Quotients of $L_p(0, 1)$ for $0 < p < 1$

by

N. J. KALTON (Swansea) and N. T. PECK (Urbana, Ill.)

Abstract. One of the main results of this paper is a lifting theorem for operators from L_p, $0 < p < 1$, into a quotient space L_p/N. (The theorem is developed separately for L_0 and for L_p, $0 < p < 1$; the hypotheses on N are different in the two cases.) A corollary is that if N is a non-trivial finite dimensional subspace of L_p, $0 < p < 1$, then L_p/N is not isomorphic to L_p. Several similar results are obtained; at the end of the paper, the idea of a K-space (K_p-space) is introduced and studied in connection with the lifting theorems.

1. Introduction. Let $L_p = L_p[0, 1]$ be the space of all real (or complex) measurable functions on $[0, 1]$ with the topology of convergence in measure. A Pełczyński has asked whether the quotient of L_p by a non-trivial finite-dimensional subspace is isomorphic to L_p. In this paper we prove a lifting theorem for operators on L_p; using this theorem, we can show that if B is a non-trivial closed subspace of L_p which is either locally bounded or which admits a continuous linear functional, then $L_p/B \cong L_2$. Parallel results are developed for the spaces L_p ($0 < p < 1$), where again we have that the quotient of L_p by a non-trivial finite-dimensional subspace cannot be isomorphic to L_2 (contrasting of course with the case $p = 1$).

In Section 2, we show from certain general considerations that for $0 < p < 1$, $L_p/V \cong L_p/W$ whenever $\dim V = \dim W < \infty$. This enables us to define L_p/n to be the (unique) space obtained by forming the quotient of L_p by a subspace of dimension n. In Section 3 we prove our main lifting theorems and in Section 4 we apply them to show that $(L_p/n) \cong (L_p/m)$ if and only if $m = n$. We conclude Section 4 by giving an example of two isomorphic locally bounded subspaces of L_p, B_1 and B_2, such that $L_p/B_1 \cong L_p/B_2$.

In Section 5 we develop the idea of a K-space; this is an F-space X such that every short exact sequence of F-spaces $0 \to Y \to X \to 0$ splits. Using this notion we show that $L_0[N \cong L_0$ implies that N has no non-zero continuous linear functionals. Similar ideas for p-Banach spaces are also developed.
Throughout this paper an F-space will complete a metric complete topological vector space. An F-norm $\| \cdot \|$ on a space X is a mapping from X to \mathbb{R}_+ such that

(a) $\|x+y\| \leq \|x\| + \|y\|$ if $x, y \in X$,
(b) $\|ax\| = |a| \|x\|$ if $|a| \leq 1$ and if $x \in X$,
(c) $\|ax\| \to 0$, as $a \to 0$, for each $x \in X$,
(d) $\|x\| = 0$ if and only if $x = 0$.

For $0 < p \leq 1$, a p-Banach space is an F-space with an F-norm $\| \cdot \|$ such that

(e) $\|a\| \leq |a| \|x\|$ for all λ and $x \in X$.

If X and Y are p-Banach spaces and if $S: X \to Y$ is a continuous linear operator, we define

$$\|S\| = \sup \{ \|Sx\| : \|x\| \leq 1 \}.$$

We denote by $\mathcal{L}(X)$ the space of all linear operators on X. If X is a p-Banach space, then so is $\mathcal{L}(X)$; if X is an F-space, then $\mathcal{L}(X)$ has, in general, no convenient F-norm topology. Unless otherwise stated, "linear map" and "linear operator" always refer to continuous maps.

We would like to thank Leonard Dor for several valuable conversations.

2. Transitive F-spaces. In this section we show that if V and W are two subspaces of L_p ($0 < p < 1$) of the same finite dimension, then $L_p/W \cong L_p$. We approach this result through some general results on transitive F-spaces. An F-space X is said to be transitive if given $x, y \in X$ with $x \neq 0$, there exists $T \in \mathcal{L}(X)$ with $Tx = y$. We shall say that X is strictly transitive if for any $k \in \mathbb{N}$, $x_1, \ldots, x_k \in X$ and $y_1, \ldots, y_k \in X$ such that x_1, \ldots, x_k are linearly independent, there exists $T \in \mathcal{L}(X)$ with $Tx_i = y_i$.

