Integration of evolution equations in a locally convex space

by

V. A. BABAJO LA (Iba-ana, Nigeria)

Abstract. Let $H = H(R^m)$ be the space of all real-valued functions in $C^0(R^m)$ having every partial derivative in $L^2(R^m)$ and topologised by the seminorms defined as follows:

$$p_0(p) = \left(\int_{|x| = 0} |D^0 p(x)|^2 \, dx \right)^{1/2}, \quad p \in H, \quad t = 0, 1, 2, \ldots$$

Let A be an elliptic differential operator with coefficients possessing bounded derivatives of all orders. This paper solves the Cauchy problem for the system:

$$\frac{\partial u(x, t)}{\partial t} = (A u)(x, t), \quad t > 0, x \in R^m,$$

$$u(0, x) = f(x), \quad f \in H, \quad x \in R^m.$$

1. Introduction. The present paper is a follow-up to [2], and its knowledge is assumed here. Let Q be an open subset of a Euclidean space. For convenience we shall denote by $C^m(Q)$ the space of all functions in Q, and by $C^m_s(Q)$ the space of all functions in $C^m(Q)$ having compact support in Q.

Now let A be the partial differential operator of 2nd order in m-dimensional Euclidean space R^m given by

$$A = -(\xi \cdot \eta - \gamma^\alpha_\beta \eta^\alpha \partial_\beta)^m,$$

where the coefficients α^α_β belong to $C^0(R^n)$ with bounded partial derivatives of all orders. We assume further that $\alpha^\alpha_\beta = \alpha_{\gamma \beta} \gamma^\gamma$ for $|\gamma| = |\alpha| = m$ and there is a constant $\varepsilon > 0$ such that

$$\sum_{|\gamma| = m} \alpha^\gamma_{\alpha \beta} (x) t^\gamma_1 \cdots t^\gamma_n > \varepsilon \left(\sum_{|\gamma| = m} x^\gamma \right)^m$$

for each $(t_1, \ldots, t_n) \in R^n$; so that A is an elliptic differential operator.
Let \(H = H(\mathbb{R}^n) \) be the space of all functions in \(C^0(\mathbb{R}^n) \) with every partial derivative in \(L^1(\mathbb{R}^n) \) and denote by \(H \) also the topological vector space obtained by imposing the topology determined by the set \(\{ p_\alpha : \alpha \in \mathbb{N}^n \} = \{ p_\alpha : \alpha \in \mathbb{N}^n \} \) of semi-norms on this family of functions, where

\[
p_\alpha(f) = \left(\frac{\partial^\alpha |f|}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} \right)_{x_1 = 0, \ldots, x_n = 0}, \quad \alpha \in \mathbb{N}^n.
\]

Note that \(H \) is a Fréchet Space.

In this paper we prove the following theorem:

1.4 \textbf{Theorem.} The Cauchy problem for the equation

\[
\frac{\partial u}{\partial t} - (\mathcal{A}u)(t, x) = f(t, x), \quad x > 0, \quad t \in \mathbb{R}^n,
\]

is solvable in the following sense: For any given \(f \in H \) the equation (1.5) admits a solution \(u = u(t, x, \xi) \in C^0([0, \infty) \times \mathbb{R}^n) \) satisfying the following:

(i) \(u(\xi, \eta) = u(\xi, \eta) \) for \(\xi > 0, \eta \in \mathbb{R}^n \),

(ii) \(u(\xi, \eta) \in H \) for each \(\xi > 0, \eta \in \mathbb{R}^n \),

(iii) \(\lim_{t \to +1} u(\xi, \eta) = f(\cdot) \) in \(H \).

Moreover, the solution \(u(\xi, \eta) \) satisfying (ii) and (iii) is uniquely determined for \(f \in H \).

