Extension of real-valued σ-additive set functions

by

R. B. KIRK and J. A. CRENSHAW (Carbondale, Ill.)

Abstract. The extension of real-valued σ-additive finite finitely additive regular real-valued set functions from an algebra of sets to larger σ-algebras of sets is given. The extensions are then used to obtain results on $\sigma(A^*, A)$ convergence of τ-additive functionals on an algebra A of real-valued functions on a set X.

Introduction. Let A be a uniformly closed algebra of bounded real-valued functions on a set X which separates the points of X and contains the constants. Let X be equipped with the τ_0 topology which is the weakest topology on X which makes each $f \in A$ continuous. In [4] the concept of σ-additive set functions on a paving \mathcal{W} of subsets of X was introduced to represent the σ-additive functionals in A^*. It was also observed that the σ-additive set functions could be extended to σ-additive elements on a larger paving (this includes the fact that τ-additive Baire measures in $\mathcal{C}(X)$ can be extended to Borel measures on X). We shall establish this extension process which depends on which definition of outer measure is chosen. We then employ the extension to questions about weak, $\sigma(A^*, A)$, convergence of elements in A^*. We anticipate that working with a paving and that working with subalgebras of $\mathcal{C}(X)$ will prove useful in probability theory, and in this direction we obtain a weakened form of Prochorov’s theorem. Also for subalgebras $A_0 = A$, we give sufficient conditions for weak convergence of τ-additive φ in A^*_0 to be determined by the elements of A_0.

The authors wish to thank the referee for pointing out that our results in Section 1 should extend to exhaustive functions with range a suitably endowed topological group. He also noted some of the rich literature on the subject such as done by Drewnowski [2], Sion [8] and Trayner [7]. The referee is of course correct and the authors intend to show this and that the weak additivity condition does yield the usual additivity condition in a different paper.

§ 1. Extension. We refer the reader to [4] for many of the basic definitions and results; however, we shall indicate here some of the essential definitions.

A paving on X is a family \mathcal{W} of subsets which contains \emptyset, is closed under finite unions and intersections, and has $X = \bigcup \mathcal{W}$. The paving is full if $X \in \mathcal{W}$ and in this paper all pavings will be assumed to be full.
Let $\mathcal{F}(\mathcal{W})$ be the algebra of subsets of X generated by \mathcal{W}, then $M(\mathcal{F})$ will denote the set of all finite, finitely additive real-valued set functions on \mathcal{F} which are regular in the sense that for each $F \in \mathcal{F}$ there is a $W \in \mathcal{W}$ such that $W \subseteq F$ and $|m(G)| \leq \varepsilon$ whenever $G \in \mathcal{F}(\mathcal{W})$ with $G \subseteq F - W$.

For an infinite cardinal a, we say that $m \in M(\mathcal{W})$ is a-additive if $\sup \{ |m(W_i)| : i \in I \} = 0$ for every collection $\{ W_i : i \in I \}$ which is directed downward to 0 with card $I \leq a$. The set of a-additive elements will be denoted by $M_a(\mathcal{W})$ (or $M_a(\mathcal{W}_a)$) and τ will denote the least cardinal such that $M_\tau = M_\tau(\mathcal{W})$ when $\tau < \beta$. Finally, $m \in M(\mathcal{W})$ is a-singular if there is a family $\{ W_i : i \in I \}$ which is directed downward to 0 with card $I \leq a$ and such that $|m(V)| = |m(V \cap W_i)|$ for all $V \in \mathcal{W}$ and all $i \in I$.

For the extension process to develop adequately it is essential we choose the proper definition of outer measure; we now give this and remark that if $X = [0, 1]$ and if m is the Lebesgue measure on the Borel sets \mathcal{W}, then $m \in M(\mathcal{W})$, and m agrees with the usual outer measure and the extension process yields the Lebesgue measure.

Definition 1.1. Let \mathcal{W} be a full paving on X and let $m \in M^*(\mathcal{W})$.

For $A \subseteq X$,

$$m^*_a(A) = \inf \{ \sup m(W) : I \subseteq \mathcal{W}, \text{ I directed downward,} \}$$

$$m^*_a(A) = \inf \{ \sup m(W) : I \subseteq \mathcal{W}, \text{ I directed downward,} \}$$

Lemma 1.2. Let \mathcal{W} be a paving and let $m \in M^*(\mathcal{W})$. Then m^*_a is an outer measure on X.

