Multivariate interpolation II of Lagrange and Hermite type

by

HAKOP A. HAKOPIAN (Yerevan)

Abstract. We present the investigation of second pointwise nature multivariate interpolation (MI-II) introduced in [3]. The Lagrange case of this interpolation in algebraic form was found independently by the authors of [2].

Introduction. In this paper we give the remainder formula, the Lagrange and Newton forms and a recurrence relation for the interpolant polynomial. Further we bring an example of application: "Star" numerical integration and a formula for the main determinant (Vandermonde) of this interpolation.

For the similar aspects of ("dual") Multivariate Interpolation I (MI-I) of Lagrange and Hermite type we refer to [5]-[8], see also [1] and [3], [4], [10].

Let \(t_0, \ldots, t_r \in \mathbb{R} \) and let \(m(t_n), n = 0, \ldots, r, \) be the multiplicity of \(t_n \), that is \(m(t_n) \) is the cardinality of the set \(\{ m| t_m = t_n, m = 0, \ldots, r \} \). Then the familiar univariate Lagrange-Hermite interpolant to \(f \) at knots \(t_0, \ldots, t_r \) is the unique polynomial \(P_f \) of degree not exceeding \(r \), with

\[
P_f(t) = f^{(m)}(t_n), \quad n = 0, \ldots, r, \quad m = 0, \ldots, m(t_n) - 1.
\]

For distinct knots, i.e., when \(m(t_n) = 1, n = 0, \ldots, r \), this polynomial can be written in the Lagrange form:

\[
P_f(t) = \sum_{n=0}^{r} f(t_n) \prod_{m=0}^{r} \frac{t-t_m}{t_n-t_m}.
\]

In the general case \(P_f \) can be written in the Newton form (which uses divided differences),

\[
P_f(t) = \sum_{n=0}^{r} (t-t_0) \cdots (t-t_{n-1})[f(t_0, \ldots, t_n)].
\]

Hence the remainder of interpolation has the following representation:

\[
f(t) - P_f(t) = (t-t_0) \cdots (t-t_r)[f(t_0, \ldots, t_r)].
\]

We will use this formula for the knots \(x_0, \ldots, x_r \), which lie on some line \(f \) in
Let \(u \in \mathbb{R}^k \) be a unit direction-vector of \(l \). Then formula (3) is modified as follows:

\[
 f(x) - P_f(x) = \rho(x, x_0) \cdots \rho(x, x_r) x + x_0, \ldots, x_0 \right) f,
\]

where \(x \in l, \rho(x, x_r) \) is the signed distance (with respect to \(u \)) of \(x \) and \(x_r \). A convenient way of introducing a divided difference here is its well-known Hermite–Genocchi representation,

\[
 Q^{r+1}(\{v_0, \ldots, v_r\}) = \sum_{\mathcal{O}^{r+1}} \frac{\prod_{i=0}^{r+1} v_i}{m!} \frac{\partial^{r+1}}{\partial v^{r+1}} f(v_0, v_1, \ldots, v_r),
\]

where \(Q^{r+1} = \{v_0, \ldots, v_r\} \) is the set of \(r+1 \) points \(\{v_0, \ldots, v_r\} \) and \(D_v \) denotes the directional derivative.

Finally, let us mention the following recurrence relation for interpolated polynomials,

\[
 P_{f}(t) = \left(t - t_0 \right) P_{f}(t_0) + \left(t - t_r \right) P_{f}(t_r),
\]

where \(t \neq t_r \) and \(P_{f} \) interpolates \(f \) at \(\{t_0, \ldots, t_r\} \), \(n = 0, r \).

\[\Box \]

Multivariate interpolation II and the Lagrange form. We start with the following notation.

\[\mathcal{P}^m_k := \text{collection of subsets of } \{0, \ldots, n\} \text{ of cardinality } m \] For \(q \in \mathcal{P}^m_k \) and \(i = (l_1, \ldots, l_m) \in \mathcal{P}^m_k \), \(q = (l_1, \ldots, l_m) \in \mathcal{P}^m_k \) provided \(q \neq i \). For \(x, y \in R^k \), \(y = (y_1, \ldots, y_k) \) and the multiindex \(\alpha = (x_1, \ldots, x_k) \) we use the following standard notation:

\[
 \begin{align*}
 \langle x, y \rangle &= \sum_{i=1}^{n} x_i y_i, \\
 |x| &= \sqrt{\langle x, x \rangle}, \\
 x^\alpha &= x_1^{a_1} \cdots x_k^{a_k}. \\
 \end{align*}
\]

We denote by \(\pi_m = \pi_m(R^k) \) the set of \(k \)-variate polynomials of total degree not exceeding \(m \).

