The isomorphic problem of envelopes

by

STEFFAN HEINRICH (Berlin and Warszawa)

Abstract. It is shown that there is a separable Banach space X which has no separable isomorphic envelope, i.e. there is no separable space Y such that whenever Z is separable and finitely representable in X, Z embeds isomorphically into Y. This strengthens Stern's solution to the (isometric) problem of envelopes posed by Lindenstrauss and Pełczyński.

1. Introduction. The notion of an envelope of a Banach space was introduced by Lindenstrauss and Pełczyński in [6]: A Banach space Y is an envelope of a Banach space X if Y is finitely representable in X and each space Z, which is finitely representable in X and whose density character does not exceed that of Y, embeds isometrically into Y. Let us recall that, given $\lambda \geq 1$, a space Y is said to be finitely λ-representable in X if for each $\varepsilon > 0$ and each finite-dimensional subspace $F \subset Y$ there exists a subspace $E \subset X$ satisfying $d(E, F) < \lambda + \varepsilon$, where d denotes the Banach–Mazur distance. Y is called to be finitely representable in X if it is finitely 1-representable. The density character of a space X is the least cardinal κ such that X possesses a dense subset of power κ.

Lindenstrauss and Pełczyński [6] proved that L_p is an envelope of L_q, $1 < p < \infty$, and posed the problem whether every separable Banach space has a separable envelope. This problem was solved by Stern [10] who showed that there exists an equivalent norm on L_q arbitrarily close to the original one so that the resulting space X has no separable envelope.

Clearly, the notion of an envelope is an isometric one, but it has a natural isomorphic counterpart: Let us say that a Banach space Y is an isomorphic envelope of a space X if Y is finitely representable in X and each space Z which is finitely representable in X and whose density character does not exceed that of Y embeds isomorphically into Y.

Note that formally one could still replace the phrase "finitely representable" by "finitely λ-representable for some $\lambda"", but this would not lead to essential changes. Indeed, a Banach space Y which is finitely λ-representable in X is λ-isomorphic to a space which is finitely (1)-representable in X.
Roughly speaking, a separable envelope of X is an isometrically universal member within the class of all separable "local subspaces" of X, while a separable isomorphic envelope is an isomorphically universal member of the same class.

With the definition above, the isomorphic problem of envelopes arises: Does every separable Banach space have a separable isomorphic envelope? It follows from the results of [6] that each separable L_p-space ($1\leq p < \infty$) has a separable isomorphic envelope. So do all separable subspaces of L_p-spaces for $2\leq p < \infty$ since each such space X is either isomorphic to l_p or contains an isomorphic copy of l_p (cf. [4], [6]). In the latter case l_p is finitely representable in X ([5]) and l_p will be an isomorphic envelope of X.

The space constructed by Stern [10] has an isomorphic envelope, because it is isomorphic to a Hilbert space. Moreover, his method is based essentially on the metric geometry of l_p and does not carry over to the isomorphic context.

The aim of this paper is to show that there exists a separable Banach space without separable isomorphic envelope. The space we present has a simple representation: It is an l_p-sum of l_p-spaces. This way we also get an alternative counter-example to the isomorphic problem. Our proof involves ultrapowers of Banach spaces, which enable us to describe the structure of a possible envelope (this was also used in [10]), and the local incomparability of L_p-spaces for different $p > 2$, established in [9].

We now introduce some notation. Given p, $1 \leq p < \infty$, a set I and a family of Banach spaces $\{X_i\}_{i \in I}$, we denote by $\{\sum_{i \in I}^{\ell} X_i\}_{\ell \in I}$ the space of all families $(x_i)_{i \in I}$ with $x_i \in X_i$ and $\|\sum_{i \in I}^{\ell} x_i\| = \left(\sum_{i \in I}^{\ell} \|x_i\|^p \right)^{1/p} < \infty$. If $I = \mathbb{N}$ and $X_i = X$, we use the notation $\ell_p(X)$. Furthermore, given a Banach space X and a σ-additive measure μ on a measure space (Ω, Σ), we denote by $L_p(\mu, X)$ the space of X-valued μ-measurable σ-additive functions f for which $\int_{\Omega} \|f\|^p d\mu$ is finite. We write $L_p(\mu, X)$ instead of $L_p(\mu, X)$ if μ is the Lebesgue measure on $[0, 1]$.

