Contents of volume LXV, number 1

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. -K. Fong, On M-hypormal operators</td>
<td>1-6</td>
</tr>
<tr>
<td>J. Johnson and J. Wolfe, Norm attaining operators</td>
<td>7-10</td>
</tr>
<tr>
<td>A. Piotrowski, Method of orthogonal projections and approximation of the spectrum of a bounded operator</td>
<td>21-29</td>
</tr>
<tr>
<td>J. M. Ash, F. F. Ass, C. L. Pepperman, and R. L. Jones, Singular integral operators with complex homogeneity</td>
<td>31-60</td>
</tr>
<tr>
<td>R. Kaufman, On the sum of two Brownian paths</td>
<td>51-54</td>
</tr>
<tr>
<td>R. A. Macias and C. Segovia, Singular integrals on generalized Lipschitz and Hardy spaces</td>
<td>55-75</td>
</tr>
<tr>
<td>A. P. Calderón and A. Zygmund, A note on singular integrals</td>
<td>77-87</td>
</tr>
</tbody>
</table>

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief), A. Pelczyński, W. Zelazko

The journal prints original papers in English, French, German and Russian, mainly on functional analysis, abstract methods of mathematical analysis and on the theory of probabilities. Usually 3 issues constitute a volume.

The papers submitted should be typed on one side only and they should be accompanied by abstracts, normally not exceeding 200 words. The authors are requested to send two copies, one of them being the typed, not Xerox copy. Authors are advised to retain a copy of the paper submitted for publication.

Manuscripts and the correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA
ul. Śniadeckich 8, 00-950 Warszawa, Poland

Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ul. Śniadeckich 8, 00-950 Warszawa, Poland

The journal is available at your bookseller or at

ARS POLONA
Krakowskie Przedmieście 7, 00-068 Warszawa, Poland

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa 1979
PRINTED IN POLAND

STUDIA MATHEMATICA, T. LXV. (1979)

On M-hypormal operators

by

CHE-KAO FONG (Ontario)

Abstract. Direct integral decompositions of dominant (or M-hypormal) operators and spectral operators which are quasi-affine transforms of M-hypormal operators are considered.

According to Stampfli and Wadhwa [6], a (bounded) operator T on a Hilbert space H is said to be dominant if $\text{range}(T - z) \subseteq \text{range}(T - z)^*$ for all $z \in C$, and T is said to be M-hypormal if

$$\left\langle (T - z)x, x \right\rangle \leq M \left\langle (T - z)x, x \right\rangle$$

for all $z \in C$ and $x \in H$. It is not hard to see that the following statements are each equivalent to each other:

1. T is dominant.
2. For each $z \in C$, there is an operator A_z such that $T - z = (T - z)^* A_z$.
3. For each $z \in C$, there is a positive number M_z such that

$$\left\langle (T - z)x, x \right\rangle \leq M_z \left\langle (T - z)x, x \right\rangle \quad (x \in H),$$

i.e.,

$$\langle (T - z)(T - z)^* \leq M_z^2 (T - z)^* (T - z) \rangle.$$

This follows from [1]. Also [1] implies that T is M-hypormal if and only if, for each $z \in C$, there is an operator A_z such that $\|A_z\| \leq M$ and $T - z = (T - z)^* A_z$.

In this paper we present some variants of the results in [6]. First we record a lemma which appears in [3].

Lemma 1. Let T be a spectral operator on a Hilbert space H with the resolution of the identity E. Let C be a closed set in C and $x \in H$. If there exists a bounded function $g : C \to \mathbb{C}$ such that $(T - z)g(z) = x$ for all z, then $E(0)x = x$.

The next lemma is the basis of the subsequent results. The proof is a modification of [6].
Lemma 2. Let T be an M-hyponormal operator. Suppose there exists an operator W one-one with dense range and a spectral operator S such that $TW = WS$. Then there exists a positive operator P, a normal operator N and a quasi-nilpotent operator Q such that $(T - N)P = PQ$ and $TN = NT$.