Let \(L_0, \ldots, L_r \) be \((k-1) \)-dimensional hyperplanes in \(R^k \) and let the equation

\[
 \lambda_1 x_1 + \cdots + \lambda_k x_k + \lambda_{k+1} = 0
\]

determine \(L_n, n = 0, \ldots, r \). We briefly write for \(i = (l_1, \ldots, l_m) \in \mathcal{P}^m_k \),

\[
 \{l_k\} := \bigcap_{i=1}^{n} L_i.
\]

Let us call \(L_0, \ldots, L_r \) admissible if \(x_i := \{l_k\} \) \(\forall i \in \mathcal{P}^m_k \) is a point in \(R^k \). The admissibility of \(L_0, \ldots, L_r \) is clearly equivalent to

\[
 d_i(l) := \det \begin{vmatrix} x_1 & x_2 & \cdots & x_r \end{vmatrix} \neq 0 \quad \forall i \in \mathcal{P}^m_k.
\]

In what follows it is assumed that the hyperplanes \(L_0, \ldots, L_r \) are admissible. Let the knot \(x_i, i \in \mathcal{P}^m_k \) belong to \(m(x_i) \) hyperplanes from \(L_0, \ldots, L_r \) i.e., \(m(x_i) \) is the multiplicity of \(x_i \) and \(m(x_i) \geq k \). We say that \(L_0, \ldots, L_r \) are in general position if

\[
 m(x) = k \quad \forall i \in \mathcal{P}^m_k.
\]

Denote also by \(\rho(x, L_n), n = 0, \ldots, r \), the signed distance of \(x \) from \(L_n \),

\[
 \rho(x, L_n) = \lambda_1 x_1 + \cdots + \lambda_k x_k + \lambda_{k+1} \sqrt{\lambda_1^2 + \cdots + \lambda_k^2}.
\]

Now we are in a position to present the basic

Theorem 1. Let \(L_0, \ldots, L_r \) be admissible \((k-1)\)-dimensional hyperplanes and \(\{x_i \in I\} \) be the set of all distinct points from \(\{x_i \in I\} \); then we have:

(i) For an arbitrary set of real numbers

\[
 I = \{q \mid q \in J, |x| \leq m(x_i) - k\}
\]

there is a unique polynomial \(P_J \in \pi_{n-k+1} \), such that

\[
 D^\alpha P_J(x_i) = \gamma_q \quad \forall q \in J, |x| \leq m(x_i) - k.
\]

(ii) If \(L_0, \ldots, L_r \) are in general position, then we have the analog of Lagrange form (1) for \(P_J \), namely

\[
 P_J(x) = \sum_{i=r}^{n} p_i(x) \prod_{\beta=0}^{r} \frac{\rho(x, L_\beta)}{\rho(x_i, L_\beta)}.
\]

Proof. (ii) can be readily checked from formula (7). To prove (i), we consider the polynomials

\[
 P_{\lambda, \beta} = \lambda x_1^{\beta} \cdots \lambda x_k^{\beta} \prod_{\alpha=0}^{m(x_i) - k} \rho(x, L_\alpha),
\]

where \(\beta \in \mathcal{P}^m_k \). If \(\beta \leq m(x_i) - k \). They have the following properties:

\[\Box \]
and

$$D^k P_{f,i}(x) = \begin{cases} 1 & \text{if } i = j, x = \beta, \\ 0 & \text{if } i = j, |a| \leq |\beta|, x \neq \beta, \\ 0 & \text{if } i \notin I_{n}, i \neq j, |a| \leq m(x) - k. \end{cases}$$

This clearly gives us a way of construction of P_f. On the other hand, dim $\mathcal{N}_{n,i} = \# I$ and that completes the proof.■

This theorem was presented by the author in [5], [7]. Part (ii) was found independently by W. Dahmen and C. A. Micchelli in [2].

We denote by P_f the above unique polynomial for which

$$D^k P_f(x) = D^k f(x), \quad \forall i \in I, |a| \leq m(x) - k.$$

This we shall briefly write

$$P_f = f(L_0, \ldots, L_r).$$

Let us call L_0, \ldots, L_r interpolatory hyperplanes.