We do not know whether a transitive F-space is strictly transitive; however, it is possible to generalize standard arguments in Banach algebra theory (cf. Rickart [6], pp. 60–62) to yield the following:

Proposition 2.1. Let X be a transitive F-space; suppose that

(a) X is separable,
(b) The centre of $\mathcal{L}(X)$ consists only of scalar multiples of the identity operator.

Then X is strictly transitive.

If X is a p-Banach space, condition (a) may be omitted; if X is a complex p-Banach space, then conditions (a) and (b) may be omitted.

Proof. By [6], Lemma 2.4.3, it is enough to show that given two linearly independent elements $v, w \in X$, there exists $T \in \mathcal{L}(X)$ such that $Tv = 0$ and $Tw \neq 0$. If not, we may denote a (not necessarily continuous) operator D on X by $Du = Tw$ when $Tu = v$ (cf. [5], Theorem 2.4.6). Then D commutes with each $T \in \mathcal{L}(X)$.

It is necessary to show that $D \in \mathcal{L}(X)$; at this point we require condition (a) in general. Consider $\mathcal{L}(X)$ with the topology of pointwise convergence. Then $\mathcal{L}(X)$ is a Borel space and by the Open Mapping Theorem, the map $s \in \mathcal{L}(X) \mapsto T_s$ defined by $T_s(T) = Ts$ is open. Since $D \circ T_s = T_w$, it follows that $D \in \mathcal{L}(X)$. If X is a p-Banach space, then so is $\mathcal{L}(X)$ with its usual topology and the Open Mapping Theorem may be applied to this topology.

Now by condition (b), D is a multiple of I and we have a contradiction. If X is a complex p-Banach space, then it may be shown that the centre of $\mathcal{L}(X)$ is a field and by Zelazko's extension of the Gelfand–Mazur theorem [11], condition (b) must hold.

It is easy to check that each of the spaces L_p ($p < 0$) satisfies conditions (a) and (b) of the proposition and is transitive (use an argument similar to [7], pp. 253–234; see also [5]), and hence is strictly transitive.

Proposition 2.2. Suppose X is a strictly transitive F-space and $X \cong X \oplus X$; then if (x_1, \ldots, x_n) and (y_1, \ldots, y_n) are two linearly independent sets in X, there exists an invertible $T \in \mathcal{L}(X)$ such that $T_{x_i} = y_i$, $1 \leq i \leq n$.

Proof. First we prove that there exists a projection $P \in \mathcal{L}(X)$ such that $P(X) \cong X$, $(I-P)(X) \cong X$ and $\dim(P) = \dim(X)$ is linearly independent. Let P be the linear span of (x_1, \ldots, x_n); then we may choose a projection P so that $P(X) \cong X$, $(I-P)(X) \cong X$ and $\dim(P) = \dim(X)$ is maximal. Since $(I-P)(X) \cong X$, there exists a projection $Q \in \mathcal{L}(X)$ such that $PQ = GP = 0$ and $Q(X) \cong (I-P)(X) \cong X$. Then $P \cong (I-P)(X)$. Hence P is one-to-one on $(P+Q)(P)$ and so if we have $\sum a_i P_{x_i} = 0$, then also $\sum a_i (P+Q) x_i = 0$. Similarly we have $\sum a_i (I-P) x_i = 0$; combining, $\sum a_i x_i = 0$ and $a_1 = a_2 = \ldots = a_n = 0$, i.e. $(P_{x_1}, \ldots, P_{x_n})$ is linearly independent.

