Basic sequences and smooth norms in Banach spaces

by

CATHERINE FINET (Montr)

Abstract. This paper is concerned with the existence of basic sequences with small basis constants. We also study smoothness properties of norms.

Preliminaries. Let E be a Banach space. The characteristic of a subspace X of the dual E^* is the number

$$r(X) = \inf_{\sigma \in \sigma(X)} \sup_{f \in E^* \setminus \sigma(X)} \frac{|f(x)|}{\|f\| \|x\|}.$$

We refer the reader to [9], [16] for the basic facts on this notion. Obviously $0 \leq r(X) \leq 1$.

We define

$$\chi(E) = \sup \{r(X) : X \not\subseteq E^*\}.$$

For a nonreflexive Banach space E, one has $\frac{1}{2} \leq \chi(E) \leq 1$. We notice that if E is a Banach space with a basis (x_n) and X is the subspace of E^* spanned by the coefficient functionals then we have $r(X) > K(x_n)^{-1} > 0$ (where $K(x_n)$ is the basis constant of (x_n)).

We get the following

Lemma 0.1. If (x_n) is a basis of E with basis constant strictly less than $\chi(E)^{-1}$ then (x_n) is shrinking.

We will show that a kind of converse of this lemma is valid: namely, if E is any Banach space, there exists, for any $\varepsilon > 0$, a nonshrinking basic sequence (x_n) in E with $K(x_n) \leq \chi(E)^{-1} + \varepsilon$. In this direction, A. Pelczyński has shown the existence of a nonshrinking basic sequence in a nonreflexive Banach space [14]. We also mention the result of M. Zippin: if E is a Banach space with a basis, then E is reflexive if and only if each basis of E is shrinking [17]. In both results, there are no estimates of the basis constants.

We end the first chapter by some applications, in particular we get an extension of a result of [7].

In the second chapter, we introduce a class of Banach spaces satisfying smoothness conditions and we get $\chi(E) < 1$ for any Banach space E in this class (Theorem 2.3). As a consequence, if X and Y are superreflexive Banach
spaces then $\chi(K(X, Y))$ is strictly less than 1, where $K(X, Y)$ is the space of compact operators from X to Y. We also present some questions and in particular a renaming problem.

Acknowledgements. The paper was prepared during my visit at the University of Columbia. It is a great pleasure to thank here Michèle and Gilles Godefroy, Paula and Elias Saab for their warm hospitality. I wish to express here my gratitude to Professor G. Godefroy for his help, suggestions and the many stimulating discussions we had.

Notation. If E is a Banach space, the closed unit ball of E is denoted by $B(E)$, the unit sphere by $S(E)$. The dual of E is E^*. The basic constant of a basic sequence (x_n) is denoted by $K(x_n)$. For a set A, conv (A) is the norm-closed convex hull of A and $[A]$ is the span of A. $K(X, Y)$ denotes the space of compact operators from X to Y (with the operator norm). For the definitions and basic facts on basic sequences the reader should consult [1].

1. Construction of basic sequences with a given constant. The main result of this chapter is the following:

Theorem 1.1. Let E be a nonreflexive Banach space. For every $\epsilon > 0$, there exists a nonshrinking basic sequence (x_n) such that $K(x_n) \leq \chi(E)^{-1} + \epsilon$ and there exists a nonboundedly complete basic sequence (y_n) such that $K(y_n) \leq 1 + \epsilon$.

Let us first note that there is no restriction on $\chi(E)$. Hence any nonreflexive Banach space contains a nonshrinking basic sequence (x_n) with $K(x_n) \leq 2 + \epsilon$; any nonreflexive dual space contains a nonshrinking basic sequence (y_n) with $K(y_n) \leq 1 + \epsilon$. The proof of the theorem does not use the methods of A. Pełczyński [14] or M. Zippin [17] but the local reflexivity principle [12].