2. Preliminaries.

2.1. Notations. For each non-negative integer \(i \),

(1) \((\varphi, \psi)_i = \sum_{\alpha \leq i} \int_{\mathbb{R}^n} D^\alpha \varphi(x) D^\alpha \psi(x) \, dx \) for all \(\varphi, \psi \in H(\mathbb{R}^n) \)

and \(i = 0, 1, 2, \ldots \).

(2) \(H_i \) is the pre-Hilbert space formed by \(H \) under the inner product (1).

(3) \(\tilde{H}_i \) is the completion of \(H_i \) with respect to the norm \(\| \cdot \|_i = p_i(\cdot) \).

Indeed the \(p_i \)'s are norms on \(H \). Hence, under the topology induced by \(p_i(\cdot) \), the normed linear space formed by the elements of \(H \) is \(p_i(\cdot) \) and will be replaced by \(H \) in the sequel. Whenever necessary \(f_i (= f) \) will denote an element of \(H_i \), seen as a coset. Note that the operator \(A \) defined by (1.1) with domain \(H \) and range in \(H \) has the property that the linear operator \(A_i : H_i \to H_i \) defined by

\[
A_i f_i = (Af)_i, \quad f_i \in H_i
\]

is well-defined. For, clearly, \(f_i = g_i \) in \(H_i \) \(\implies \) \(f(\cdot) = g(\cdot) \) in \(H \) (1.5).

Integration of evolution equations in locally convex space

\[
0 = \sum_{i=0}^{n} \int_{\mathbb{R}^n} (D^\alpha \mathcal{A}_i f)(\xi) \, d\xi = 0 \Rightarrow (\mathcal{A}_i f)(\xi) = (\mathcal{A}_i g)(\xi)
\]

is \(0 \). Hence \(\mathcal{A}_i \) is well-defined on \(H_i \). Observe that \(\mathcal{A}_i \) is effective on \(H_i \) acting as on the normed linear space \(H_i \) itself.

We define the adjoint \(A^* \) of \(A \) by

\[
A^* = -(-1)^n \sum_{i=0}^{n} (-1)^{n+i} D^\alpha a_{\alpha}(\xi) D^\alpha.
\]

Note that \(f \in H \) can be approximated by a sequence of functions in \(C^0_{\mathbb{R}^n} \) (cf. [4], page 38). Thus, since \((a) \) the inner product \((\cdot, \cdot)_i \) defined by (3.1) on \(H \times H \) is continuous, (b) \(A^* \) is continuous on \(H \) and (c) by partial integration \((Af, \varphi)_i = (f, A^* \varphi)_i \) for all \(\varphi \in C^0_{\mathbb{R}^n} \), it follows in the limit that

\[
(Af, g)_i = (f, A^* g)_i \quad \text{for all} \quad f, g \in H.
\]

Similarly,

\[
\sum_{i=0}^{n} (-1)^{n+i} D^\alpha A f_i g_i = \int_{\mathbb{R}^n} \sum_{i=0}^{n} (-1)^{n+i} D^\alpha A^* g_i D^\alpha f_i \quad \text{for all} \quad f, g \in H.
\]

We now state a suitable form of Garding's inequality.

2.5. \textbf{Lemma.} Let \(f, g \in H \). Then \((f, g)_i = 0 \) for all \(\varphi \in C^0_{\mathbb{R}^n} \) implies \(f = g \) in \(H_i \).

1. \textbf{Studies in Mathematics} 13
Then there exist positive constants c and C such that
\begin{equation}
(\mathcal{A} f, f)_H \geq c \| f \|_H^2 - C \| f \|_H^6
\end{equation}
for all $f \in H$.