Now pick projections P_1 and $P_2 \in \mathcal{L}(X)$ so that $P_1(X) \cong P_2(X)$ and $P_1(X) \cong P_2(X)$, $(I-P_1)(X) \cong P_1(X)$ and $P_2(X)$ are linearly independent. Then there exists an invertible $T \in \mathcal{L}(X)$ such that $TP_1 = (I-P_2)T$. Since X is strictly transitive, there exists $S : (I-P_2)(X) \to P_2(X)$ such that $S(I-P_2)(x)T = Ty$, for $1 \leq i \leq n$. Similarly, there exists $R : P_1(X) \to (I-P_2)(X)$ so that $R_x = (I-P_2)(y)$. Then $(I+R)(P_1)$ and $(I+R)(P_2)$ are invertible, since $(P \circ P)^* = (P \circ (I-P_2))^* = 0$ and $(I+R)(P_2)^* = (I+R)(P_1)^* = 0$.

We now have:

Theorem 2.3. If $0 < p < 1$ and V and W are two subspaces of L_p with $\dim(V) = \dim(W) < \infty$, then $L_p/V \cong L_p/W$.

Quotients of $L_p(0, 1)$
Proof. This is immediate, since there is an invertible operator T on L_p such that $T(V) = W$.

Let us denote now by (L_p, m) the quotient of L_p by an n-dimensional subspace of $(L_p, 0) = L_p$. Theorem 2.3 guarantees that (L_p, m) is well-defined.

Theorem 2.4. For $0 < p < 1$, $L_p([m + n]) \cong (L_p/m) \otimes (L_p/n)$ when $m, n > 0$.

Proof. Let V be a subspace of $L_p(0, 1)$ of dimension m (embedded in L_p in the obvious way) and W a subspace of $L_p(1, 0)$ of dimension n. Then

$$L_p([m + n]) \cong (L_p(0, 1)/V) \otimes (L_p(1, 0)/W) \cong (L_p/m) \otimes (L_p/n).$$

3. **Lifting theorems.** Let X be a p-Banach space $(0 < p \leq 1)$ and N a closed subspace of X. It is easy to see that any linear operator $S : L_p \to X/N$ may be lifted to a linear operator $\hat{S} : L_p \to X$, so that $\hat{S} - S$ is $\pi : X \to X/N$ is the quotient map. In the case $p = 1$, a similar lifting property holds if L_p is replaced by any L_p-space and N is isomorphic to a complemented subspace of a dual space (this is effectively proved by Lindenstrauss [4]). Not surprisingly there is a corresponding result for the case $p < 1$. We say that a p-Banach space Y is an L_p-space $(0 < p < 1)$, if there is an increasing net $(Y_\alpha : \alpha \in A)$ of finite-dimensional subspaces of X such that $\bigcup_{\alpha \in A} \{Y_\alpha : \alpha \in A\}$ is dense in X and there exist linear maps $S_\alpha : Y_\alpha \to L_p$ and $T_\alpha : L_p \to Y_\alpha$, where $s_\alpha = \dim Y_\alpha$, such that $\sup \|S_\alpha\| \|T_\alpha\| < \infty$ and $T_\alpha S_\alpha = I$ on Y_α. Clearly L_p is an L_∞-space.

We shall also call a p-Banach space Z pseudo-dual if there is a Hausdorff vector topology q on Z such that the unit ball is relatively compact for q. The space L_p is not pseudo-dual (see [1]), but the spaces l_p and H_p $(0 < p < 1)$ are pseudo-dual.

Theorem 3.1. Let Y be an L_p-space $(0 < p < 1)$ and X a p-Banach space. Let N be a closed subspace of X and suppose X is isomorphic to a complemented subspace of a pseudo-dual p-Banach space Z. Then any operator $S : X \to X/N$ may be lifted to an operator $\hat{S} : Y \to X$.

If $X = L_p$, then the lifting is unique.

Proof. We observe that the unit ball of Z may be supposed to be q-compact (by [1], Lemma 1). Then the argument is a straightforward imitation of the Lemmas of [4]. We omit the details.