Proof. It is clear that m^*_a is monotone and non-negative. Let $A = \bigcup A_i$, and fix $\varepsilon > 0$. For each $n \in \mathbb{N}$, let $I_n \subseteq \mathcal{W}$ be downward directed with card $I_n \leq a$ such that

$$m^*_a(A_i) + \varepsilon 2^{-n} > \sup \{ m(W) : W \in I_n \}.$$

Let I denote the family of all finite intersections of members of $\bigcup I_n : n \in \mathbb{N}$. Then I is directed downward with card $I \leq a$ and $A = \bigcup \{ W : W \in I \}$.

Hence it follows that

$$m^*_a(A) \leq \sup \{ m(W) : W \in I \}$$

$$\leq \sup \{ \sum_{i=1}^{m} |W_i| : W \subseteq \bigcup I_n, i = 1, \ldots, m \}$$

$$\leq \sum_{i=1}^{m} \sup \{ |W_i| : W \subseteq \bigcup I_n, i = 1, \ldots, m \}$$

$$\leq \sum_{i=1}^{m} m^*_a(A_i) + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, the proof is complete.
Extension of real-valued a-additive set function

(4) Let W_a, W_b, W_c. Then

$m_a(W_a - W_b) = \sup \{m_a(W): W \subseteq W_a, W_b \subseteq W_c \}.$

Fix $\epsilon > 0$. By (3) there is a $W_{a-b} \subseteq W_a$ and $m_a(W_{a-b}) < m_a(W_a) + \epsilon$. Let $W = W_a \cap W_{a-b}$. Then $W \subseteq W_a, W_{a-b} \subseteq W_c$.

Since $m_a(W_{a-b}) = m_a(W_a) - W = W_{a-b} - W$, it follows that $0 \leq m_a(W_{a-b}) - W < m_a(W) - m_a(W_{a-b}) + \epsilon$. Since $\epsilon > 0$ was arbitrary, (4) follows.

(5) m_a is \mathcal{S}-regular on $\mathcal{S}(\mathcal{W}_a)$.

This is immediate from (4) and Proposition [3, 1.2]. The proof of Lemma 1.4 is now complete.

Lemma 1.5. Let \mathcal{G} be a full paving and let $m(\{M(\mathcal{W}_a)\})$. Then $m_a = 0$.

Proof. By [4, 4.4] $M(\mathcal{W}_a)$ is a band so there is an increasing net (m_α) of a-singular elements of $M(\mathcal{W})$ with $0 \leq m_\alpha$. Since (m_α) is increasing, it is easy to verify that $m_\alpha(F) \uparrow m(F)$ for all $F \in \mathcal{S}(\mathcal{W})$. Fix $\epsilon > 0$ and take m with $m(X) < m(X) + \epsilon$. Let $I \subseteq \mathcal{W}$ be an a-system with $m_\alpha(X) = m_a(W)$ for all $W \subseteq I$. Since $0 \leq m_m - m_\alpha$, it follows that, for each $F \in \mathcal{S}(\mathcal{W})$, $0 \leq m(F) - m_\alpha(F) = m_\alpha(X) - m_\alpha(X) < \epsilon$. Hence

$$0 \leq m_\alpha(X) \leq \sup_{W \subseteq I} m(W) \leq \epsilon + \lim_{W \subseteq I} m_\alpha(W) = \epsilon.$$

Since $\epsilon > 0$ was arbitrary, $m_\alpha(X) = 0$, and so $m_a = 0$.

Proposition 1.6. Let \mathcal{G} be a full paving, and let $m(\mathcal{M}(\mathcal{S}))$. Assume that $m = m_m + m_a$ where $m_a(\mathcal{M}(\mathcal{S}))$ and $m_a(\mathcal{S}(\mathcal{W}_a))$. Then m_a restricted to $\mathcal{S}(\mathcal{W}_a)$ belongs to $\mathcal{M}(\mathcal{S}(\mathcal{W}_a))$ and $m_\alpha(\mathcal{M}(\mathcal{S}))$. Hence, in particular,

$m_a = m_a$ on $\mathcal{S}(\mathcal{W}_a)$.