Proof of the theorem. Observe first that $\chi(E)$ may also be computed by the following formula:

$$
\chi(E)^{-1} = \inf_{\pi \in \mathbb{R}^*} \|\pi\|: \pi \text{ is the projection of } E \oplus Rx^* \text{ onto } E \text{ with kernel } Rx^*.
$$

Let ϵ be any positive number. There is $x^*_n \in E^*, \|x^*_n\| = 1$ and $\|x_n\| \leq \chi(E)^{-1}(1 + \epsilon)$, where π is the projection of $E \oplus Rx^*$ onto E with kernel Rx^*. We will construct a sequence (x_n) in E such that for any increasing sequence of integers (n_i):

(a) The sequence $(x^*_n, x^*_n - x_{n_i})$ is basic with basis constant near to 1.
(b) $(x_{n_i} - x_{n_i-1})$ is a basic sequence with basis constant near to $\chi(E)^{-1}$.
(c) (x_{n_i}) is a nonshrinking basic sequence with basis constant near to 1.

Choose $(\epsilon_n)_{n \geq 0}$ so that $0 < \epsilon_n < 1$ for all $n \geq 0$ and $\prod_{n=0}^{\infty} (1 - \epsilon_n) \geq 1 - \epsilon_0$ for any increasing sequence of integers (i). There is $f_i \in S(E^*)$ such that $x^*_n(f_i) \geq 1 - \epsilon_i$. Let F_i denote the 1-dimensional subspace of E^{**} spanned by x^*_n. By the local reflexivity principle [12], there is a one-to-one operator $T_i: F_i \to E$ so that:

1. $\|T_i\| \leq 1 + \epsilon_i$.
2. $f_i(T_i x^*_n) = x^*_n(f_i)$.

We put $x_i = T_i x^*_n$.

Let F_2 denote the 2-dimensional subspace of E^{**} spanned by x^*_n and $x^*_n - x_i$. There is a set $Z_2 = \{e_1, \ldots, e_{2N(2)}\} \subset S(F_2)$ which forms an $e_2/2$-net for $S(F_2)$. Pick $e^*_1, \ldots, e^*_{2N(2)} \in S(E^*)$ so that $e^*_i(e_i) > 1 - e_2/2$, and put

$$
Z^*_2 = \{e^*_1, \ldots, e^*_{2N(2)}\}.
$$

By the local reflexivity principle, there is a one-to-one operator $T_2: F_2 \to E$ such that:

1. $\|T_2\| \leq 1 + \epsilon_0$.
2. $f_i(T_2 x^*_n) = x^*_n(f_i), \quad \forall x^*_n \in F_2$.
3. $e^*_i(T_2 x^*_n) = x^*_n(e^*_i), \quad \forall e^*_i \in Z^*_2$.
4. $T_2 x_i = x_i$.

We put $x_2 = T_2 x^*_n$.

Notice that for any scalar a, we get

$$
\|x^*_n + a(x^*_n - x_i)\| \geq 1 - \epsilon_i.
$$

Indeed,

$$
\|x^*_n + a(x^*_n - x_i)\| \geq |f_i(x^*_n + a(x^*_n - x_i))|}

\geq |f_i(x^*_n)| - |a| |f_i(x^*_n - x_i)| \geq 1 - \epsilon_i.
$$

We repeat the above procedure. Inductively, we find for all $n \geq 2$

$$
F_n = \{x^*_n, x^*_n - x_{n+1}, \ldots, x^*_n - x_{n-1}\},
$$

$$
Z_n = \{e_1, \ldots, e_{2N(n)}\} \text{ an } e_2/2\text{-net for } S(F_n),
$$

$$
Z^*_n = \{e^*_1, \ldots, e^*_{2N(n)}\} \subset S(E^*) \text{ such that } e^*_i(e_i) > 1 - e_2/2,
$$

and a 1-1 operator $T_n: F_n \to E$ with:

1. $\|T_n\| \leq 1 + \epsilon_0$.
2. $f_i(T_n x^*_n) = x^*_n(f_i), \quad \forall x^*_n \in F_n$.
3. $e^*_i(T_n x^*_n) = x^*_n(e^*_i), \quad \forall e^*_i \in Z^*_n$.
4. $T_n x_i = x_i, \quad \forall x_i \in F_n \cap E$.