In the case $X = L_p$, suppose T is any other lifting. Then $T - \hat{S}$ maps L_p into N and there is a non-zero operator from L_p into Z. The induced map into (Z, q) is compact, contradicting the results of [2].

We now consider the case $p = 1$, which is rather different. Suppose X is an F-space with F-norm $||$. For $a \in X$ we define $\sigma : X \to R \cup \{\infty\}$ by

$$\sigma(a) = \sup_{t \in X} \frac{a(t)}{1 + |a(t)|},$$

we have that $\sigma(a) = \mu(\{\sigma \geq a\})$.
In general, note that \(\sigma(ax) = \sigma(x) \) if \(a \neq 0 \) and that \(\sigma(x+y) \leq \sigma(x) + \sigma(y) \). If \(L \) is a linear subspace of \(X \), we define \(\sigma(L) = \sup(\sigma(x); x \in L) \).

We shall say that \(X \) admits \(L_\sigma \)-structure, if for any \(x > 0 \) there exist \(s = s(x) \) and subspaces \(X_1, \ldots, X_n \) of \(X \), such that \(X = X_1 \oplus \cdots \oplus X_n \) and \(\sigma(X_i) \leq s_i \). In addition to the obvious example of \(L_\sigma \) itself, any space of the type \(L_\sigma(Z) \) (all measurable functions from \([0,1]\) into an \(F \)-space \(Z \)) admits \(L_\sigma \)-structure.

The following proposition is trivial.

Proposition 3.3. Suppose \(X \) admits \(L_\sigma \)-structure and \(B \) is a locally bounded space. If \(T : X \to B \) is continuous, then \(T = 0 \).

We next prove two lemmas before giving the main lifting theorem.

Lemma 3.4. Suppose \(X \) is an \(F \)-space and \(B \) is a closed locally bounded subspace of \(X \); let \(\pi : X \to X/B \) be the quotient map. Let \(\delta \) be chosen so that the set \(\{ b \in B : ||b|| < \delta \} \) is bounded.

Then if \(x \in X/B \) and \(||x|| \leq \delta \), there is a unique \(x' \in X \) such that \(\pi x = x' \) and \(||x'|| \leq \delta \). For this \(x' \), \(\pi(x') = x' \).

Proof. We can find a sequence \(\{ x_n \} \in X \) such that \(x_n = x' \) and

\[
||x_n|| \leq 1 + n \cdot |x'|
\]

Let \(x_n = x_n - x' \) (\(n \in \mathbb{N} \)); then \(x_n \in B \) and if \(n \geq n \geq 2 \),

\[
||x_n|| \leq ||x_n - x'|| + ||x'||
\]

\[
\leq \left(1 + \frac{1}{n} \right) ||x'|| + 1 + \frac{1}{n} ||x'|| \leq 2 + \frac{1}{n} + \frac{1}{m} \delta \leq \delta.
\]

By choice of \(\delta \), this implies that \(\{ x_n \} \) is a Cauchy sequence and hence so is \(\{ x_n \} \). If \(x = \lim x_n \), then \(\sigma(x) = \sigma(x') \leq \delta \). If \(y \) is any other point satisfying \(\pi y = x \) and \(\sigma(y) \leq \delta \), then \(x - y \in B \) and \(\sigma(x - y) \leq \frac{1}{2} \delta \); this implies \(x - y = 0 \).

Lemma 3.5. Under the assumptions of Lemma 3.4, let \(Y \) be a linear subspace of \(X/B \) with \(||x'|| \leq \frac{1}{2} \delta \). Then there is a linear operator \(h : X \to X \) such that \(\pi h = h \) for all \(x' \in X \).

Proof. For \(x \in X \), define \(h(x) \) to be the unique \(x' \in X \) such that \(\pi x = x' \) and \(\sigma(x') = \sigma(x) \). If \(a, b \in B \) and \(\delta, \eta \in \mathbb{R} \), then

\[
\sigma(ab \xi + \beta \eta) \leq \sigma(a \xi) + \sigma(b \eta) \leq \delta \beta.
\]

Thus

\[
h(a \xi + \beta \eta) = ab \xi + \beta \eta,
\]

and \(h \) is linear.