Proof. It is easily shown that $m_a = 0(\mathcal{M}(\mathcal{W}_a))$. The result is now immediate from Lemmas 1.4 and 1.5.

Proposition 1.7. Let \mathcal{G} be a full paving, and let $m(\mathcal{M}(\mathcal{S}))$. Then there is a unique element $\mu \in \mathcal{M}(\mathcal{S}(\mathcal{W}_a))$ whose restriction to $\mathcal{S}(\mathcal{W})$ is m. In fact, if $\lambda \in \mathcal{M}(\mathcal{W}_a)$ is any element whose restriction to $\mathcal{S}(\mathcal{W})$ is m, then

$$\mu = \lambda.$$

Proof. Let μ denote the restriction of m_a to $\mathcal{S}(\mathcal{W}_a)$. By Proposition 1.6, $\mu(\mathcal{M}(\mathcal{W}_a))$ and $\mu = m$ on $\mathcal{S}(\mathcal{W})$. Now let $\lambda(\mathcal{M}(\mathcal{W}_a))$ and assume that $\lambda = m$ on $\mathcal{S}(\mathcal{W})$. Fix $W \subseteq \mathcal{W}_a$. Let $I \subseteq \mathcal{W}$ be downward directed with $\{\mathcal{M}(\mathcal{S}(\mathcal{W}_a))\}$. Then $0 < \lambda(W) < \inf_{U \subseteq I} \lambda(U) = \inf_{U \subseteq I} \mu(U)$. Then $W \subseteq \mathcal{M}(\mathcal{W}_a)$ was arbitrary, and $\mathcal{M}(\mathcal{W}_a)$ is a band, it follows that $\lambda(\mathcal{M}(\mathcal{W}_a))$. Hence $\lambda(W) = \inf_{U \subseteq I} \lambda(U) = \inf_{U \subseteq I} \mu(U) = \mu(W)$. Thus $\lambda(W) = \mu(W)$ for all $W \subseteq \mathcal{W}_a$. Since \mathcal{W}_a is a band, it follows that $\lambda(\mathcal{W}_a) = \mu(\mathcal{W}_a)$. Since $\lambda(\mathcal{W}_a)$ is an ideal, it follows that $\lambda(\mathcal{M}(\mathcal{W}_a))$. Hence $\lambda(W) = \inf_{U \subseteq I} \lambda(U) = \inf_{U \subseteq I} \mu(U) = \mu(W)$. Thus $\lambda(W) = \mu(W)$ for all $W \subseteq \mathcal{W}_a$. Since \mathcal{W}_a is a band, it follows that $\lambda(\mathcal{W}_a) = \mu(\mathcal{W}_a)$. Since $\lambda(\mathcal{W}_a)$ is an ideal, it follows that $\lambda(\mathcal{W}_a) = \mu(\mathcal{W}_a)$. Hence $\lambda(W) = \inf_{U \subseteq I} \lambda(U) = \inf_{U \subseteq I} \mu(U) = \mu(W)$. Thus $\lambda(W) = \mu(W)$ for all $W \subseteq \mathcal{W}_a$. Since \mathcal{W}_a is a band, it follows that $\lambda(\mathcal{W}_a) = \mu(\mathcal{W}_a)$. Since $\lambda(\mathcal{W}_a)$ is an ideal, it follows that $\lambda(\mathcal{W}_a) = \mu(\mathcal{W}_a)$. Hence $\lambda(W) = \inf_{U \subseteq I} \lambda(U) = \inf_{U \subseteq I} \mu(U) = \mu(W)$. Thus $\lambda(W) = \mu(W)$ for all $W \subseteq \mathcal{W}_a$. Since \mathcal{W}_a is a band, it follows that $\lambda(\mathcal{W}_a) = \mu(\mathcal{W}_a)$.
Define a map \(T_\mu \) from \(M_\mu(\mathcal{W}) \) into \(M_\mu(\mathcal{W}) \) as follows: (We continue to assume that \(\mathcal{W} \) is a full paving.) For \(m \in M_\mu(\mathcal{W}) \), let \(T_\mu(m) \) denote the restriction of \(m \) to \(R(\mathcal{W}) \). Then \(T_\mu(m) = M_\mu(\mathcal{W}) \). By Proposition 1.7. For arbitrary \(m \in M_\mu(\mathcal{W}) \), define \(T_\mu(m) = T_\mu(m-\mu) \).