Next recall the definition of an ultrapower, introduced in [2]: Let U be an ultrafilter on a set I, and let $\{X_i\}_{i \in I}$ be a family of Banach spaces. Denote by N_U the closed subspace of $\{\sum_{i \in I}^{\ell} X_i\}_{\ell \in I}$ which consists of all families (x_i) satisfying $\lim_{\ell \to \infty} \sup_{i \in I} \|x_i\| = 0$. Then the ultrapower (X_U) is defined to be the quotient space $\{\sum_{i \in I}^{\ell} X_i\}_{\ell \in I}/N_U$, equipped with the usual quotient norm. If $(x_{i\ell})$ denotes the equivalence class determined by (x_i), then the norm can be computed as $\|x_{i\ell}\| = \lim_{\ell \to \infty} \|x_i\|$. If all of the spaces X_i are identical with some X, we speak of an ultrapower, (X_U). Given operators $T_i: X_i \to X_{i\ell}$ with $\sup_{i \in I} \|T_i\| < \infty$, we can define their ultraproduct $(T_{i\ell})_{\ell}: (X_{i\ell})_{\ell} \to (Y_{i\ell})_{\ell}$ in a canonical way by setting $(T_{i\ell})_{\ell}(x_i)_{\ell} = (T_i x_i)_{\ell}$. Finally, we say that an ultrafilter U on a set I is countably incomplete if there exists a sequence of sets $D_n \in U$ with $\bigcap_{n=1}^{\infty} D_n = \emptyset$. For the basic facts concerning ultraproducts of Banach spaces we refer to [2], [11] and the survey [3].

Acknowledgment. The author thanks Prof. C. Ward Henson for a stimulating discussion on the isomorphic problem of envelopes.

2. The counter-example. We first state the main result, which will be proved through a series of lemmas. Q denotes the set of rational numbers.

Theorem. Let $2 < a < b < r < \infty$ and let $X = \bigcup_{\ell \in \mathbb{Q} \cap [0,1]} L_p(\ell_p, X)$. Then X has no separable isomorphic envelope.

Throughout this section a, b, r and X will be fixed as defined in the Theorem. The first two lemmas concern the local structure of those subspaces of X which correspond to subsets of the interval $[a, b]$. More precisely, we shall investigate the question whether or not l_p is finitely representable in these spaces. In this connection we shall frequently use a result of Krivine [5], stating that if, for some λ, l_p is finitely λ-representable in a Banach space Z, then l_p is finitely representable in Z. The first lemma is just a reduction result which will simplify the proof of Lemma 2.

Lemma 1. Let $A = [a, b]$ be a closed set and let $p \in (a, b)$. Assume that l_p is finitely representable in $\{\sum_{\ell \in Q}^{\ell} \ell_p(\ell_p, X)\}$. Then there exists an $\ell \in A$ such that l_p is finitely representable in $\ell_p(l_p)$. Let μ be a σ-additive measure on $[a, b]$ and let X be a Banach space.

Proof. If l_p is finitely representable in a direct sum of two Banach spaces, then l_p is finitely representable in at least one of the summands. Indeed, it is a standard trick, that if a direct sum of two Banach spaces contains an isomorphic copy of l_p, then so does one of the summands. By means of ultrapowers, this fact is easily localized (cf. [3], Ch. 6 for this kind of argument), and an application of Krivine’s result yields the desired statement.