Now suppose \(x_n \to x \) in \(X \); choose \(x_n, x \in X \) such that \(x_n - x \to 0 \) and \(||x_n|| \leq \delta ||x|| \).

Then \(x_n - h(x_n) \to 0 \). If \(x_n - h(x_n) \to 0 \), we may assume, by passing to a subsequence, that for some \(\varepsilon > 0 \) we have

\[
||x|| - h(x_n) \leq 0
\]

(since the set \(\{ b \in B : ||b|| \leq \delta \} \) is bounded).

Then

\[
||x|| - h(x) \leq 0
\]

Thus we have \(x_n - h(x_n) \to 0 \) and \(h(x_n) \to 0 \).

Theorem 3.6. Suppose \(X \) admits \(L_\sigma \)-structure, \(Y \) is an \(F \)-space, and \(B \) is a closed locally bounded subspace of \(Y \). Then if \(\bar{S} : X \to Y \) is a linear operator, there is a unique linear operator \(S : X \to Y \) such that \(\pi S = \bar{S} \) for \(\pi : X \to X/B \) the quotient map.

Proof. Choose \(\delta > 0 \) so that \(\{ b \in B : ||b|| \leq \delta \} \) is bounded, and then \(\varepsilon > 0 \); so that \(||x|| \leq \varepsilon \) (\(x \in X \)), then \(||\beta|| \leq \delta \). Let \(X_1, \ldots, X_n \) be closed subspaces of \(X \) such that \(X = X_1 \oplus \cdots \oplus X_n \) and \(\sigma(X_i) \leq \varepsilon \).

Then there exist linear operators \(h_i : X_i \to \bar{X} \), \(\sigma(h_i) \leq \delta \), and there exist linear operators \(h_i : X_i \to Y_i \), \(\sigma(h_i) \leq \delta \). If \(\sum |h_i| \leq \delta \), then \(\sum \sigma(h_i) \leq \delta \).

Now suppose \(x_n \to x \). If \(\sum \sigma(h_i) \leq \delta \), then \(\sum \sigma(h_i) \to \delta \).

Thus we have \(\sum \sigma(h_i) \to \delta \).

Now suppose \(x_n \to x \) in \(X \); choose \(x_n, x \in X \) such that \(x_n - h(x_n) \to 0 \). If \(x_n - h(x_n) \to 0 \), we may assume, by passing to a subsequence, that for some \(\varepsilon > 0 \) we have

\[
||x|| - h(x_n) \leq 0
\]

(since the set \(\{ b \in B : ||b|| \leq \delta \} \) is bounded).

Then

\[
||x|| - h(x) \leq 0
\]

Thus we have \(x_n - h(x_n) \to 0 \) and \(h(x_n) \to 0 \).

4. **Quotient spaces of \(L_\sigma \) \((0,p,1)\).** In this section we treat the case \(p = 0 \) first and in more detail than the case \(p > 0 \); the arguments are analogous.

Theorem 4.1. Suppose \(X_1 \) and \(X_2 \) are two \(F \)-spaces with \(L_\sigma \)-structure. Suppose \(B_1 \) and \(B_2 \) are closed locally bounded subspaces of \(X_1 \) and \(X_2 \), respectively. Then \(X_1/B_1 \to X_2/B_2 \) if and only if there is an isomorphism \(V : X_1 \to X_2 \) mapping \(X_1 \) onto \(X_2 \) and such that \(V(B_1) = B_2 \).