Theorem 1.8. Let \(\mathcal{W} \) be a full paving. Then the map \(T_\mu \) is a Banach lattice isomorphism of \(M_\mu(\mathcal{W}) \) onto \(M_\mu(\mathcal{W}) \). Furthermore, for \(\mu_2 \in M_\mu(\mathcal{W}) \), \(T_\mu(\mu_2) \) is the restriction of \(\mu_2 \) to \(\mathcal{W} \).

Proof. It is easy to verify that \(T_\mu \) is linear on \(M_\mu(\mathcal{W}) \). From this it is immediate that \(T_\mu \) is a positive linear transformation on \(M_\mu(\mathcal{W}) \). Let \(\mu \in M_\mu(\mathcal{W}) \) with \(T_\mu(\mu) = 0 \), then \(T_\mu(m) = 0 \) for all \(m \in R(\mathcal{W}) \).

In order to verify that \(T_\mu \) is norm-preserving, it is sufficient to show that \(\|T_\mu(m)\| = \|m\| \) for all \(m \in M_\mu(\mathcal{W}) \). Since \(T_\mu \) is a positive transformation, \(\|T_\mu(m)\| \leq \|m\| \) for all \(m \in M_\mu(\mathcal{W}) \). Let \(m \) denote the restriction of \(T_\mu(m) \) to \(\mathcal{W} \). Then \(\|m\| \leq \|T_\mu(m)\| \).

If \(\mu \) is an ideal, it follows that \(\|m\| \leq \|T_\mu(m)\| \). Thus \(\|m\| \leq \|T_\mu(m)\| \) for all \(m \in M_\mu(\mathcal{W}) \).

We will now show that the image of \(M_\mu(\mathcal{W}) \) under \(T_\mu \) is an ideal in \(M_\mu(\mathcal{W}) \). Since \(T_\mu \) is a lattice isomorphism, \(M_\mu(\mathcal{W}) \) is a Riesz subspace of \(M_\mu(\mathcal{W}) \).

Finally, in order to demonstrate that \(T_\mu(M_\mu(\mathcal{W})) \) is a band, let \(\{T_\mu(m)\} \) be an upward directed net in \(T_\mu(M_\mu(\mathcal{W})) \) with \(T_\mu(m) \uparrow \mu \in M_\mu(\mathcal{W}) \). Let \(m \) denote the restriction of \(\mu \) to \(\mathcal{W} \). Since \(m \in M_\mu(\mathcal{W}) \), \(m \uparrow \mu \). Thus \(m(\mathcal{W}) \leq m(\mathcal{W}) \).

Hence \(\mu \) is \(\mathcal{W} \)-regular. Since \(m \in M_\mu(\mathcal{W}) \), \(m \) is \(\mathcal{W} \)-regular. Since \(m \) is \(\mathcal{W} \)-regular, \(m \) is \(\mathcal{W} \)-regular.

The map \(T_\mu \) is not onto \(M_\mu(\mathcal{W}) \) in general as the following example shows.

Example. Let \(\mathcal{W} = [0, 1] \). Define \(W_n = [0, 1/n] \) and \(W_n = [1 - 1/n, 1] \) for \(n \in N \). Let \(\mathcal{W} \) be the smallest paving on \(X \) containing \(\{W_n : n \in N\} \). (Thus \(\mathcal{W} = X \times W_0 \cup \{W_1 : n \in N\} \cup \{W_0 : n \in N\} \).) Note that \(\mathcal{W} \) is a full paving.

Proof. For \(\mu \in \mathcal{W} \), define \(\mu \) as is easily seen. If \(m \) denotes the restriction of \(\mu \) to \(\mathcal{W} \), then \(m \not\in M_\mu(\mathcal{W}) \). (Indeed, \(m(W_0) = 1 \), but \(\sup(m(\mathcal{W})) = 0 \).)

The following gives a simple condition on \(\mathcal{W} \) which guarantees that \(T_\mu \) is onto \(M_\mu(\mathcal{W}) \). (Note that the family \(\mathcal{W} \) of all zero sets on a topological space satisfies the condition, and this accounts for the fact that the usual Baire measure on a topological space is \(\mathcal{W} \)-regular.)