Proof. By [1], Theorem 7.6,
\begin{equation}
(\mathcal{A} \varphi, \varphi)_H \geq c \| \varphi \|_H^2 - C \| \mathcal{A} \varphi \|_H^2
\end{equation}
for all $\varphi \in C_0^\infty(R^n)$. This class of functions is dense in H. Hence, for any $f \in H$, there exists a sequence $\{\varphi_n\} \subset C_0^\infty(R^n)$ such that $\lim_{n \to \infty} \varphi_n = f$ in H. Now observe that the operator \mathcal{A}, the norms $\| \cdot \|_H$ and $\| \cdot \|_H^6$ are continuous on H and the inner product $(\cdot, \cdot)_H$ is continuous on $H \times H$. Hence, by taking $\varphi = \varphi_n$ in (2.9) and letting $n \to \infty$, we obtain the lemma.

2.10. Corollary. Let λ be the differential operator defined by (1.1). There exist positive constants c_λ and C_λ such that if $\lambda > C_\lambda$ then
\begin{equation}
(\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha}(\lambda I - \lambda^\alpha) f, f)_H \geq c_\lambda \| f \|_{H^{\lambda+1}}^2
\end{equation}
for all $f \in H$. Further, for each positive λ, there exists a positive constant $K_{\lambda+1}$ such that
\begin{equation}
(\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha}(\lambda I - \lambda^\alpha) f, g)_H \leq K_{\lambda+1} \| f \|_{H^{\lambda+1}} \| g \|_{H^{\lambda+1}}
\end{equation}
for all $f, g \in H$.

Proof. The equality in (2.11) is true by (2.4). It is easy to show that the differential operator $(\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha}(\lambda I - \lambda^\alpha) A f, f)_H \geq c_\lambda \| f \|_{H^{\lambda+1}}^2 - C_\lambda \| f \|_H^6$ for all $f \in H$.

Now
\begin{equation}
(\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha}(\lambda I - \lambda^\alpha) f, f)_H = \lambda (\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha} f, f)_H - (\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha} A f, f)_H
\end{equation}
for all $\lambda > c_\lambda$. Thus
\begin{equation}
(\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha}(\lambda I - \lambda^\alpha) f, f)_H \geq c_\lambda \| f \|_{H^{\lambda+1}}^2 + (\lambda - C_\lambda) \| f \|_H^6
\end{equation}
for all $f \in H$. Therefore, provided $\lambda > C_\lambda$, we have
\begin{equation}
(\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha}(\lambda I - \lambda^\alpha) A f, f)_H \geq c_\lambda \| f \|_{H^{\lambda+1}}^2
\end{equation}
for all $f \in H$, and (2.11) is true.

Each $\| f \|^{\lambda+1}_H$ is bounded. Hence (2.12) follows as a consequence of the Schwartz inequality and the corollary is proved.

3. Proof of Theorem 1.4. We would have proved Theorem 1.4 if we had shown that the differential operator A with domain $D(A) = H$ generates an $L_\infty(H)$-operator semi-group of class $(C_2, 1)$. For this purpose we shall employ a variant of a technique of Yosida ([4], pp. 413–416).

It is clear that the linear operator A with $D(A) = H$ is continuous and therefore closed in H. It is also clear that $D(A) = H$ is dense in H. We have already noted that $A_\lambda = A : H_\lambda \to H_\lambda$ is well-defined. Now to show that A_λ with $D(A_\lambda) = H$ generates an $L_\infty(H)$-operator semi-group of class $(C_2, 1)$ we still need, according to (2.3), to establish the following:

(i) For each i, A_λ is closable in H_i.

(ii) For each i, there exist positive numbers c_i, M_i such that the resolvent $R(\lambda; A_\lambda)$ of the closure \mathcal{A}_λ of A_λ in H_i exists for all $\lambda > c_i$ and
\begin{equation}
\| R(\lambda; A_\lambda) \|_{H_i} \leq M_i (\lambda - c_i)^{-1}
\end{equation}
for all $\lambda > c_i$ and $\lambda = 1, 2, \ldots$.

We first take up (3.1)(i).