We put $x_n = T_n x^*_n$.

(a) The same computation as before gives $\|x^*_n + a(x^*_n - x_i)\| \geq 1 - \epsilon_i$, for all $a > 1$.

We now claim that for any \(y \in S(F_n), n \geq 2, \) any scalar \(a, \) and any \(p \geq 0, \)
\[
\|y + a(x^n - x_{n+p})\| \geq 1 - \varepsilon_a.
\]
Indeed, there exists \(e_0 \in Z_n \) such that \(\|y - e_0\| \leq \varepsilon_d/2 \) and \(e_0 \in Z_n \geq 1 - \varepsilon_d/2. \)
We get
\[
\|y + a(x^n - x_{n+p})\| \geq \|e_0^* (y + a(x^n - x_{n+p}))\| \\
\geq \|e_0^* (a e_0) - |e_0^* (e_0 - y) - |a|| e_0(x^n - x_{n+p})\| \\
\geq 1 - \varepsilon_d/2 - \|e_0 - y\| \geq 1 - \varepsilon_a.
\]
For any scalars \(a_1, \ldots, a_{n+p} \) and for any increasing sequence of integers \((i),\)
we get
\[
\sum_{i=1}^{n+p} a_i (x^n - x_{n+i}) = \sum_{i=1}^{n+p-1} a_i (x^n - x_i) + a_{n+p} (x^n - x_{n+p}) \\
\geq (1 - \varepsilon_a) \sum_{i=1}^{n+p-1} a_i (x^n - x_i) \\
\geq \prod_{i=1}^{n+p-1} (1 - \varepsilon_a) \sum_{i=1}^{n} a_i (x^n - x_i) \\
\geq (1 - \varepsilon_a) \sum_{i=1}^{n} a_i (x^n - x_i).
\]
This concludes the proof of (a).

(b) Let \((i)\) be any increasing sequence of integers and let \(a_1, \ldots, a_n \) be any scalars. Then
\[
\|\sum_{i=1}^{n} a_i x_i\| = \|(\sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} a_i x^n)^+\| \\
\leq \|\|\sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} a_i x^n\|\| \\
\leq \chi(E)^{-1} (1 + \varepsilon) \|\sum_{i=1}^{n} a_i x^n + \sum_{i=1}^{n} a_i (x^n - x_i)^+\| \\
\leq \chi(E)^{-1} (1 + \varepsilon) \|\sum_{i=1}^{n} a_i x^n + \sum_{i=1}^{n} a_i (x^n - x_i)^+\| \\
\leq \chi(E)^{-1} (1 + \varepsilon) \|\sum_{i=1}^{n} a_i x_i\|.
\]
This proves that the sequence \((x_i)\) is basic with
\[
K(x_i) \leq (1 + \varepsilon) (1 - \varepsilon_a)^{-1} \chi(E)^{-1}.
\]
Moreover, since for all \(n, f_1(x_i) = x_i^n, \) \(f_1(x_i) \geq 1 - \varepsilon_2, \) the sequence \((x_i)\) is nonshrinking.

Hence, in particular, we have proved that there exists a nonshrinking basic sequence \((x_\lambda)\) with basis constant near to \(\chi(E)^{-1}. \)