Proof. By the polar decomposition of W and the fact that S is spectral, we may replace W by a positive operator P and assume that the scalar part N of S is normal. Let $N = \{ zE_x \}$ be the spectral decomposition of N. Since T is M-hyponormal, for each $x \in C$, there is an operator A_x such that $\| A_x \| \leq M$ and $T - z = (T - z)^* A_x$. Let K be a closed set in C and $x \in E(K)$. Then there is an analytic function $f : K \to H$ such that $(S - z)f(x) = x$. Thus, for $x \notin K$,

$$(T - z)^* A_x P f(x) = (T - z) P f(x) = P(S - z) f(x) = P x .$$

Hence

$$(S - z)^* A_x P f(x) = P(T - z)^* A_x P f(x) = P x .$$

Let C be an arbitrary closed set in C containing $K^* = \{ x \in C : \|x\| \leq K \}$ and a neighborhood of the infinity. Then $g(x) = P A_x P f(x)$ is bounded on $C - C$ and $(S - z) g(x) = P x$. By Lemma 1, $P x \in E(K)$. (Note that $x \to E(K)$ is the spectral measure of N^* which is the scalar part of S^*.) Therefore $P x \in E(K)$. We have shown that $E(K) H$ is an invariant subspace of P^2 for every closed set K in C. Regularity of the spectral measure E thus implies that N commutes P.

Now the identity $TP = PS$ can be written $(T - N)P = PQ$. Furthermore,

Since the range of P is dense, we have $TN = NT$.

Corollary 3. If a spectral operator is M-hyponormal, then it has a normal scalar part.

Proof. From the proof of Lemma 2, we see that if W is invertible, then so is P. Hence there is a normal operator N such that $TN = NT$ and $T - N$ is quasi-nilpotent. The conclusion follows from the uniqueness of the canonical reduction of a spectral operator (see Dunford and Schwartz [2], Theorem XV, 4.3).

The following corollary is a special case of [3]; [3] is based on a result of Putnam [4].

Corollary 4. If $TW = WS$, where S is spectral, T is hypnormal and W has a dense range, then T is a normal scalar operator and S is similar to T.

Proof. From Lemma 2, we have $TN = NT$ and $(T - N)P = PQ$ where N is a normal operator, P is a positive operator with a dense range and Q is similar to the radical part of S. Now it suffices to show that $T - N = 0$.

Since N is normal and $TN = NT$, Fuglede's theorem yields $T^* N = N T^*$. Furthermore, since T is hypnormal, we have, for each $w \in H$ and $z \in C$,

$$\| (T - z)^* N w \|^2 = \| (T - z) N w \|^2 - 2 \text{Re} ((T - z)^* w | N w) + |z|^2 \| N w \|^2$$

$$= \| (T - z) w \|^2 - 2 \text{Re} ((N w | (T - z) w) + |z|^2 \| w \|^2 = \| (T - N - z) w \|^2 .$$

Therefore $T - N$ is hypnormal.

Next, for a bounded operator A and $k > 0$, we write $M(A; k)$ for the spectral manifold

$$\{ z \in H : \text{there is an analytic function } f : \{ z \in H : |z| > k \} \to H \text{ such that } (A - z) f(z) = z \text{ for all } z \} .$$

It follows from the Laurent expansion that this set is equal to

$$\{ z \in H : \limsup |(A - z)^n w|^2 |z|^{kn} < k \} .$$

From $(T - N)P = PQ$, we have $P \{ M(Q; k) \} \subseteq M(T - N; k)$. Note that $M(Q; k) = H$ for all $k > 0$ and $M(T - N; 1)$ is always closed. (In fact, $M(T - N; k) = \{ z \in H : \| (T - N)^k w \|^2 < k \| w \|^2 \}$ for all $k > 1$, since a hypnormal operator is paranormal.) Hence $M(T - N; k) = H$ for all $k > 0$. By Baire's category theorem, it is easy to show that $Sp(T - N) = \{ 0 \}$. Now $T - N$ is a quasi-nilpotent hypnormal operator. Hence $T - N = 0$.

Next we consider direct integral decompositions of M-hypnormal operators.

Lemma 5. Let $T = \int_{\lambda}^T \delta t \, d\lambda(t)$ be a direct integral decomposition of T.

(a) If T is dominant, then $T(t)$ is dominant a.e. (t).

(b) T is M-hypnormal if and only if $T(t)$ is M-hypnormal a.e. (t).