3.2. Lemma. The linear operator $A_\lambda = A : H_\lambda \to H_\lambda$ is closable in H_λ.

Proof. Let $\{f_k\} \subset D(A_\lambda) = H_\lambda \subset H_\lambda$ be such that $\lim_{k \to \infty} \| f_k \|_H = 0$ and $\lim_{k \to \infty} \| A_\lambda f_k \|_{H_\lambda} = 0$. It remains to show that $g = 0$ in H_λ to prove the lemma. Now for any $\varphi \in C_0^\infty(R^n)$,
\begin{equation}
(A_\lambda f_k, \varphi)_H = (\sum_{|\alpha| = \lambda} (-1)^{|\alpha|} D^{\alpha} A_\lambda f_k, \varphi)_H
\end{equation}
for all $k = 1, 2, \ldots$ and $\lambda > c_i$. Note that the inner products $(\cdot, \cdot)_H$
and \((\gamma, \nu)\) are continuous on \(H_x \times H_t\). Hence, passing to the limit in (3.3), we have
\[
(g, \varphi) = \left(0, \sum_{|\beta| = 0}^\ell (-1)^{|eta|} A^\beta D^\beta \varphi \right) = 0.
\]
Hence, by Lemma 2.5, \(g = 0\) in \(H_x\). This proves the lemma.

To establish (3.1(ii) we need a few preparatory results.

3.4 Lemma. Let a positive number \(\lambda\) be so chosen that Corollary 2.10 is valid for \(\lambda > \lambda_0\). Then, for any \(f \in H_t\), the equation
\[(3.5) \quad \lambda u - Au = f, \quad (\lambda > \lambda_0),
\]
has a solution \(u_{\lambda} \in \tilde{H}_{\lambda + \varepsilon} \cap C^\alpha\) in the sense that
\[(3.6) \quad (\lambda I - A)u_{\lambda} \varphi = (f, \varphi), \quad \text{for all } \varphi \in C^\alpha(R^n).
\]
Moreover, \(u_{\lambda} \in \tilde{H}_{\lambda + \varepsilon} \cap C^\alpha\).

Proof. Observe that \(\lambda I - A\) is strongly elliptic. Define a bilinear functional
\[
B_{\lambda}(u, v) = \left(\sum_{|\beta| = 0}^\ell (-1)^{|eta|} (\lambda I - A^\beta D^\beta) u, v \right)
\]
for all \(u, v \in H\). From Corollary 2.10,
\[
[\lambda I - A]u_{\lambda} \varphi = (f, \varphi) \quad \text{for all } \varphi \in H, \quad \text{and} \quad \|u_{\lambda}\|_{\tilde{H}_{\lambda + \varepsilon} \cap C^\alpha} \leq C_{\lambda} \|f\|_{\tilde{H}_{\lambda + \varepsilon} \cap C^\alpha}.
\]
Hence we may extend \(B_{\lambda}(u, v)\), by continuity, to a bilinear functional \(\tilde{B}_{\lambda}(u, v)\) defined for \(u, v \in \tilde{H}_{\lambda + \varepsilon}\) and such that
\[(3.7) \quad \tilde{B}_{\lambda}(u, v) \leq K_{\lambda} \|u\|_{\tilde{H}_{\lambda + \varepsilon}} \|v\|_{\tilde{H}_{\lambda + \varepsilon}} \quad \text{and} \quad \tilde{B}_{\lambda}(u, v) \geq C_{\lambda} \|u\|_{\tilde{H}_{\lambda + \varepsilon}}.
\]
The linear functional \(F_{\lambda}(u) = (u, f)\) defined on \(\tilde{H}_{\lambda + \varepsilon}\) is bounded since \(\|u\|_{\tilde{H}_{\lambda + \varepsilon}} \leq \|u\|_{\tilde{H}_{\lambda + \varepsilon}} \leq \|u\|_{\tilde{H}_{\lambda + \varepsilon}}\). Hence, by the Biele representation theorem, in the Hilbert space \(\tilde{H}_{\lambda + \varepsilon}\) (see [4], page 90), there exists a uniquely determined \(v = \varphi(f)\) on \(\tilde{H}_{\lambda + \varepsilon}\) such that \(u_{\lambda} = (v, \varphi(f))_{\tilde{H}_{\lambda + \varepsilon}}\) for all \(u \in \tilde{H}_{\lambda + \varepsilon}\).

