$C_X(T)$ has the DP property from Theorem 3 and Theorem 8 of [15]. If T is locally compact, let T' be the one-point compactification of T with ∞ denoting the point at infinity. Then $C_X(T, X)$ is isometrically isomorphic to the closed subspace Γ of $C_X(T')$ consisting of those functions which vanish at ∞. But Γ is complemented in $C_X(T')$ via the projection $P: f \to f(\infty)$ and $C_X(T')$ has the DP property, so Γ, and hence $C_X(T, X)$, has the DP property ([10], 9.4.3).

Remark 5. Partial solutions to this problem were given in [3], [2], and [16]; for the scalar versions see [9], VI, 7.4.

It also follows from Theorem 4 that if Z is a complemented subspace of a space $O(S)$, then $Z^{\mathcal{S}, Y}$ ([14], 7.1.1) has the DP property when X has the DP property for $Z^{\mathcal{S}, Y}$ is then a complemented subspace of $O(S)^{\mathcal{S}, Y} = C_X(S)$. This suggests the conjecture that if X and Y have the DP property, then $X^{\mathcal{S}, Y}$ also has the DP property.

References

Received February 3, 1975 (195)}

On the Vitali covering properties of a differentiation basis

by

ANTONIO CORDOBA (Princeton, N. J.)

Abstract. A functional analysis technique is introduced to relate differentiation and covering properties of a basis.

A. Let \mathcal{B} be a Bairean-Pettis differentiation basis in \mathbb{R}^n. That is, for each $x \in \mathbb{R}^n$ we have a collection of bounded open sets $\mathcal{B}(x)$ containing x, such that there exists at least one sequence $(R_k) \subset \mathcal{B}(x)$ with diameter $(R_k) \to 0$, and if $x \in \mathcal{B}(x)$, then $x \in \mathcal{B}(x)$.

Given a measurable set E in \mathbb{R}^n, we say that $V \subset \mathcal{B}$ is a \mathcal{B}-Vitali covering of E if for every $x \in E$ there is a sequence $(R_k) \subset V$ such that $R_k \in \mathcal{B}(x)$ for each k and $R_k \to x$ as $k \to \infty$.

DEFINITION 1. The differentiation basis \mathcal{B} has the covering property V if there exists a constant C such that for every measurable bounded set E, \mathcal{B}-Vitali covering V of E and any $\varepsilon > 0$, one can select a sequence $(R_k) \subset V$ with the properties:

(i) $|E - \bigcup R_k| = 0$,
(ii) $|\bigcup R_k| \leq C|E|^{1/2}$.

Given a locally integrable function f, we define the upper derivative $D(f, x)$ with respect to \mathcal{B} as follows:

$$D(f, x) = \sup_{k \to \infty} \sup_{R_k} \frac{1}{|R_k|} \int_{R_k} f(y) dy,$$

where the "\sup" is taken over all the sequences $(R_k) \subset \mathcal{B}(x)$ such that $R_k \to x$ as $k \to \infty$. The lower derivative $D(f, x)$ is defined by setting infinium above.

DEFINITION 2. We say that \mathcal{B} differentiates f if

$$D(f, x) = D(f, x) = f(x)$$

almost every point $x \in \mathbb{R}^n$.

The purpose of this paper is to relate the following two properties of a differentiation basis:
(1) \(\mathcal{A} \) differentiates \(f \) for all \(f \in L^p_0(\mathbb{R}^d) \).
(2) \(\mathcal{A} \) has the covering property \(V_q, 1/p + 1/q = 1 \).

For the particular case \(q = 1, p = \infty \), the equivalence of (1) and (2) is due to de Possel [7]. The implication (2) \(\Rightarrow\) (1) is well known, and Hayes and Pane [4] proved that if \(\mathcal{A} \) differentiates \(f \) for all \(f \in L^p(\mathbb{R}^d) \), then \(\mathcal{A} \) has the covering property \(V_1, 1/p + 1/q = 1 \). In Theorem 1, we prove that for a basis \(\mathcal{A} \) invariant by translations, the properties (1) and (2) are equivalent. For more detailed information about this problem see de Guzman [2] [3].