Theorem 1.9. Let \(\mathcal{W} \) be a full paving. Assume that if \(W_n \in \mathcal{W} \), then there is a sequence \(\{W_n \} \) in \(\mathcal{W} \) with \(W_n \to \mathcal{W} \). Then for every infinite cardinal \(\alpha \), \(T_\mu \) maps \(M_\mu(\mathcal{W}) \) onto \(M_\mu(\mathcal{W}) \).

Proof. Let \(m \in M_\mu(\mathcal{W}) \) and let \(m \) denote the restriction of \(m \) to \(\mathcal{W} \). Then \(m \) is a non-negative, finite, finitely-additive function on \(\mathcal{W} \). All that need be verified is that \(m \) is \(\mathcal{W} \)-regular. Hence let \(W_n \in \mathcal{W} \) and choose an increasing sequence \(\{W_n \} \) in \(\mathcal{W} \) with \(W_n \subset \mathcal{W} \). Since \(m \) is \(\mathcal{W} \)-additive, \(m(W_n) \leq \lim m(W_n) \leq \sup(m(\mathcal{W})) \). By Proposition 4.1.4.5, it follows that \(m \) is \(\mathcal{W} \)-regular.

§ 2. Applications of the extension. In this section, we wish to apply the extension theorems to obtain certain results on weak convergence in \(A^* \) where \(A \) is a uniformly closed algebra of bounded real-valued functions on \(X \) which satisfies the point of \(X \) and contains the constants.

We shall denote the paving of zero sets of \(A \) by \(\mathcal{W} \). If \(\mathcal{W} \) is a full paving on \(X \), then a standard representation of \(A \) is an isometric isomorphism \(I \) of \(A^* \) onto \(M_\mu(\mathcal{W}) \) such that \(I(\mathcal{W}) = m(\mathcal{W}) = \{x : \mathcal{W} \text{ is finite and } \mu \in M_\mu(\mathcal{W}) \}

Lemma 2.1. Let \(A_1, A_2 \) be algebras on \(X \) with \(A_1 \leq A_2 \), and let \(\tau_1, \tau_2 \) be \(\tau_1 \), \(\tau_2 \). Let \(\mathcal{W}_1, \mathcal{W}_2 \) be two full pavings of closed sets in \(X \) which are bases for the \(\tau_1, \tau_2 \). Let \(\phi(x) \) be a \(\phi \) on \(X \) with \(A_1 \leq A_2 \), and let \(\tau_1, \tau_2 \) be \(\tau_1 \), \(\tau_2 \). Let \(\mathcal{W}_1, \mathcal{W}_2 \) be two full pavings of closed sets in \(X \) which are bases for the \(\tau_1, \tau_2 \). Let \(\phi(x) = \phi_1(x) \) on \(A_1 \), \(\phi(x) = \phi_2(x) \) on \(A_2 \), \(\phi(x) = \lim_{\tau_1, \tau_2} \phi(x) \) on \(\mathcal{W}_1, \mathcal{W}_2 \).

Proof. Since \(\mathcal{W}_1 \), \(\mathcal{W}_2 \) are bases for the closed sets for \(\tau_1, \tau_2 \), \(\mathcal{W}_1 \), \(\mathcal{W}_2 \) is the family of all closed sets for \(\tau_1, \tau_2 \). By Theorem 1.8, it is sufficient to prove that \(m(\mathcal{W}_1) \leq m(\mathcal{W}_2) \) for all \(\tau_1, \tau_2 \). Hence \(\mathcal{W}_1, \mathcal{W}_2 \) is a basis for \(\tau_1, \tau_2 \).

Since \(\mathcal{W}_1 \), \(\mathcal{W}_2 \) are bases for the closed sets, \(\mathcal{W}_1 \), \(\mathcal{W}_2 \) is a \(\tau_1, \tau_2 \). Hence, since \(\mu \) is a \(\tau \)-additive, there is \(W_n \in \mathcal{W}_1 \), \(W_n \in \mathcal{W}_2 \) for all \(\tau_1, \tau_2 \). Furthermore, there is \(\phi_1(x) \) on \(\mathcal{W}_1 \), \(\phi_2(x) \) on \(\mathcal{W}_2 \). Hence, \(\phi_1(x) = \phi_2(x) \). The proof is complete.