Thus, by the Lax-Milgram theorem ([4], page 92),
\[(u, f) = (u, \varphi(f))_{\tilde{H}_{\lambda + \varepsilon}} = B_{\lambda}(u, S_{\lambda} \varphi(f)) \quad \text{for all } u \in \tilde{H}_{\lambda + \varepsilon},
\]
where \(S_{\lambda}\) is a bounded linear operator from \(\tilde{H}_{\lambda + \varepsilon}\) onto \(\tilde{H}_{\lambda + \varepsilon}\). Let \(\{u_k\} \subset H\) be a sequence such that \(\lim_{k \to \infty} S_{\lambda} \varphi(f)_{\tilde{H}_{\lambda + \varepsilon}} = 0\). Then for \(f \in C_0^\alpha(R^n)\),
\[
(3.9) \quad \|u\|_{\tilde{H}_{\lambda + \varepsilon}} \leq (\lambda - \sigma_0)^{-1}\|f\|_{\tilde{H}_{\lambda + \varepsilon}}.
\]

Proof. It is clear from Lemma 3.4 that if \(\lambda > \sigma_0\), then the solution \(u = u_{\lambda}\) exists in the sense of (3.6) and is unique. We now obtain the estimate (3.9). The inequality (2.13) implies
\[
(3.10) \quad \left| \sum_{|\beta| = 0}^\ell (-1)^{|eta|} D^\beta (\lambda I - A) u, u \right| \geq (\lambda - \sigma_0)\|u\|^2_{\tilde{H}_{\lambda + \varepsilon}}
\]
for all \(u \in H \) and \(\lambda > C \). Now, for each \(u \in H \), we have, by the Schwartz inequality,

\[
\left\| \sum_{|\alpha| \leq n} (-1)^{|\alpha|} D^{\alpha}_0 D^{\alpha}_1 (\lambda I - A) u, w \right\|^2 \\
\leq \left(\sum_{|\alpha| \leq n} \int \left| D^{\alpha}_0 (\lambda I - A) u \right|^2 dx \right) \left(\sum_{|\alpha| \leq n} \int \left| D^{\alpha}_1 u \right|^2 dx \right) \\
= \left\| (\lambda I - A) u \right\|^2 \left\| u \right\|^2.
\]

Combining (3.10) and (3.11) gives

\[
\left\| (\lambda I - A) u \right\| \geq (\lambda - C) \left\| u \right\| \quad \text{whenever} \quad u \in H.
\]

Since the solution \(u = u_r = u_{r, \lambda} \in H_{ur} \cap C^\infty \) of (3.5) is approximated in \(\left\| u_r \right\|_r \) by a sequence of functions in \(H \) and since the norm \(\left\| u \right\|_r \) is larger than the norm \(\left\| u \right\|_r \), we obtain, passing to the limit,

\[
\left\| u \right\| \leq (\lambda - \sigma_i)^{-1} \left\| f \right\|, \quad \lambda > \sigma_i,
\]

which concludes the proof.