(c) We will suppose \(\|T_n\| \leq 1 \) and \(\|T_n^{-1}\| \leq 1 + \varepsilon_0. \) Then
\[
\|\sum_{i=1}^{n} a_i (x_i - x_{n+i})\| = \|a_1 (x_1 - x_2) + \ldots + a_n (x_{n-1} - x_n)\| \\
\leq \|a_1 (x_1 - x_2) + \ldots + a_n (x_{n-1} - x_n)\|.
\]
Since \(x_{n-1} - x_n = x_{n-1} - x_n - x^n \) and \(x_{n-1} - x^n \) is a basic sequence, we have
\[
\|\sum_{i=1}^{n} a_i (x_i - x_{n+i})\| \\
\leq (1 - \varepsilon_0)^{-1} \|a_1 (x_1 - x_2) + \ldots + a_{n-1} (x_{n-1} - x_n) + a_n (x_n - x^n)\| \\
+ \|a_1 (x_1 - x_2) - x^n\| + \|a_2 (x_2 - x_3) + \ldots + a_{n-1} (x_{n-1} - x_n) - x^n\| + \ldots + \|a_{n-1} (x_{n-1} - x_n) + \ldots + a_n (x_n - x^n) - x^n\| \\
\leq (1 - \varepsilon_0)^{-1} \|T_{n-1}\| \\
\leq (1 - \varepsilon_0)^{-1} (1 + \varepsilon_0) \|\sum_{i=1}^{n} a_i (x_i - x_{n+i})\|.
\]
and so \((x_i - x_{n+i})\) is a basic sequence with basis constant near to 1.

We are ready to finish the proof of the second assertion of the theorem. We first assume that \(E \) contains an isomorphic copy of \(l_1. \) Then \(E \) contains almost isometric copies of \(l_1 [11]. \) Let \((e_0)\) be the usual basis of \(l_1. \) Consider the sequence \((x_\lambda) = (e_1, e_2, e_3, \ldots, e_2, e_1, \ldots). \) Then \((x_\lambda)\) is a non-boundedly complete basis of \(l_1\) with basis constant equal to 1.

Suppose now that \(E \) does not contain a copy of \(l_1. \) There is no loss of generality in assuming that \(E \) is separable. Then our sequence \((x_\lambda)\) has a subsequence \((x_\mu)\) which is \(\sigma(E^n, E^n)\)-convergent. But \((x_\mu)\) does not converge to a point of \(E, \) since 0 is the only possible limit point of a basic sequence, but for all \(n, f_1(x_\mu) \geq 1 - \varepsilon_1. \)

We have
\[
\sum_{i=1}^{n} (x_i - x_{n+i}) = -x_{n+1} + x_n.
\]
Therefore \(\sup_{\|x\|} \|T^*_{\lambda}(x_n - x_{n-1})\| \) is finite, but the series \(\sum_{n=1}^\infty (x_n - x_{n-1}) \) does not converge in \(E \). Moreover, \((x_n - x_{n-1}) \) is basic with basis constant near to 1.

Let us mention some applications.

We define \(\chi(E) \) for a Banach space \(E \) by

\[
\chi(E) = \inf \{ \chi(F)^{-1} : F \subseteq E \}.
\]

\(\chi(E) \) can be considered as the "shrinking basic sequences index" because of the following corollary:

Corollary 1.2. Let \(E \) be a Banach space. Then

\[
\chi(E) = \sup \{ \lambda : \text{every basic sequence } (x_n) \text{ with } K(x_n) < \lambda \text{ is shrinking} \}.
\]

Corollary 1.3. If \(E \) is a separable Banach space with \(\chi(E) > 1 \), then \(E^* \) is separable.

Proof. Since \(E \) is separable, there exists a \(\sigma(E^*, E) \)-dense sequence \((x_n) \) in \(B(E^*) \). So \(r[x_n] = 1 \) and \([x_n] = E^* \).

The above corollary should be compared with the following result: if \(E \) is a separable space such that \(\{x_n\} \) is separable for every basic sequence \((x_n) \) then \(E^* \) is separable [10].

Remark. Let \(E \) be a Banach space which is an \(M \)-ideal of its dual. Then \(\chi(E) = 1/2 \) [7]. This class is stable under subspaces. Hence \(\chi(E) = 2 \).

We now give an isomorphic version of the following result of G. Godefroy and P. Saabhar [7]. Let \(E \) be a Banach space such that \(E^* \) contains no proper 1-norming subspace and let \((T_n) \) be a sequence of contractions on \(E \) such that for every \(x \in E \), \(\lim_{n \to \infty} \|T_n x - x\| \to 0 \). Then we have \(\lim_{n \to \infty} \|T_n^* x - x^*\| = 0 \) for every \(x^* \in E^* \).