If L is an n-dimensional hyperplane in \mathbb{R}^k, then $f|_L$ denotes the restriction of f to L and is considered as an n-variate function.

Remark 1. Let $i \in I_n$, $n < k$,

$$P_{f,i} = f(L_{m}, m = 0, \ldots, r).$$

Then we have on the $(k-n)$-dimensional hyperplane $\{L_i\}$,

$$P_{i,j} = f(L_{m}, m = 0, \ldots, r).$$

Of course, interpolatory hyperplanes here are $(k-n-1)$-dimensional and are contained in $\{L_i\}$.

3. The Newton form, remainder formula and a recurrence relation. Let us first choose the directional vector of the line $l_i = [L_i]$, $i = (i_1, \ldots, i_{k-1}) \in I_{k-1}$, as follows

$$u_i = \begin{pmatrix} e_{i_1} & \cdots & e_{i_k} \\ \lambda_{i_1} & \cdots & \lambda_{i_k} \\ \vdots & \cdots & \vdots \\ \lambda_{i_1} & \cdots & \lambda_{i_k} \end{pmatrix},$$

where $e_1, \ldots, e_k \in \mathbb{R}^n$, $(\alpha_{ij}) = \delta_{ij}, n, m, i = 1, \ldots, k$. Denote for $i \in I_{k-1}$,

$$c(n, i) = |n| \cdot |\lambda|, \quad \lambda = (\lambda_{i_1}, \ldots, \lambda_{i_k}) \in \mathbb{R}^k.$$

Now we present the Newton form of P_f (cf. (2)).

Theorem 2. Let the $(k-1)$-dimensional hyperplanes L_0, \ldots, L_r be in general position and let

$$P_{f,i} = f(L_0, \ldots, L_i).$$

Then

$$P_f(x) = \sum_{s \in I_{k-1}} \sum_{m=0}^{r} \prod_{n=0}^{s-1} c(m, n) \varphi(x, L_m)^{r-m} \nu_i(x, L_m).$$

Proof. Let $P_{f,i}$ be the interpolating polynomial satisfying

$$P_{f,i} = f(L_0, \ldots, L_i), \quad n = k-1, \ldots, r, \quad P_{f,k-1} = 0.$$

We use the Lagrange form, and taking into account the above relation we obtain

$$P_{f,i} - P_{f,i-1} = \sum_{s \in I_{k-1}} \sum_{m=0}^{r} \prod_{n=0}^{s-1} c(m, n) \varphi(x, L_m)^{r-m} \nu_i(x, L_m).$$

Applying Remark 1 to the line $l_i = [L_i], i \in I_{k-1}$, we obtain (interpolatory hyperplanes in this case are zero-dimensional, i.e., they are knots)

$$P_{f,i-1} = f(L_{m}, m = 0, \ldots, n-1).$$

Hence according to (4)

$$f(x_{0,n}) - P_{f,i-1}(x_{0,n}) = \sum_{m=0}^{n} \varphi(x_{0,n}, x_{0,m}) \nu_i(x_{0,n}, L_m).$$

Finally we notice that

$$\frac{\varphi(x_{0,n}, x_{0,m})}{\varphi(x_{0,n}, L_m)} = \frac{1}{\cos(\lambda, \lambda^*)} = c(m, i).$$

Now it remains to sum up (9) using (10) and (11). ■

Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ be a nonzero vector in \mathbb{R}^k and $L_0 = L_\lambda$ the $(k-1)$-dimensional hyperplane with normal λ and passing through $x \in \mathbb{R}^k$ for $n = r+1, \ldots, r+k$. For the convenient presenting of the remainder formula we denote for $i = (i_1, \ldots, i_k) \in I_n$, $n \leq k-1$,

$$\rho := (r-n+k-1, \ldots, r+1, i_1, \ldots, i_\rho) \in I_{k-1} \setminus I_{k-1}.$$
We mean here that \(\emptyset \subseteq \Gamma_0 \) and \(\emptyset^0 = (r + k + 1, \ldots, r + 1) \) and for \(k = 1, \emptyset^0 = \emptyset \). The following theorem gives the remainder formula (cf. (3)).