Proof. The “if” part is clear. For the “only if” part, let \(S : X_1/B_1 \to X_2/B_2 \) be an isomorphism, and let \(\pi_1, \pi_2 \) be the quotient maps. Then
by Theorem 3.6, there exist lifts V, U of $S\alpha_1$; $X_1 \to X_3$ and $S^{-1}\alpha_1$; $X_1 \to X_3/B_2$.

$$
\begin{array}{c}
X_1 \\
\downarrow \text{r} \\
X_3 \\
\downarrow \text{s} \\
X_1/B_2 \\
\downarrow \text{g} \\
X_3/B_2
\end{array}
$$

Then $UV; X_1 \to X_3$ is a lift of $\pi_1; X_1 \to X_1/B_1$. By the uniqueness, $UV = I_{X_1}$; similarly $VU = I_{X_3}$, so V is an isomorphism of X_1 onto X_3.

Clearly $V(B_2) \subseteq B_2$ and $U(B_3) = V^{-1}(B_2) \subseteq B_2$; hence $V(B_2) = B_1$.

Corollary 4.3. If X admits L_0-structure and $B \subseteq X$ is a locally bounded subspace, then X/B admits L_0-structure if and only if $B = \{0\}$.

Theorem 2.3 and Theorem 4.3 give:

Theorem 4.4. Suppose B_1 and B_2 are locally bounded subspaces of L_0, then $L_0[B_1 \cong L_0[B_2]$ if and only if there is an invertible operator $T_0 : L_0 \to L_0$ such that $T_0(B_1) = B_2$.

In particular, $(L_0)[m] \cong (L_0)[n]$ if and only if $m = n$, and $(L_0)[1] \cong (L_0)^*$. This solves the problem of Pelczynski (see Introduction). Also in this section we shall illustrate this corollary by showing that $B_1 \cong B_2$ does not imply $L_0[B_1] \cong L_0[B_2]$. First however, we formulate the corresponding theorems for $p > 0$; the proofs are similar.

Theorem 4.5. If B_1, B_2 are two closed subspaces of L_p, each of which is isomorphic to a complemented subspace of a pseudo-p-Banach space or to a q-Banach space where $p < q < 1$.

Then $L_0[B_1] \cong L_0[B_2]$ if and only if there is an invertible operator $T_0 : L_0 \to L_0$ such that $T_0(B_1) = B_2$.

In particular, $(L_0)[m] \cong (L_0)[n]$ if and only if $m = n$, and $(L_0)[1] \not\subseteq L_0$.

Theorem 4.6. If $B \subseteq L_p$ is isomorphic to a complemented subspace of a pseudo-p-Banach space and $B \not\subseteq L_0$, then $(L_0)[B]$ is not an L_p-space.

Proof. If $(L_0)[B]$ is an L_p-space, then the identity map $I : L_0[B] \to (L_0)[B]$ may be lifted to a map $J : L_0[B] \to L_0$. Then on L_0, $I - Jx$ maps L_0 into B. Hence, by applying the results of [2] as in Theorem 3.1, $I = J\pi$ and so $B = \{0\}$.

Example. Let $B_1 \subseteq L_0$ be the closed linear span of the Rademacher functions r_n on $[0,1]$, $(r_n(t) = \text{sgn} (\sin 2^n \pi t))$, and let B_2 be the closed linear span of a sequence of independent random variables normally distributed with mean zero and variance one. Then $B_1 \cong L_0 \cong L_2$; we shall show, however, that $L_0[B_1] \not\subseteq L_0[B_2]$.

For suppose $L_0[B_1] \cong L_0[B_2]$; then there is an invertible linear operator $T : L_0 \to L_0$ such that $T(B_1) = B_2$. By Kwapieñ’s Representation Theorem [3], T takes the form

$$
T_\alpha(t) = \sum_{n=1}^\infty \phi_n(t) \#(\phi_n t) \#(\alpha n)
$$

where

(i) $\phi_n \in L_0$, $n \gg 1$,

(ii) $m(\{t; \phi_n(t) \neq 0 \text{ for infinitely many } n\}) = 0$,

(iii) $\phi_n \to 0$ in $(0,1)$; if A is measurable, then $\phi_n(A)$ is measurable; if $m(A) = 0$, then $m(\phi_n(A) \cap \text{Supp} \phi_n) = 0$.