3.3. Corollary. The closure \(\bar{A}_I \) of \(A_I \) is \(H_I \)-closed, for \(\lambda > \sigma_i \), the resolvent \(R(\lambda; \bar{A}_I) \) defined on \(H_I \) into \(H_I \), such that

\[
\left\| R(\lambda; \bar{A}_I) \right\| \leq (\lambda - \sigma_i)^{-k}, \quad k = 1, 2, \ldots
\]

Proof. Let \(f \in H_I \). Now \((\lambda I - \bar{A}_I) f = g \). Note that \(g \in H_I \) is unique. If \(\lambda > \sigma_i \), then as a consequence of this uniqueness and Lemma 3.4, the map \(f \rightarrow g \) is one-to-one from \(H \) onto \(H_I \). Thus if we set \(f = R(\lambda) g \), then \(R(\lambda) \) is a bounded linear operator from \(H_I \) onto \(H_I \). Now

\[
(\lambda I - \bar{A}_I) R(\lambda) g = g, \quad \forall g \in H_I.
\]

Furthermore, consider \(R(\lambda)(\lambda I - A) g, g \in H_I \). We have just seen that \(g \in H_I \) implies that there exists \(h \in H_I \) such that \(R(\lambda) h = g \). Hence we have \(R(\lambda)(\lambda I - A) R(\lambda) h = R(\lambda) h = g \); that is,

\[
R(\lambda)(\lambda I - A) g = g, \quad \forall g \in H_I.
\]

Now by Corollary 3.6

\[
\left\| R(\lambda) g \right\| \leq (\lambda - \sigma_i)^{-k} \left\| g \right\|, \quad \forall g \in H_I.
\]

This \(R(\lambda) \) is continuous linear operator on \(H_I \) into \(H_I \). Hence it is uniquely extendable to a continuous linear operator \(R(\lambda) \) on \(H_I \) into \(H_I \) such that

\[
\left\| R(\lambda) g \right\| \leq (\lambda - \sigma_i)^{-k} \left\| g \right\|, \quad \forall g \in H_I.
\]

By Lemma 3.2, \(A_I = A \) is closable in \(H_I \). Its closure is denoted by \(\bar{A}_I \). Since \(H_I \) is \(\left\| \cdot \right\| - \)dense in \(H_I \) and \(R(\lambda) \) is continuous on \(H_I \), we see that, for any \(g \in H_I \), there exists a sequence \(\{ g_k \} \in H_I \) such that \(\left\| g_k - g \right\| \rightarrow 0 \) and \(\left\| R(\lambda) g_k - R(\lambda) g \right\| \rightarrow 0 \) as \(k \rightarrow \infty \). Clearly \(\{ R(\lambda) g_k \} \in D(\bar{A}_I) \) and \(\bar{A}_I \) being closed in \(H_I \), we have, for any \(g \in H_I \),

\[
(\lambda I - \bar{A}_I) R(\lambda) g = \lim_{k \rightarrow \infty} (\lambda I - \bar{A}_I) R(\lambda) g_k = \lim_{k \rightarrow \infty} (\lambda I - A) R(\lambda) g_k = \lim_{k \rightarrow \infty} g_k = g
\]

in the topology of \(H_I \) (consequence of (3.10)). Similarly,

\[
R(\lambda)(\lambda I - \bar{A}_I) g = g, \quad \forall g \in D(\bar{A}_I).
\]

Thus \(R(\lambda) \) is the resolvent \(R(\lambda; \bar{A}_I) \) of \(\bar{A}_I \) over the space \(H_I \). Moreover, (3.17) gives

\[
\left\| R(\lambda; \bar{A}_I) g \right\| \leq (\lambda - \sigma_i)^{-k} \left\| g \right\|, \quad \forall g \in H_I \text{ and } \lambda > \sigma_i,
\]

from where it follows that

\[
\left\| R(\lambda; \bar{A}_I) g \right\| \leq (\lambda - \sigma_i)^{-k} \left\| g \right\|, \quad \forall g \in H_I \text{ and } \lambda > \sigma_i, \text{ and } k = 1, 2, \ldots
\]

This proves the corollary.

We have thus established (3.1)(ii). It follows that the differential operator \(A : H \rightarrow H \), defined by (1.1), is the infinitesimal generator of an \(L_p(R) \)-operator semi-group of class \((C_0, 1) \) and thus Theorem 1.4 is established.

References

Received October 12, 1972