Theorem 3. Let \(L_0, \ldots, L_r, L_{r+k+1}, \ldots, L_{r+k} \) be in general position. Then

\[
D^k [f(x) - P_f(x)] = \sum_{n=0}^{r+k} \sum_{\Gamma \subseteq \Gamma_0} \prod_{m \in \Gamma} c(m, r) q(x, L_m) [x_{\emptyset, k_0}] q = r + k - n, q \in (0, \ldots, r) \backslash \Gamma f.
\]

Proof. Let

\[
\bar{P}_f = f(L_0, \ldots, L_r, L_{r+k+1}, \ldots, L_{r+k}),
\]

where \(x \) has been fixed for a moment. We have \(\bar{P}_f(x) = f(x) \) since \(x \) is the common point of \(L_{r+k+1}, \ldots, L_{r+k} \), i.e.,

\[
x = x_{(r+1, \ldots, r+k)} = \bigcap_{m=r+k+1}^{r+k} L_{m,n}.
\]

Using the Newton forms of \(\bar{P}_f \) and \(P_f \) we readily obtain

\[
\bar{P}_f(y) = P_f(y) + \sum_{n=r+k}^{\infty} \sum_{\Gamma \subseteq \Gamma_0} \prod_{m \in \Gamma} c(m, r) q(y, L_m) [x_{\emptyset, k_0}] q = n, q \in (0, \ldots, r) \backslash \Gamma f.
\]

Now we put \(y = x \) in the above relation. Since \(q(x, L_{r+k}) = 0, m = r+1, \ldots, r+k \), we have

\[
f(x) = \bar{P}_f(x) = P_f(x) + \sum_{n=r+k}^{\infty} \sum_{\Gamma \subseteq \Gamma_0} \prod_{m \in \Gamma} c(m, r) q(x, L_m) [x_{\emptyset, k_0}] q = n, q \in (0, \ldots, r) \backslash \Gamma f.
\]

Let us note that the participation of the hyperplane \(L_{r+k} \) in Theorem 3 is symbolic, in fact it is only used to indicate (13).

Remark 2. The above method of deriving the remainder formula from the Newton form works in every Lagrange-Hermite interpolation setting. In particular, it can be used for MI-1.

Corollary 1. Theorem 2 and Theorem 3 remain valid if we replace the expression “be in general position” by “be admissible” in their hypotheses.

Proof. We denote by \(P_f^* \) the formal Newton form (8) for the admissible hyperplanes. Of course for \(P_f^* \) and admissible hyperplanes the remainder formula holds, that is, \(f - P_f^* \) equals to the right-hand side of (12). This gives

\[
D^k [f(x) - P_f^*(x)] = 0 \quad \forall i \in J, \, |x| < m(x_i) - k
\]

since for \(j \in J', \, n < k - 1, \)

\[
D^k [\prod_{m=0}^{r+k} q(x, L_m)] = 0 \quad \forall i \in J, \, |x| < m(x_i) - k.
\]

Thus

\[
"P_f^* = P_f".
\]

Now we present a useful recurrence relation which is the analogue of (5).

Theorem 4. Let \(L_0, \ldots, L_r \) be admissible and

\[
P_f = f(L_0, \ldots, L_r).
\]

Let also \(L_{a_1}, \ldots, L_{a_k}, i = (i_0, \ldots, i_k) \subseteq \Gamma_{r+k+1} \), be in general position. Then

\[
P_f(x) = \sum_{n=0}^{r+k} q(x_{i_0}) q(x_{i_1}) q(x_{i_2}) \ldots q(x_{i_k}) P^* f(x),
\]

where

\[
P^*_f = f(L_m, m \in (0, \ldots, r) \backslash \Gamma_i).
\]

and of course

\[
x_{i_{0} \ldots k} = x_{i_{0}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{k}}.
\]

Proof. Applying a continuity argument (with the help of Corollary 1) we need to prove (14) for \(L_0, \ldots, L_r \) being in general position. In this case it is not hard to obtain it from the relation

\[
\sum_{n=0}^{r+k} q(x, L_m) = 1.
\]

Remark 3. A similar recurrence relation seems not accessible for MI-4.