Thus for almost every $t \in [0,1]$, the sequence $(T_\alpha(t))$ assumes only finitely many values. Hence for some j_1, k_1 with $j \neq k$, we must have $m(\{t; T_\alpha(t) = T_{k_1}(t)\}) > 0$. However $T_{j_1} - T_{k_1}$ is normally distributed and hence $T_{j_1} - T_{k_1}$. Thus T is not injective, and we have a contradiction.

Remarks. For $p > 0$, let $n \in L_0$ be non-zero and let V be the linear span of n. Let $\mathcal{S}(L_0)$ and $\mathcal{S}(L_0)$ be the p-Banach algebras of all bounded linear operators on L_0 and L_0, respectively. If $S \in \mathcal{S}(L_0)$, then $S : L_0 \to L_0$ be the unique lift of $S \circ \pi$. Then the map $S \to \tilde{S}$ is an algebra homomorphism, and in fact an embedding of $\mathcal{S}(L_0)$ into $\mathcal{S}(L_0)$. Thus $\mathcal{S}(L_0)$ is isomorphic to the closed subalgebra of $\mathcal{S}(L_0)$ consisting of all $T \in \mathcal{S}(L_0)$ such that $Tn \in V$. We may define a multiplicative linear functional φ on $\mathcal{S}(L_0)$ by

$$
\varphi(S) = \tilde{S}n.
$$

5. K-spaces. In this section, we abstract a particular property of the spaces L_p and consider it in more generality. We restrict to the real case, but the complex case is identical.

If X is an F-space, we shall say that X is a K^*-space if every short exact sequence $0 \to R \to X \to Y \to 0$, with Y an F-space, splits. Alternatively, if $X = K^*$-space if every short exact sequence $0 \to R \to X \to Y \to 0$, with Y a p-Banach space, splits.

Theorem 5.1. An F-space [p-Banach space] X is a K^*-space if and only if whenever Y and Z are F-spaces [p-Banach spaces] and $S : Y \to Z$ is a surjective operator with $\dim S^{-1}(0) = 1$, then each linear operator $T : X \to Z$ may be lifted to an operator $T : X \to Y$ such that $ST = T$.

Proof. We prove the statement for K-spaces. Suppose X is a K-space. Let $V \subseteq X \oplus Y$ be the subspace of all (x,y) such that $Tx = Sy$,
and define \(P : V \rightarrow X \) by \(P(a, y) = a \). Then \(P : V \rightarrow X \) is surjective, and \(\dim X^{-1}(a) = 1 \). Hence there exists a linear operator \(B : X \rightarrow V \) such that \(PB = I_x \). Then \(R_B = (a, R_{B}) \); clearly \(R^2_B = T \).

For the converse take \(Z = X \) and \(T \) to be the identity.

We remark now that if \(X \) admits \(L_p \)-structure, then \(X \) is a \(K \)-space (Theorem 3.6), and that an \(L_p \)-space is a \(K \)-space.

Theorem 5.2. If \(X \) is an \(F \)-space (p-Banach space) and \(N \) is a closed subspace of \(X \) such that \(X/N \) is a \(K \)-space \((K_p \)-space), then \(X \) has the Hahn-Banach Extension Property in \(X \).

Proof. Again we restrict to the \(K \)-space case. Suppose \(\varphi \in \mathcal{K}^* \) is non-zero; let \(M = \varphi^{-1}(0) \in N \). Consider the natural quotient map \(\pi : X/M \rightarrow X/N \); then there is a map \(S : X/N \rightarrow X/M \) such that \(S\pi = I \) on \(X/N \). Then \(S(X/N) \) is a closed subspace of \(X/M \) and so there exists \(\varphi \in (X/M)^* \) such that \(\varphi \varphi = 0 \) and \(\varphi \circ S = 0 \). If \(\varphi \) is non-zero, \(S\pi \) is a quotient map, then \(\varphi \in (X/M)^* \). If \(\varphi \in \mathcal{K} \), then \(\varphi \varphi = 0 \) only if \(\varphi = 0 \). Hence \(\varphi \in \mathcal{K} \) and \(\varphi \varphi = 0 \).