B. Suppose that \(\mathcal{A} \) is a differentiation basis invariant by translations.\(^{(1)} \)

That is, there exists a family \(\mathcal{A}(0) \) of bounded open sets containing the origin such that the fiber of \(\mathcal{A} \) at the point \(x \) is given by \(\mathcal{A}(x) = \{ x \in E, R \in \mathcal{A}(0) \} \). Then we have:

Theorem 1. \(\mathcal{A} \) differentiates \(f \) for all \(f \in L^p_0(\mathbb{R}^d) \) if and only if it has the covering property \(V_q, 1/p + 1/q = 1, 1 < q < \infty \).

Proof. (1) \(\Rightarrow\) (2): Assume \(\mathcal{A} \) is translation invariant and differentiates \(f \) for all \(f \in L^p(\mathbb{R}^d) \), allowing us to apply the theorems of Stein [9] and Sawyer [1], to conclude that there exists \(r > 0 \) such that the maximal function \(M_r \) is of weak type \((p, p)\). Further generalizations of this argument have been obtained by B. Rubio [9] and I. Peral [6].

Given a measurable bounded set \(E \) and \(E \) of positive \(\varepsilon \), we pick an open set \(\Omega \) s.t. \(\Omega > \varepsilon \) and \(|\Omega - E| \leq \varepsilon \). From now on, we shall consider only the elements of the Vitali covering of \(E \) which are contained in \(\Omega \) and have diameter less than \(r \). Obviously they constitute another Vitali covering of \(E \); we shall denote by \(V \) that covering.

Since the measures of the elements of \(V \) are bounded, we can choose an element \(E_k \) such that \(|E_k| \geq \frac{1}{2}|E| \).

Suppose that we have chosen \(E_1, ..., E_n \). Then we divide the family \(V \) in two classes:

1) Elements \(E \) s.t. \(|E \cap \bigcup_{i \in A} E_i| \leq \frac{1}{2}|E| \);
2) Elements \(E \) s.t. \(|E \cap \bigcup_{i \in A} E_i| > \frac{1}{4}|E| \).

We eliminate the second class and observe that the first class constitutes a Vitali covering of \(E - \bigcup_{i \in A} E_i \).

Now we choose \(R_{q;1} \) to be an element of the first class such that \(|R_{q;1}| \geq \frac{1}{2} \sup \{|R_i| : E_i \text{ is in the first class} \} \).

By induction we get a sequence \(\{ R_{q,j} \} \) such that

\[
|R_{q,j}| \geq \frac{1}{2} |R_{q,j-1}| \quad \text{where} \quad R_{q,j} = R_{q,j-1} - \bigcup_{j < k} R_{q,k}
\]

and furthermore \(|R_{q,j}| \) is of the order of the biggest possible from this. From this, and using the fact that \(\mathcal{A} \) differentiates integrals of functions in \(L^q \), it is easy to see that \(|B - \bigcup R_{q,j}| = 0 \). The relation \(|B - \bigcup R_{q,j}| \leq \varepsilon \) is an immediate consequence of the fact that \(R_{q,j} \subset \Omega \) for every \(k \).

Next we consider the linear operator

\[
Tf(x) = \sum_{|R_{q,j}|} \int_{R_{q,j}} f(y) dy \cdot \chi_{\Omega}(x)
\]

and its formal adjoint

\[
Sf(x) = \sum_{|R_{q,j}|} \int_{R_{q,j}} f(y) dy \cdot \chi_{\Omega}(x).
\]

Observe that \(|Tf(x)| \leq M_{r}(f) \) and \(S(\chi_{\Omega}) \geq \frac{1}{2} \sum \chi_{\Omega} \).

Since \(M_r \) is of weak type \((p, p)\), we have that the family of operators like \(T \) (corresponding to different sequences \(\{ R_{q,j} \} \)) is a uniformly bounded family of linear operators from \(L^p(\mathbb{R}^d) \) to the Lorentz space \(L(p, \infty) \). Therefore their duals \(T^* \) are uniformly bounded operators from \(\langle L(p, \infty) \rangle^* \) to \(L^p \). But since \(L(p, \infty) \) is the dual Banach space of \(L(\mathbb{R}^d, 1) \), it follows that the operators \(S \) are uniformly bounded from the Lorentz space \(L(\mathbb{R}^d, 1) \) to \(L^p \).