Proof. Since the proof of (b) is similar to and easier than (a), we only prove part (a). By hypothesis, for each $s \in C$, there exists a positive number M_s such that the operator

$$D_s = M_s (T - s)^* (T - s) - (T - s)(T - s)^*$$

is positive. (For definiteness, we assume that M_s is the smallest positive number making $D_s \geq 0$.) Hence $D_s(t) \geq 0$ a.e. (t) for each s. Let $P_s = \{ z \in C : M_s \leq |z| \}$. Then $\bigcup P_s = C$. Let Q_s be a countable dense subset of P_s.

Let $X = \{ t \in X : D_t(t) \geq 0 \}$ for $s \in \bigcup Q_s$. Then $m(X - Y) = 0$. Now it is easy to check that $T(t)$ is dominant for $t \in Y$.
LEMMA 6. Let \(T \) be a dominant operator. Then
(a) \(\ker(T - z) = \ker(T - z) \subseteq \ker(T - z') \) for each \(z \in C \), and
\[
\ker(T - z) \cap \ker(T - z') = \{ 0 \} \quad \text{if} \quad z \neq z',
\]
(b) if \(T \) is algebraic or of finite rank, then \(T \) is normal.

Proof. Straightforward. \(\blacksquare \)

The following theorem follows immediately from the above two lemmas.

THEOREM 7 (see [6]). If \(T \) is dominant and either \(T \) is \(n \)-normal or there is a nonconstant polynomial \(p \) such that \(p(T) \) is normal, then \(T \) is normal.

As a result of Lemma 5, we obtain:

COROLLARY 8. If \(T \) is \(M \)-hyponormal, \(N \) is normal and \(TN - NT \), then \(T + N \) is \(M \)-hyponormal.

Remark 1. The above corollary fails if "\(M \)-hyponormal" is replaced by "dominant". Take any dominant operator \(S \) which is not \(M \)-hyponormal for every \(M > 0 \). (Such operator exists, see e.g. [6].) Let \(T \) be a direct sum of countably many copies of \(S \), say \(T = \bigoplus_{k=1}^{\infty} S_k \), with \(S_k \) is unitarily equivalent to \(S \) for each \(k \). We can choose \(\varepsilon_k \in C \) such that \(\lim_{k \to \infty} M_k = \infty \), where
\[
M_k = \inf \{ M > 0 : \| (S - \varepsilon_k)^n \| \leq M \| (S - \varepsilon_k)^n \| \text{ for all } n \}.
\]

Obviously \(\{ \varepsilon_k \} \) must be bounded. Let \(N = \bigoplus_{k=1}^{\infty} A_k \). Then there is no positive number \(M \) such that \(\| (T + N)^n \| \leq M \| (T + N)^n \| \) for each \(n \).

Remark 2. We give an alternative proof of Corollary 8, without using the direct integral technique as follows: Let \(N = \bigoplus_{(n)} E_n B_n \) be the spectral decomposition of \(N \). Take a partition \(B = \{ B_1, \ldots, B_t \} \) of \(B(n) \) into Borel sets of small diameter. Take some \(\varepsilon_k \) in \(B_k \) for each \(k \). Put \(N_k = \sum_{n \in B_k} E_n B_n \). Now each \(E_n B_n H \) reduces \(T \). Let \(T_k = T \bigoplus_{n \in B_k} E_n B_n H \).

Then obviously \(T_k = \bigoplus_{n \in B_k} T_n \), and each \(T_n \) is \(M \)-hyponormal. Hence, for each \(k \), there exists an operator \(A_k \) on \(E_n B_n H \) such that \(\| A_k \| \leq M \) and \((T_k + \varepsilon_k) = (T_k + A_k) \times (T_k + A_k)^* = (T_k + \varepsilon_k) A_k \). Let \(A_n = \sum_k A_k \). Then \((T_k + \varepsilon_k) A_k \) and \(\| A_k \| \leq M \). Note that the net \((N - N_k): B \) tends to zero. Choose a subnet of \(\{ A_n : B \} \) which converges in the weak operator topology to some \(A \). Then \((T + N)^* = (T + N) A \) and \(\| A \| \leq M \). Now it is clear that \(T + N \) is \(M \)-hyponormal.

Combining Corollary 3 and Corollary 8, we obtain:

THEOREM 9. A spectral operator is \(M \)-hyponormal if and only if its scalar part is normal and its radical part is \(M \)-hyponormal.