4. **Application:** “Star” numerical integration. In this section we give an interesting application of MI-1 to the numerical integration on the disk

\[
D = \{ (t_1, t_2) | t_1^2 + t_2^2 \leq 1 \}
\]

in the plane. Let the points \(x_0, \ldots, x_{2q} \) be equidistantly spaced on the circumference

\[
S = \{ (t_1, t_2) | t_1^2 + t_2^2 = 1 \}.
\]

For convenience we put \(x_{2q+1} := x_0, n = 0, \ldots, q - 1 \). Let \(t_1, n = 0, \ldots, 2q \), be the line passing through \(x_{n} \) and \(x_{n+q} \) (with the directional vector \(x_{n+q} - x_{n} \)). These lines form a \(q \)-star (see Fig. 1 for \(q = 3 \)).
Let \(r_1, \ldots, r_q \) be the radii of the concentric circumferences \(S_1, \ldots, S_q \). Then we easily obtain
\[
 r_{i+1} = \sin \left[\pi/(4q+2) \right] / \sin \left[(2i+1) \pi/(4q+2) \right], \quad i = 1, \ldots, q-1,
\]
\[
 r_1 = 1.
\]
If we put in (15) the polynomial
\[
 f(x) = f(t_1, t_2) = \prod_{i=1}^{q} (t_1^2 + t_2^2 - r_i^2),
\]
of total degree \((2q-2)\), the following interesting expression for \(c_s \) is obtained:
\[
 c_s = \frac{2\pi}{2q+1} \prod_{i=1}^{q} \left(\frac{r_i^2 - r_f^2}{r_i^2} \right) dr.
\]
For more detailed consideration and a generalization of this numerical integration see [9].

5. A formula for the main determinant (Vandermonde's) of MI-II. First we shall present a quick proof of the following lemma which is interesting in itself (for origins cf. [11], [12]).

Lemma 1. Let \(L \) be a \((k-1)\)-dimensional hyperplane, \(P \in \pi_n(R^k) \), and
\[
 (D_{j})^m P(x) = 0 \quad \forall x \in L, \quad m = 0, \ldots, s-1,
\]
where \(\lambda \) has the normal direction of \(L \). Then
\[
 P(x) = P(x, L)^{p_s}(x),
\]
with
\[
 P_s(x) \in \pi_{n-s}(R^k).
\]

Proof. Since (17) is independent of the coordinate system, we assume without loss of generality that \(L \) is the hyperplane \(x_1 = 0 \). Next, we can represent \(P(x_1, \ldots, x_k) \) in the form
\[
 P(x_1, \ldots, x_k) = \sum_{m=0}^{s-1} x_1^m P_m(x_2, \ldots, x_k) + x_1^s P_s(x_1, \ldots, x_k),
\]
where
\[
 P_m \in \pi_{n-m}(R^k), \quad m = 0, \ldots, s-1.
\]

Now (16) implies
\[
 P_m(x_2, \ldots, x_k) = 0, \quad m = 0, \ldots, s-1.
\]
To introduce the analogue of Vandermonde determinant of MI-II we first order the sets I_k and $M = \{x = (\alpha_1, \ldots, \alpha_k) | \alpha_i \leq r-k+1\}$, i.e., we assume that
\[l: \left\{1, \ldots, \binom{r+1}{k}\right\} \rightarrow I_k \]
and
\[\alpha: \left\{1, \ldots, \binom{r+1}{k}\right\} \rightarrow M \]
are one-to-one.

In what follows we assume that the $(k-1)$-dimensional hyperplanes L_1, \ldots, L_r are in general position and that they are given by the following equations
\[\lambda_1 x_1 + \ldots + \lambda_k x_k = 1, \quad n = 0, \ldots, r, \]
respectively. Let also
\[d_{k, l} [i] := \begin{vmatrix} 1 & \ldots & 1 \\ \lambda_1^0 & \ldots & \lambda_k^0 \\ \vdots & \ldots & \vdots \\ \lambda_1^0 & \ldots & \lambda_k^0 \end{vmatrix} \]
for $i = (i_0, \ldots, i_k) \in I_{k+1}$, and $d_k [i]$, for $i \in I_k$, be given as in (6). Then we define
\[V(L_0, \ldots, L_r) := \det \left[\phi_{\alpha}(x)(\binom{r+1}{k})_{\alpha=0}^{k=r} \right], \]
where
\[\phi_{\alpha}(x) := x^\alpha. \]

Theorem 5. We have
\[V(L_0, \ldots, L_r) = c \frac{\prod_{i=1}^{r-k} d_k [i]^{r-k+1}}{\prod_{i=1}^{r-k+1} d_{k+1} [i]^{r-k+1}}, \]
where c is independent of L_0, \ldots, L_r.