We note that \(\mathcal{W} \) is a normal base if \(\mathcal{W} \) is paving of closed sets on \(X \) which is a base for the closed sets of \(X \) and satisfies:
(i) If G is a closed set in X and if $x \in G$, then there are $W_1, W_2 \in \mathcal{W}^*$ with $W_1 \cap W_2 = \emptyset$ and $x \notin W_1, G \subseteq W_2$.

(ii) If $W_1, W_2 \in \mathcal{W}^*$ with $W_1 \cap W_2 = \emptyset$, then there are $V_1, V_2 \in \mathcal{W}$ with $V_i \cup V_j = X$ and $V_i \subseteq V_j^*$ for $i = 1, 2$.

We remark that a normal base \mathcal{W}^* gives rise to a compactification $X_{\mathcal{W}^*}$ and if this compactification is $X_{\mathcal{W}}$ (the compactification such that every element of \mathcal{W} is a continuous map on $X_{\mathcal{W}}$), then $\mathcal{M}(\mathcal{W})$ represents A^* by Proposition 2.6.

Theorem 2.11. Let A_e, A_f be algebraic algebras on X with $A_e \subseteq A_f$, and $A_e(A) = A_f(A)$; and let \mathcal{W}^*, \mathcal{W}^* be normal bases with $X_{\mathcal{W}^*}$ the \mathcal{W}^*-compactification for $j = 1, 2$. Let φ_1 be a net in $(A_e^*)^*$, let $\varphi_2(A_e)^*$, and assume that $\varphi_i(f) \to \varphi_i(f)$ for all $f \in A_i$. Then $\varphi_1(f) \to \varphi_2(f)$ for all $f \in A_1$, if either of the following two conditions hold.

1. $\mathcal{W}^* \subseteq \mathcal{W}^*$.
2. $\varphi_i(A_e)^*$ for all i.

Proof: First assume that $\mathcal{W}^* \subseteq \mathcal{W}^*$. (That is, condition (1) holds). Let $m_1, m_2 \in M^*(\mathcal{W})$ represent φ_1 and φ_2, respectively, and let $m_{1, e}, m_{2, e} \in M^*(\mathcal{W}^*)$ represent the restrictions of φ_1 and φ_2 to A_e. By Proposition 2.6, $m_{1, e} \in M^*(\mathcal{W}^*)$ and $m_{2, e} \in M^*(\mathcal{W}^*)$. Fix $W_1, W_2 \in \mathcal{W}^*$, and $0 < \epsilon$. Since \mathcal{W}^* is a normal base, there is a $W_1 \in \mathcal{W}^*$ with $x \subseteq W_1$ and $\mu(W_1) < T_1(\mu(W_1)) + \epsilon$. For all i, $m_i(W_1) = \inf \{ \mu(f) : f \in A_i, x \subseteq W_1 \} \leq \inf \{ \mu(f) : f \in A_i, x \subseteq W_1 \} = \mu(W_1)$. Using this together with Theorem 2.1 and Lemma 2.1 we obtain that

$$\limsup m_1(W_1) \leq \limsup m_1(W_2) \leq \limsup \mu(W_1) + \epsilon = m(W_1) + \epsilon.$$

The result is now an immediate consequence of Theorem 2.6.

Now assume that condition (2) holds. Again let $m_{1, e}, m_{2, e} \in M^*(\mathcal{W}^*)$ represent φ_1 and φ_2, respectively, and let $m_{1, e}, m_{2, e} \in M^*(\mathcal{W}^*)$ represent the restrictions of φ_1 and φ_2 to A_e. By Lemma 2.1, $T_{1, e} = T_{2, e}$ and $T_{1, e} = T_{2, e}$. Fix $W_1, W_2 \in \mathcal{W}^*$ and $0 < \epsilon$. Choose $W_1 \in \mathcal{W}^*$ such that $W_1 \subseteq W_2$ and $0 < \mu(W_1) < \mu(W_2) = \mu(W_2) - \mu(W_1)$. Then by Theorem 2.6 and Lemma 2.1 we obtain

$$\limsup m_1(W_1) = \limsup m_1(W_2) \leq \limsup m_2(W_1) \leq \mu(W_1) - \epsilon = m(W_1) + \epsilon.$$
Theorem 2.6. Let A be an algebra on X, and let $B \subseteq (A_+^*)^\ast$. If B is relatively weakly countably compact in $(A_+^*)^\ast$, then B is relatively weakly compact in $(A_+^*)^\ast$.