That is, there exists a constant \(C \) independent of \(E, \varepsilon \) and the sequence \(\{ R_{q,j} \} \) such that

\[
\left| \sum \chi_{\Omega} \right| \leq C|\sum \chi_{\Omega}| \leq C|E|^{1/2}
\]

(This is true because \(\| \sum \chi_{\Omega} \|^2 = |E|^{1/2} \) for every measurable set \(E \), and every \(r, 1 < r < \infty \), see [5].)

The implication (2) \(\Rightarrow\) (1) is straightforward. Q.E.D.

Remark. The same linearization technique also allows us to prove the following two results:

1. If \(\mathcal{A} \) differentiates integrals of functions in \(L^1 \) then it has a covering property of exponential type, i.e., there exists a constant \(C > 0 \) such that given a \(\mathcal{A} \)-Vitali covering of the set \(E \), we can find a subcovering \(\{ E_k \} \) satisfying

\[
\left| \exp \left(C \sum \chi_{\Omega}(x) \right) \right| \leq |E|
\]
2° If \(\mathcal{B} \) differentiates integrals of functions in \(L^\log L \) (for example the basis of intervals in \(\mathbb{R}^3 \)), then there exists \(C > 0 \) such that, under the same conditions of \(1° \), we have
\[
\left\| \exp \left(C \sum I_{x_k}(x) \right) \right\|_1 \leq |E|.
\]

However, these two covering properties are far from being the best possible for the corresponding situations.

C. The halo problem. Let \(\mathcal{B} \) be a differentiation basis in \(\mathbb{R}^n \) (not necessarily invariant by translations) and let \(\psi(u) \) be its halo function, that is
\[
\psi(u) = \sup \left\{ \frac{1}{|A|} \left| \left\{ x : M_{x,A}(x) > u^{-1} \right\} \right|, \text{ A bounded and with positive measures} \right\}, \quad u \geq 1.
\]

We can extend \(\psi \) to \([0, \infty)\) by setting \(\psi(u) = u \) for \(u \in [0,1] \) (see [2]).

Theorem 2 gives us an alternative proof of some results of Hayes and de Guzman.

Theorem 2. Suppose that \(\psi(u) = O(u^p) \) as \(u \to \infty \) for some \(1 < p < \infty \), then \(\mathcal{B} \) differentiates integrals of functions in \(L_{\log}(p,1) \).

Proof. We shall show that \(\mathcal{B} \) has the Vitali covering property \(V_{\log}(\text{weak}) \), \(1/p + 1/q = 1 \). That is, there exists \(C > 0 \) such that given a bounded measurable set \(E, \varepsilon > 0 \), and a Vitali covering of \(E \), we can select a sequence \(\{B_k\} \) satisfying \(\sum_{k} \varepsilon \delta_{B_k} \leq \varepsilon \) and
\[
\left| \left\{ x : \sum_{k} I_{x_k}(x) > \lambda \right\} \right| \leq C \frac{|E|}{\lambda^p} \text{ for every } \lambda > 0.
\]

To see this we select a sequence \(\{B_k\} \) as in Theorem 1 and we consider the linear operators \(T \) and \(T^* \).

Then
\[
|B_k| = \left| \left\{ x : \sum_{k} I_{x_k}(x) > \lambda \right\} \right|
\leq \frac{2}{\lambda} \int_{B_k} T^* I_{x}(x) dx = \frac{2}{\lambda} \int T I_{x_k}(x) dx = \frac{2}{\lambda} \left(\|x_k\|_{V_{\log}} \right) \left| T I_{x_k}(x) \right| dx
\leq \frac{2}{\lambda} \|x_k\|_{V_{\log}} \left| T I_{x_k}(x) \right|_{L_p} \leq \frac{C_2}{\lambda} \left| T \right|_{L_{\log}} \left| E_k \right|_{L_p} \leq \frac{C_2}{\lambda} \left| T \right|_{L_{\log}} \left| E_k \right|_{L_p} \lambda^p
\]

and therefore \(|B_k| \leq C \frac{|E|}{\lambda^p} \).

References

[2] M. de Guzman, *Differentiation of integrals in \(\mathbb{R}^n \),* Series I, Cursos No. 6, Universidad de Madrid.

Princeton University

Received March 19, 1975