Proof. Using Cramer's rule for determining $x_i = L_1 \cap \ldots \cap L_{k+1}$, $i = (i_1, \ldots, i_k) \in I_k$, as the unique solution of the linear system of equations of L_1, \ldots, L_k, it is not hard to show that
\[P_T := V(L_0, \ldots, L_r) \prod_{i=1}^{r-k+1} d_k [i]^{r-k+1} \]
is a polynomial of $x^\alpha = (x_1^\alpha, \ldots, x_k^\alpha)$ for each $n = 0, \ldots, r$. Computing the total degree of P_T, then considering it as a polynomial of λ_n^m, $n = 0, \ldots, r$, $m = 1, \ldots, k$ we obtain the sum
\[\sum_{n=0}^{r-k+1} \binom{r-k+1}{k} \binom{n+r-k}{k} = \binom{r+1}{k}. \]

Now if for $i = (i_0, \ldots, i_k) \in I_k$ and $n \in \{0, \ldots, r\}$, we have
\[x_\alpha \in L_i := \bigcup_{n=0}^{r-k+1} \lambda_n^m \sum_{n=0}^{r-k+1} \lambda_n^m = 1, \]
then $x_i \in L_k$. Therefore
\[x_{i_1, \ldots, i_{r-k+1}} = x_i, \quad m = 1, \ldots, k. \]
It means that in this case $V(L_0, \ldots, L_r)$ will have $(k+1)$ columns equal. Hence
\[(D_{i_1})^{m} P_T(x) = 0, \quad \forall x \in L, \quad m = 0, \ldots, k-1. \]
Since L is a $(k-1)$-dimensional hyperplane, and
\[g(\lambda^\alpha_L, L) = c_0 d_{k, l} [i]^{(n, i)}, \]
repeated application of Lemma 1 gives
\[V(L_0, \ldots, L_r) = c \prod_{i=1}^{r-k+1} d_k [i]^{r-k+1}, \]
where c is a polynomial in λ_n^m, $n = 0, \ldots, r$, $m = 1, \ldots, k$.

The total degree of the product on the right-hand side of (19), considered as a polynomial of λ_n^m, $n = 0, \ldots, r$, $m = 1, \ldots, k$, obviously equals $k^2 \binom{r+1}{k}$, i.e., it is the same as for P_T. Hence c is a constant. Of course, Theorem 1 (ii) implies $c \neq 0$. \]

Acknowledgements. The basic Theorem 1 is taken from the author's thesis [5] supervised by Professor Z. Ciesielski. The author is also grateful to him for further very useful discussions.

References

[9] — *A family of cubature formulas*, manuscript.

Received April 27, 1983
Revised version September 15, 1983

Stefan Banach

OEUVRES

Volume II

TRAVAUX SUR L'ANALYSE FONCTIONNELLE

470 p., relié

Ce volume contient tous les travaux d'analyse fonctionnelle de Stefan Banach, ainsi que son fundamental traité "Théorie des opérations linéaires" et une bibliographie de ses écrits. Une fine étude de Aleksander Pełczyński présente une revue des recherches relatives aux parties de l'analyse fonctionnelle qui ont eu pour point de départ le traité de Banach et les résultats qui y ont été exposés.

Juliusz Paweł Schauder

OEUVRES

487 p., relié

De 1918 à 1940 Juliusz Paweł Schauder appartenait aux remarquables représentants de l'Ecole mathématique créée par Stefan Banach et Hugo Steinhaus. Son fidèle dans le statu quo, il a révélé ses travaux dans les espaces vectoriels normés, introduits par lui, ainsi que les résultats précurseurs de ses recherches dans le domaine des équations différentielles partielle elliptiques et hyperboliques, composent un fond durables à l'analyse mathématique.

Ce volume contient tous les ouvrages de Schauder. Les résultats sont publiés en allemand, français et anglais.

Karol Borsuk

COLLECTED PAPERS

Parts I and II, xxiv+1357 pp., cloth bound

The ideas of Karol Borsuk, the richness and depth of the problems that he posed, provided inspiration for research in Poland and in other countries for many years. The present selection of K. Borsuk’s works, made by the author in 1980, comprises the most important of his papers. The papers are arranged in chronological order.

The book includes papers on the following topics: Cartesian and symmetric products; Extending of maps; Fixed and anti-podal points; Functional spaces and their applications; Cohomology groups; Metric properties; Polyhedra; Spaces satisfying some special conditions; Theory of position; Theory of retracts; Theory of shape; and papers on topics of other kind.

To be ordered at your bookseller or directly at

ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)