Using this, one can find a sequence (A_n) of closed subsets of A such that, for all n, $A_n \supseteq A_{n+1}$, diam $(A_n) < 1/n$, and l_p is finitely representable in $\{\sum_{\ell \in Q}^{\ell} \ell_p(\ell_p, X)\}$. Define $s \in A$ to be the unique common point of the sets A_n, i.e. $\{s\} = \bigcap_{n} A_n$. Fix $m \in N$ and $\varepsilon > 0$. By a result of Pelczynski and Rosenthal [9], there exists a $\delta > 0$ (depending on m and ε only) such that the following holds: If $|s - t| < \delta$, then every m-dimensional subspace of l_p is $(1 + \varepsilon)$-isomorphic to a subspace of l_p. Now choose n so that $1/n < \delta$ and let E
be an m-dimensional subspace of $\left(\sum E_n \right)_{\sigma_{rad}}$, with $d(E_n, E_p) < 1/\epsilon$. There exist m-dimensional subspaces $E_i \subset L_p$ such that $E \subset \left(\sum E_i \right)$. Each of the spaces E_i is $(1 + \epsilon)$-isomorphic to some subspace of L_p, thus $\left(\sum E_i \right)$, and in particular E_i is $(1 + \epsilon)$-isomorphic to a subspace of $L_p(\mathbb{N})$. Consequently, $L_p(\mathbb{N})$ contains a $(1 + \epsilon)$-isomorph of C_p. Since ϵ and m were arbitrary, this concludes the proof.

Lemma 2. Let $A = [a, b]$ be a closed set and let $p \in [a, b] \setminus A$. Then L_p is not finitely representable in $\left(\sum E_i \right)_{\sigma_{rad}}$.

Proof. In view of Lemma 1 it suffices to show that for $p, q \in [a, b]$, $p \neq q$, L_p is not finitely representable in $L_q(\mathbb{N})$. For technical reasons, we shall actually prove that L_p is not finitely representable in $L_q(\mathbb{N})$.

We assume the contrary, i.e., for each n there exists a subspace $E_n \subset L_q(\mathbb{N})$ with $\dim E_n = n$ and

$$d(E_n, E_p) < 1 + 1/n.$$

The elements of E_n are vector-valued functions, so let us consider the set of "norm functions" $S_n : L_p \to \mathbb{R}$:

$$S_n = \{ f \in L_p : \text{There exists an } x \in E_n, x = f(t) \text{ with } \|x(t)\| = f(t) \text{ a.e.} \}.$$

We shall apply the method of weighted L_p-norms, developed by Pekarzyaki and Rosenthal in [9], to these sets S_n. Let Φ be the set of all measurable functions ϕ on $[0, 1]$ satisfying $\phi(t) > 0$ for all $t \in [0, 1]$ and $\int_{[0, 1]} \phi = 1$. First we show that, taken on S_n, the ratio of the L_p-norm to weighted L_p-norm tends to infinity with $n \to \infty$, more precisely

$$\liminf_{n \to \infty} \frac{\inf_{\phi \in \Phi} \sup_{x \in E_n} \|f\|_{L_p} \phi^{(n)}}{\sup_{x \in E_n} \|f\|_{L_{\phi^{(n)}}}} = \infty.$$

Assume that this is not the case. Then there exist a constant C and, for each n, a function $\phi_n \in \Phi$ so that for all $f \in E_n$,

$$\|f\|_{L_p} \leq C\|f\|_{L_{\phi^{(n)}}}.$$

Let μ_n be the probability measure on $[0, 1]$ defined by $d\mu_n = \phi_n \, dt$. We get for $f \in S_n$,

$$C^{-1} \|f\|_{L_p} \leq \|f\|_{L_{\phi^{(n)}}} \leq \|f\|_{L_{\phi_n}} \leq \|f\|_{L_{\phi^{(n)}}} = \|f\|_{L_p}.$$

Thus

$$C^{-1} \|f\|_{L_p} \leq \|f\|_{L_{\phi^{(n)}}} \leq \|f\|_{L_p} \quad (f \in S_n).$$

We now define an operator $T_n : E_n \to L_p(\mu_n)$ by setting $(T_n x)(t) = \phi_n^{-1/(m+1)} x(t)$, for $x \in E_n$, $t \in [0, 1]$. Then (3) shows that

$$C^{-1} \|x\| \leq \|T_n x\| \leq C \|x\| \quad (x \in E_n).$$

Since $L_p(\mu_n)$ is isometric to L_p, the last inequality together with (1) implies that L_p is finitely C-representable in L_p. But this is known to be impossible [9]. We have got a contradiction which proves (2).