Proof. It is enough to prove the theorem in the special case, $A = C^0(X)$. The general result then follows from Lemma 2.3 as in the proof of Theorem 2.3 above. But if $A = C^0$, then $M_+(X)$ is complete for the Mackey topology $\mathcal{m}(M_+(X), C^0)$. (Indeed, it is shown in [3] that M_+ is complete for a topology \mathcal{d} for which the dual of M_+ is C^0. Hence it is complete for the Mackey topology.) It then follows from Eberlein's theorem that if $B \subseteq M_+(X)$ is relatively weakly countably compact, then it is relatively weakly compact. The proof is complete.

Remark. We have shown above that any relatively weakly sequentially compact subset of $M_+(X)$ is necessarily relatively weakly compact.

We note from [4] that for a paving \mathcal{F}, a set $S \subseteq X$ is \mathcal{F}-compact if for every filter $\mathcal{F} \subseteq \mathcal{F}$ with $S \cap U \neq \emptyset$ for all $U \in \mathcal{F}$, then $S \cap \bigcap (S \cap U : U \in \mathcal{F}) \neq \emptyset$.

Definition 2.7. Let \mathcal{F} be a paving on X. A set $S \subseteq M(\mathcal{F})$ is tight if $\sup \{|m| : m \in B\} < \infty$ and if for every $\varepsilon > 0$, there is a \mathcal{F}-compact set $W \subseteq \mathcal{F}$, such that $|m|(W) < \varepsilon$ for all $W \subseteq \mathcal{F}$ with $W \cap W_0 = \emptyset$ and all $m \in B$.

It is clear that the mapping S of Lemma 2.4 preserves tight sets. Hence using Lemma 2.4 and Theorem 31 of [8, p. 66], we obtain the following weakened version of Prohorov's theorem.

Theorem 2.8. Let A be an algebra and assume that (X, τ_A) is locally compact and that (X, τ_A) is metrizable with a complete metric. Then $B \subseteq M_+(X)$ is relatively weakly compact if and only if it is tight.

We conclude this paper with a last application to obtain a generalization of a known result (see for example [5; 5.1(d)]). We denote the set of tight elements of $M(\mathcal{F})$ by $M_\tau(\mathcal{F})$.

Theorem 2.9. Let \mathcal{F} be a normal base with compactification $X_\mathcal{F}$ or let $\mathcal{F} = X(A)$ for A an algebra on X. If $m \in M_\tau(\mathcal{F})$, then for each compact regular Borel measure μ on X such that $\mu(\mathcal{F}) = m^+$ and $\mu^-(\mathcal{F}) = m^-$.

Proof. We note that the hypothesis implies the τ_A-compact sets are \mathcal{F}-compact and conversely. By [4; 5.6] $m \in M_\tau(\mathcal{F})$ is in $M_\tau(\mathcal{F})$. Therefore there exist unique $\mu^+, \mu^- \in M_\tau(\mathcal{F})$ such that $\mu^+(\mathcal{F}) = m^+$ and $\mu^-(\mathcal{F}) = m^-$. Since \mathcal{F} is a base for the τ_A closed sets of $X_\mathcal{F}$, the paving of all closed sets so that μ^+ and μ^- are Borel measures on X.

Finally, since m is tight, for any $\varepsilon > 0$ there is a \mathcal{F}-compact set W_ε such that $|m|(W) < \varepsilon$ if $W \cap W_\varepsilon = \emptyset$. Since W_ε is $\tau_\mathcal{F}$-compact and \mathcal{F} is a basis for the $\tau_\mathcal{F}$ closed sets, it follows that for any closed set P with $P \cap W_\varepsilon = \emptyset$, there is a $W \subseteq \mathcal{F}$ such that $P \subseteq W$ and $W \cap W_\varepsilon = \emptyset$. Consequently, $|\mu|(P) = |\mu|(W) = |m|(W) < \varepsilon$ so that $|\mu|$ is compact regular.

References

Received October 23, 1974
Revised version May 30, 1975