We will replace the metric assumption (the \(T_n \) are contractions) by an algebraic one (the \(T_n \) commute). Our next result is

Corollary 1.4. Let \(E \) be a separable Banach space such that \((2x > 1, \forall (x_n) \text{ basic sequence: } K(x_n) < x \Rightarrow (x_n) \text{ shrinking}) \). Then \(\forall X \subseteq E, \forall T_n : X \to X \) with

\[
\text{rank}(T) < \infty, \quad \sup \|T\| < \alpha,
\]

(\(* \))

\[
T_0 = T_n T_0, \quad \forall k, n, \quad \|T_n x - x\| \to 0, \quad \forall x \in X,
\]

we have \(\|T_n^* x^* - x^*\| \to 0, \quad \forall x^* \in X^* \).

Proof. Let \((T_{\lambda})_{\lambda \geq 1} \) be a sequence of operators on \(X \) satisfying \((\ast) \). Then

\[
\lim_{\lambda \to \infty} \|T_{\lambda} x^* - x^*\| = 0 \text{ for every } x^* \text{ in the norm-closed subspace } \Gamma \text{ of } X^* \text{ generated by } \bigcup_{n=1}^\infty T_n^* (X^*) \text{ [16]}. \]

But it is easy to check that \(r(\Gamma) = (\sup \|T_n\|)^{-1} \) and thus \(r(\Gamma) > x^{-1} \), and this implies that \(\Gamma = X^* \).

Let us note that under the same assumptions on \(E \), the projections associated with a basic sequence satisfy the conclusion of Corollary 1.4. We get here the result \((\lim_{\lambda \to \infty} \|T_{\lambda} x^* - x^*\| = 0 \text{ for every } x^* \in X^*) \text{ for any sequence } T_{\lambda} \text{ satisfying } (\ast) \).

2. A smoothness condition. Examples. Let us introduce a condition of uniform smoothness which is close to the one given in [4], [5]. We use the same terminology. Let \(E \) be a Banach space. \(\mathcal{D}(E) \) is the set of points of the unit sphere where the norm is Fréchet-smooth; for every \(x \in \mathcal{D}(E) \), we denote by \(f_x \) the differential of this norm at \(x \).

Definition 2.1. We say that \(E \) is almost uniformly smooth (a.u.s.) if there exists a family \((A_{\lambda})_{\lambda < 1} \) of subsets of \(\mathcal{D}(E) \) such that:

(a) \(\forall \lambda \in]0, 1], \exists \delta(\lambda) > 0, \exists \varepsilon > 0 \):

\[
y \in B(E^*), \quad x \in A_\lambda, \quad \|y - f_x\| \geq 1 - \delta(\lambda) \Rightarrow \|y - f_x\| \leq \varepsilon.
\]

(b) \(\forall \lambda \in B(E^*) = \text{conv } \{ f_x : x \in A_\lambda \} + \varepsilon B(E^*) \).

Examples. \(c_0(\Gamma) \) is a.u.s. for any \(\Gamma \). Every superreflexive Banach space is a.u.s. for every equivalent norm [5]. A nontrivial class of new examples is provided by our next result:

Proposition 2.2. If \(X, Y \) are superreflexive Banach spaces then \(K(X, Y) \) is a.u.s.

Proof. The proof follows the method of [4], [7]; we only give the main ideas. The following facts are known. Let \(x \in S(X) \) (resp. \(y \in S(Y) \)) and assume that \(x \) (resp. \(y \)) is strongly exposed in \(B(X) \) (resp. \(B(Y) \)) by \(f_x \in X^* \) (resp. \(f_y \in Y^* \)). Then \(x \otimes y \) is strongly exposed in \(B(X \otimes Y) \) by \(f_x \otimes f_y \) [7]. Moreover, if there is a uniformity in the strong exposition of \(x \) and \(y \) then there is also a uniformity in the strong exposition of \(x \otimes y \) [4]. Since a superreflexive Banach space is a.u.s., the unit ball of \(X \) and the unit ball of \(Y \) are of type (b) from Definition 2.1. Using the technique of [7], we conclude that the unit ball of \(X^* \otimes Y \) is also of type (b).