Now we proceed with the application of the argument from [9]. The proof of Proposition 3.1 of [9] combined with (2) yields the following:

For each $\delta > 0$ and $m \in N$ we can find an $n_0 \in N$ such that whenever $n > n_0$, there exist functions $f_1, \ldots, f_m \in S_n$ of norm one and measurable sets $A_1, \ldots, A_m \subset [0, 1]$ satisfying

$$\frac{1}{n} \int_{[0, 1]} \left| \int_{A_i} \phi_n^{-1} \right| \leq \frac{1}{n} \int_{A_j} \phi_n^{-1} < \frac{1}{n} \int_{A_j} \phi_n^{-1} < \frac{1}{n} \int_{A_j} \phi_n^{-1} = \frac{1}{n} \int_{[0, 1]} \phi_n^{-1}.$$

Define $B_i = A_i \setminus \bigcup_{j \neq i} A_j$, choose $a_1, \ldots, a_m \in E_n$ so that $\|a_i\| = \int_{[0, 1]} \phi_n^{-1} (a_i, t)$ and put $y_i = x_{n_0} y_i$. The y_i's are disjointly supported vector-valued functions in $L_p(\mathbb{N})$, consequently, they span a subspace isometric to C_p. On the other hand, it follows from (4) that

$$\|y_i - y_j\|_{L_p(\mathbb{N})} = \|f_i - f_j\|_{L_p(\mathbb{N})} < (m+1)^{\delta/\epsilon}.$$

If now δ is chosen small enough ($\delta < (4m)^{-1} \epsilon$ will suffice), span $(y_i)_{i \in \mathbb{N}}$ is $(1 + \epsilon/m)$-isomorphic to span $(y_i)_{i \in \mathbb{N}}$, hence to C_p. (Recalling (1) again, we derive that L_p is finitely representable in L_p, contradicting the fact [8] that L_p and all spaces which are finitely representable in it are of type \mathcal{P} while L_p is not (2 $\leq p < \infty$, by assumption). This accomplishes the proof of Lemma 2.

Let \mathcal{U} be a non-trivial ultrafilter on \mathbb{N}. In the next lemma, which is the crucial part of the proof of the Theorem, we shall study isomorphic embeddings of L_p into $[X]^{\mathcal{U}}$. We cannot expect a full description of these embeddings, but we will get some information about the location of L_p-isomorphs with respect to some natural decomposition of $[X]^{\mathcal{U}}$.

For this, let us first introduce some more notation. Given a set $A \subset [a, b]$, we denote by P_A the canonical projection of X onto the subspace corresponding to the sum $\bigoplus_{i \in A} E_i$. The ultrapower of P_A will be denoted by Q_A, thus $Q_A = (P_A)^{\mathcal{U}}$. Furthermore, if (A_n) is a sequence of subsets of $[a, b]$, we define Q_{A_n} to be the ultraproduct of P_{A_n}, the sequence of projections (P_{A_n}). It is easy to check that Q_A and Q_{A_n} are projections, acting in $[X]^{\mathcal{U}}$.

Lemma 3. Let $p \in (a, b)$, let \mathcal{U} be a non-trivial ultrafilter on \mathbb{N}, and let Z be a subspace of $[X]^{\mathcal{U}}$ isomorphic to L_p. Then there exists an element
Then the restriction of \(Q_{[a,b] \setminus I} \) to the closure of \(\text{span}(z_m; n > m) \) is an isomorphism, which means that \(I_\rho \) embeds isomorphically into \(\text{Im} Q_{[a,b] \setminus I} \). It is readily checked that

\[
\text{Im} Q_{[a,b] \setminus I} = \left(\text{Im} P_{[a,b] \setminus I} \right)^\perp.
\]

Therefore \(I_\rho \) is finitely \(\lambda \)-representable for some \(\lambda \) (and hence finitely representable) in

\[
\text{Im} P_{[a,b] \setminus I} = \left(\sum_{\sigma \in [a,b]} P_{(a,b) \setminus [\sigma]} \right)^\perp.
\]

Contradicting Lemma 2. This shows that (8) cannot hold and we can find \(u_{k+1} \), as required. This completes the induction.

