \in \mathbb{R}^n \)

(iii) for every \(T \in L(\mathbb{R}^n) \) there are \(\lambda_T \in \mathbb{R} \), \(V_T \in L(\mathbb{R}^n) \) and a linear subspace \(E_T \subset \mathbb{R}^n \) with \(\dim E_T \geq \frac{1}{n} \) such that

\[
T = \lambda_T E_T + V_T,
\]

(b) \(|\lambda_T| \leq c \| T \|_{\infty} \)

(c) \(\| V_T \|_{E_T} \leq c \| T \|_{\infty} \sqrt{n} \)

Proof. Fix \(n \geq 2 \) and let \(X_n = (\mathbb{R}^n, \| \cdot \|) \) be the space from Prop. 2.3. Let \(\text{Id}_{X_n} = \sum_{i=1}^{k} T_i \) with rank \(T_i < \frac{n}{2} \) for \(i = 1, \ldots, k \) set

\[
b = \max_{1 \leq i, j \leq k} \| T_i \|_{X_n} \]

and observe that if \(T_i = \lambda_i \text{Id}_{X_n} + V_i \) for \(i = 1, \ldots, k \) are the representations of \(T_i \)’s as in Prop. 2.3(iii) then for \(x \in \ker T_i \cap E_T_i \neq \{0\} \) with \(\| x \|_2 = 1 \) we have

\[
0 = \| T_i x \|_2 = \| (\lambda_i \text{Id}_{X_n} + V_i) x \|_2 \geq |\lambda_i| - 2 c b n^{-1/2} .
\]

Thus we have \(|\lambda_i| \leq 2 c b n^{-1/2} \) for \(i = 1, \ldots, k \). Therefore

\[
\| T_i \|_{E_T} \| x \|_2 \leq |\lambda_i| + 2 c b n^{-1/2} \leq 4 c b n^{-1/2}
\]

for \(i = 1, \ldots, k \).

Claim. For every \(j = 1, \ldots, k \) there are \(\lambda_j \) and a linear subspace \(E_j \subset \mathbb{R}^n \)

with \(\dim E_j \geq \frac{1}{n} \) such that

\[
\sum_{i=1}^{j} T_i = \lambda_j \text{Id}_{X_n} + V_j
\]

with \(|\lambda_j| \leq 6 j c b n^{-1/2} \) and \(\| V_j \|_{E_j} \leq c b n^{-1/2} \).

For \(j = 1 \) the claim has already been proved above. Assume that it is true for some \(j \geq 1 \). Then

\[
\sum_{i=1}^{j+1} T_i = \sum_{i=1}^{j} T_i + T_{j+1} \leq \sum_{i=1}^{j} T_i + \lambda_{j+1} \text{Id}_{X_n} + V_{j+1}.
\]

Thus, for every \(x \in E_j \cap E_{T_{j+1}} \neq \{0\} \), with \(\| x \|_2 = 1 \), by our assumption we have

\[
\sum_{i=1}^{j} T_i x \leq 6 j c b n^{-1/2} + c b n^{-1/2} + 4 c b n^{-1/2} = (6j + 5) c b n^{-1/2}.
\]
Now, if $\sum_{i=1}^{j+1} T_i = \sum_{i=1}^{j+1} T_i^* = \lambda Id_{X'} + \tilde{V}$ is the representation of $\sum_{i=1}^{j+1} T_i$ as in Prop. 2.3(iii) and E_{j+1} is the corresponding subspace with $\dim E_{j+1} \geq \frac{n}{2}$ then for every $x \in E_{j+1}$ with $\|x\|_2 = 1$ we have

$$\left\| \sum_{i=1}^{j+1} T_i x \right\|_2 \geq \|T_{j+1}^* - cbn^{-1/2}. $$

(5)

Combining (4) and (5) we deduce that for $x \in \tilde{E}_j \cap \tilde{E}_{j+1} \cap E_{j+1}$ with $\|x\|_2 = 1$ (note that $\dim (\tilde{E}_j \cap \tilde{E}_{j+1} \cap E_{j+1}) \geq n/2$) we have

$$\|T_{j+1} - cbn^{1/2} \| \leq \left\| \sum_{i=1}^{j+1} T_i x \right\|_2 \leq (6j+5) cbn^{-1/2},$$

which yields the desired estimate and concludes the proof of the claim.

Now, in particular we have

$$\sum_{i=1}^{k} T_i = Id_{X'} = \lambda Id_{X'} + \tilde{V},$$

with $\|\tilde{V}\|_2 \leq 6kcbn^{-1/2}$ and $\|\tilde{V}\|_2 \leq cbn^{-1/2}$. Thus $\|\tilde{V}\|_2 \geq 1 - cbn^{-1/2}$. Hence $7kcbn^{-1/2} \geq 1$, which completes the proof of the theorem with $c_0 = (7c)^{-1}$.

Remark 3.2. It is well known (cf. [3], [6]) and easy to see that for an m-dimensional Banach space X, the property (\ast) from Theorem 3.1 formally implies the following:

$$bc(Y_n) \|S_1\| \|S_2\| \geq c_0 n^{3/2}/m,$$

where c_0 is a numerical constant (c_0 depends on c_0).

The remark above and Theorem 3.1 by a standard duality argument yield

Theorem 3.3. There is a numerical constant $c > 0$ such that for every $n \in \mathbb{N}$ there is an n-dimensional subspace E_n of l_0^n with the property:

whenever Y_n is an m-dimensional Banach space with basis constant $bc(Y_n)$ and $S_1: E_n \rightarrow Y_n$, $S_2: Y_n \rightarrow E_n$ are linear operators such that $S_2S_1 = Id_{E_n}$, then

$$bc(Y_n) \|S_1\| \|S_2\| \geq cn^{3/2}/m.$$

Remark 3.4. Since a "random n-dimensional quotient of l_0^n" satisfies Prop. 2.2 (cf. [3]), we infer that the conclusion of Th. 3.2 is satisfied by a "random n-dimensional subspace of l_0^n".

Remark 3.5. Using a standard argument one can deduce from Th. 3.2 and Remark 3.3 that for a "random n-dimensional subspace" E_n of l_0^n, $p \in [2, \infty]$, one can get the following estimate:

$$bc(Y_n) \|S_1\| \|S_2\| \geq \frac{cn^{3/2} - 1/p}{m} \geq \frac{cn^d \|E_n\|_p}{m} \geq \frac{cn \cdot bc(E_n)}{m},$$

for factoring the identity operator on E_n through an arbitrary m-dimensional Banach space Y_n.

Remark 3.6. The results above remain true (with different constants) for "random n-dimensional subspaces of l_0^n", for a fixed $\varepsilon > 0$ and $p \in [2, \infty]$.

References

INSTITUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
Słodkowska 5, 00-950 Warszawa, Poland

Received January 4, 1988
Revised version December 20, 1988