There is also a converse to Theorem 5.2.

Theorem 5.3. If \(X \) is a \(K \)-space \((K_p \)-space) and \(N \subset X \) is a closed subspace with HBEPP, then \(X/N \) is a \(K \)-space \((K_p \)-space).

Proof. Suppose we have a short exact sequence

\[0 \rightarrow R \rightarrow Z \rightarrow X/N \rightarrow 0, \]

and let \(\pi : X \times X/N \) be the quotient map. Then there is a lifting of \(\pi, \xi : X \rightarrow Z \), so that \(\pi \delta = \pi \) (by Theorem 5.2). Suppose first \(\xi \) is not surjective; then \(S(X) \) has co-dimension one in \(Z \) and \(\varphi \in S(X) \) is one-one. Define \(R : X/N \rightarrow Z \) by \(R\delta = \sigma \) where \(\sigma \in S(X) \) and \(\sigma \pi = \xi \). If \(\xi \pi \rightarrow 0 \) in \(X/N \), then there exists a sequence \((x_n) \) in \(X \) such that \(x_n \rightarrow 0 \) and \(\pi(x_n) = \pi \xi \). Since \(S\pi \rightarrow 0 \) and \(S\pi = R\delta \), \(R\delta \rightarrow 0 \). Hence \(S\pi \rightarrow 0 \) implies \(\pi \xi \rightarrow 0 \). Hence \(S\pi = S\xi = 0 \).

Now suppose \(\xi \) is surjective; then \(S^{-1}(0) \) has co-dimension one in \(N \). Let \(\varphi \in \mathcal{K}^* \) be a non-zero linear functional with kernel \(S^{-1}(0) \). Then \(\varphi \) may be extended to \(\varphi \in \mathcal{K} \). Now define \(\delta : X \rightarrow Z \) by \(\delta = \varphi \varphi \). Then \(\varphi \delta = \varphi \varphi \varphi = \varphi \). Hence \(\varphi \delta = \varphi \). Hence \(\delta \varphi = \varphi \delta \). Thus \(\delta \) is one-one on \(S(X) \) and \(S(X) \) has co-dimension one in \(Z \); we can apply the previous part of the proof.

Corollary 5.4. \(X \) is a \(K_\infty \)-space if and only if \(X \cong L_p(I)/N \) where \(I \) is some index set and \(N \subset L_p(I) \) has the HBEPP.

We remark that if \(L_p(I) \cong L_p \), then \(N \) has HBEPP and the extension is unique, since \(L_p = \{0\} \).

Corollary 5.5. (i) If \(N \) is a closed subspace of \(L_p \), then \(L_p/N \) is a \(K \)-space if and only if \(N \cong \{0\} \). In particular, if \(L_p \) has \(L_p \)-structure, then \(N \cong \{0\} \).

(ii) If \(N \) is a closed subspace of \(L_p \), then \(L_p/N \cong L_p \) if and only if \(N \cong \{0\} \). In particular, if \(L_p \) is an \(L_p \)-space, then \(N \cong \{0\} \).

Note here that if we take for \(N \) the closed linear span of a sequence of functions with disjoint supports in \(L_p \), then \(N \cong \{0\} \), and hence \(L_p/N \cong L_p \). However \(L_p/N \cong \omega(L_p/L) \) (a countable product of copies of \(L_p/L \); hence \(\omega(L_p/L) \cong L_p \).

Problem. Is \(L_p \) or \(L_p \) a \(K \)-space for any \(r < p \), or even a \(K \)-space? In particular, is \(L_p \) (or any other Banach space) a \(K \)-space for any \(r < p \)? This latter question is essentially the same as a problem of Stiles [8]; if \(L_p/N \) is locally convex, must \(N \) have the HBEPP?

References

University College of Swansea
Swansea University
SWANSEA
URBANA, ILLINOIS

Received October 10, 1976

(1219)