Next we define \(s_k = Q_{[a,b] \setminus I} u_k \). According to (6) and (7), we have

\[
|u_k - s_k| \leq \varepsilon^{2k-1}.
\]

As a block-basis of \((u_k) \), the sequence \((u_k) \) is equivalent to the unit vector basis of \(I_\rho \). Moreover, its basis constant does not exceed \(\|T\| \|T^{-1}\|^{-1} \). By (9), the choice of \(s_k \) and a well-known perturbation result [(7)], 1.a.9), \((s_k) \) is equivalent to \((u_k) \), consequently to the unit vector basis of \(I_\rho \).

On the other hand, the projections \(Q_{x_j} \) form an \(\text{tr} \)-decomposition of \((X)_X \). Precisely, if \(A_1, \ldots, A_m \) are mutually disjoint subsets of \([a,b] \) and \(s_k = (s_k(1), \ldots, s_k(m)) \) are elements of \((X)_X \), then

\[
\sum_{i=1}^{m} Q_{A_i} s_k = \lim_{\delta \to 0} \sum_{i=1}^{m} P_{A_i} s_k = \left(\sum_{i=1}^{m} \|Q_{A_i} s_k\|_2 \right)^\perp = \left(\sum_{i=1}^{m} \|P_{A_i} s_k\|_2 \right)^\perp.
\]

A look at the definition of \((s_k) \) shows now that it must be equivalent to the unit vector basis of \(I_\rho \), which is a contradiction. This completes the proof of (9) and thus of the lemma.

Proof of the Theorem: Assume that \(Y \) is a separable isomorphic envelope of \(X \). Let \(U \) be a non-trivial ultrafilter on \(N \). By definition, \(Y \) is finitely representable in \(X \), therefore it is isometric to a subspace of \((X)_X \) (cf. [3], Th. 6.3). In the sequel we thus assume \(Y \subset (X)_X \). It is easily seen that for each \(\sigma \in (a,b) \), \(I_\rho \) is finitely representable in \(X \). Hence \(Y \) contains a subspace isomorphic to \(I_\rho \). An application of Lemma 3 shows that there exists an element \(s_k \in Y \) and a sequence of open intervals \((I_{k+1}) \) with \(p \in I_{k+1} \), \(I_{k+1} = [a,b] \), \(\lambda_{I_{k+1}}(s_k) \leq \varepsilon^{2k-1} \). Choose \(k \) so that \(u_1, \ldots, u_k \in \text{span}(z_m; 1 \leq m \leq n) \). Suppose that we could not find an \(u_{k+1} \), or equivalently, that for all \(u \in \text{span}(z_m; n > m) \)

\[
|Q_{[a,b] \setminus I} u| \geq 2^{-(k+1)}|u|.
\]
Isomorphic problem of envelopes

(1) The Continuum Hypothesis.

(2) Each Banach space of density character \(\leq \omega_1 \) has an isomorphic envelope of density character \(\leq \omega_1 \).

(3) Each Banach space of density character \(\leq \omega_1 \) has an (isometric) envelope of density character \(\leq \omega_1 \).

Stern proved (1) \(\Rightarrow \) (3). The implication (1) \(\Rightarrow \) (3) was derived from a model-theoretic result of Keisler (cf. [10], Th. 5 and [1], Ch. 6). In exactly the same manner it can be deduced from [1] (combine Prop. 5.1.6 (vi) and Th. 5.1.16) that if we assume the Generalized Continuum Hypothesis, then each non-separable Banach space \(X \) has an envelope \(Y \) of the same density character as \(X \).

References

INSTITUT FÜR MATHEMATIK
AKADEMIE DER WISSENSCHAFTEN DER DDR
DDR — 10 BERLIN, MOERENSTRASSE 19
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
SNIADECKICH 8, 00-908 WARSAW, POLAND

Received May 7, 1980 (1014)