Of course, the proposition is not true in general for reflexive Banach spaces. If \(X = \bigoplus_{\lambda \geq 1} \mathbb{T}_\lambda \) and \(Y = R \) then \(K(X, Y) = \bigoplus_{\lambda \geq 1} \mathbb{T}_\lambda \) and \(K(X, Y) \) is not a.u.s. [4]. J. Partington has shown that every Banach space may be equivalently renormed to have property \(\beta \) [13], see also [15]. For a reflexive Banach space it is easy to see that property \(\beta \) implies almost uniform smoothness. Therefore if \(X \) and \(Y \) are reflexive Banach spaces then \(K(X, Y) \) admits an equivalent almost uniformly smooth norm.
We use the technique of [4] in the proof of the main result of this chapter.

Theorem 2.3. If E is a.u.s. then $\chi(E)$ is strictly less than 1.

Proof. Suppose $\chi(E) = 1$. There is a sequence $(y_n)_{n=1}^{\infty}$ in $(E^*)^*$, E and a sequence of projections (x_n) such that x_n is the projection of $E \oplus B_{\infty}$ onto E with kernel R_{x_n} and $1 < \|x_n\| < 1 + 1/n^2$. Therefore
\[
\|x\| < (1 + 1/n^2) \|x + y\| \quad \text{for any } y \in E.
\]
By using a technique similar to that in [4] we show that $\ker x \cap B(E^*)$ is "almost" $\sigma(E^*, E)$-dense in $B(E^*)$. More precisely, there is an integer N such that for every $n \geq N$ and every $x \in S(E)$, one has
\[
\ker x \cap B(E^*) = \{ x \in B(E^*): \|x\| < 1 - 1/n \}.
\]
The idea is the following. Suppose this is not true. Let N be an integer such that there are $n > N$ and $x \in S(E)$ satisfying
\[
\ker x \cap B(E^*) = \{ x \in B(E^*): \|x\| < 1 - 1/n \}.
\]
Then $u = (n+1/n) x \in E$ it can be shown as in [4] that $\|u\| < (1 + 1/n^2) \|u - y\|$, a contradiction with (I).

Therefore
\[
\exists N, \forall n > N, \forall x \in A_n, \exists y_0(x) \in \ker x \cap B(E^*): \|y_0(x)\| > 1 - 1/n.
\]

Let $M \geq \max \{ N, 1/\delta(x) \}$; then for $n > M$ we get $\|y_0(x) - f_n\| \leq \varepsilon$. Now,
\[
\|y_0(x) - y_n(x)\| \leq \|y_0(x) - f_n\| + \|f_n - y_n(x)\|.
\]
Since $y_0(x) \in \ker x$, one has
\[
\forall \varepsilon > 0, \exists M, \forall n > M: \sup_{x \in A_n} \|y_0(x) - f_n\| \leq \varepsilon.
\]
By Definition 2.1(b), this implies $\|y_n\| \to 0$ as $n \to \infty$, a contradiction. ■

Corollary 2.4. If X and Y are superreflexive Banach spaces then $\chi(K(X, Y))$ is strictly less than 1.

We now mention two questions.

Question 2.5. Let X, Y be superreflexive Banach spaces. Does there exist $\alpha > 1$ such that if (x_n) is a basic sequence in $K(X, Y)$ with $K(x_n) < \alpha$ then (x_n) is shrinking? Of course, Theorem 2.3 does not imply the existence of α since the property $\chi(E) < 1$ is not hereditary (L. V. Gidun and A. M. Plichko have constructed [6] an example of a Banach space X which contains a norm-one complemented hyperplane Y with $\chi(Y) = 1$, $\chi(X) = 2/3$).

The second question concerns a renorming problem:

Question 2.6. Is it possible to renorm a Banach space E with separable dual so that $\chi(E) < 1$? (see [2]). The answer is affirmative whenever E is a quasi-reflexive Banach space: if E is a quasi-reflexive Banach space then there exists on E an equivalent norm such that $\chi(E) = 1/2$ [8].

References

