The renewal theorem for a random walk
in two-dimensional time*

by

P. NEY and S. WAINGER (Madison, Wis.)

Abstract. An analog of the classical renewal theorem is proved for a random walk in two dimensional time. The renewal sequence \(u_n \) is shown to be of the form \(u_n = \mu^{-1} \log n + r_n \), where \(\mu \) is the mean of the underlying random variables, and \(r_n \) is a remainder sequence whose behavior depends on the restrictions imposed on these variables. This contrasts with the result \(u_n \to \mu^{-1} \) in the one dimensional case.

1. Introduction. The purpose of this paper is to examine an analog of the renewal theorem for two dimensional time. The classical renewal theorem of Erdős, Feller, and Pollard [2], considers the partial sums

\[S_n = \sum_{i=1}^{n} X_i \]

of independent, identically distributed, integer valued, aperiodic\(^{(1)} \) random variables \(X_1, X_2, \ldots \), with finite mean \(\mu > 0 \); and asserts that the expected number of \(n \)'s for which \(S_n = k \) converges to \(1/\mu \) as \(k \to +\infty \).

For the two dimensional setting we consider a family \(\{X_{i,j}; i \geq 1, j \geq 1\} \) of random variables, and let

\[S_{m,n} = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{i,j}, \quad E X_{i,j} = \mu > 0 \]

and

\[N_k = \text{the number of pairs } (m,n) \text{ for which } S_{m,n} = k. \]

Geometrically, one may think of \(\{S_{m,n}\} \) as defining a discrete (random) surface on the positive quadrant of lattice points in the plane \(\mathbb{R}^2 \), and \(N_k \) as being the number of points of this surface which lie in a plane \(\mathbb{R}^2 \) parallel to \(\mathbb{R}^2 \), and a distance \(k \) above it.

We call \(u_k = E N_k, k \geq 1 \), the renewal sequence associated with \(\{X_{i,j}\} \), and want to study \(u_k \) as \(k \to \infty \). We assume throughout this paper that

\(^{(1)} \) A random variable \(X \) is called aperiodic if \(E e^{\theta X} \neq 1 \) for \(\theta \neq 0 \), it is strongly aperiodic if \(|E e^{\theta X}| \neq 1 \) for \(\theta \neq 0 \).

* Supported by N. I. H. and N. S. F.
the $X_{i,j}$ are independent, identically distributed, integer-valued, and strongly aperiodic.

In the one-dimensional case one can very effectively make use of a difference equation satisfied by u_n. (It is a linear integral equation, called the renewal equation, in the general non-lattice case.) There does not appear to be a natural analog of this equation in dimension two, mainly because the lattice points of the plane are not linearly ordered under the natural order. Fortunately, however, a direct Fourier analysis yields some results.

Using standard Tauberian methods one can easily prove the weak (global) result (Theorem 1) that

$$u_n \sim \frac{n \log n}{\mu}$$

as $n \to \infty$,

Our main concern in this paper is to examine when the strong (local) result

$$u_n \sim \frac{\log n}{\mu}$$

is valid. With sufficient moment assumptions we can prove (4) by using a sharp local central limit theorem (see Theorem 2). The problem becomes much more difficult if one limits oneself to the existence of a first moment; and we do not yet have the complete solution for this case. The main result so far is a somewhat weaker statement than (4), namely that

$$u_n = \frac{\log n}{\mu} + o(\log n) + \beta_n,$$

where an average of $|\beta_n|^2$ goes to zero. This is done in Theorem 3, where we actually do a little better than (5), in that we express u_n as a function of the ordinary renewal sequence, plus a remainder like β_n.

We have only considered non-negative random variables in this paper; except for Theorem 2, where the methods apply equally to the two-sided case.

2. The global theorem.

Theorem 1. Let $(u_n; k \geq 1)$ be the renewal sequence associated with
$(X_{i,j} \geq 0; i \geq 0, j \geq 0)$, and assume that $\mu = E X_{i,j} < \infty$. Then

$$\sum_{n=1}^{\infty} u_n \sim \mu^{-1} n \log n, \quad \text{as } n \to \infty.$$

Proof. Define $S_{m,n}$ and N_k as in (1.1) and (1.2) and define $A_{m,n}(k) = 1$ if $S_{m,n} = k$, $A_{m,n}(k) = 0$ if $S_{m,n} \neq k$. Then $N_k = \sum_{m=1}^{\infty} A_{m,n}(k)$, and

$$u_n = \sum_{m=1}^{\infty} \sum_{k=1}^{m} P[S_{m,n} = k].$$

Let $f(k) = P[X_{i,j} = k]$ and $F_{m}(\cdot) = \text{the } m\text{-fold convolution of } F_{i,j}(\cdot)$ with itself. Then from (2) we see that

$$F_{m}(k) = \sum_{k=1}^{m} P_{m}(k),$$

where $d_k = \text{the number of divisors of } k$.

Let $D_k = \sum_{m=1}^{\infty} d_k$. Then (see Hardy and Wright [7])

$$D_k \sim \kappa \log k$$

as $k \to \infty$.

Since $\sum_{m=1}^{\infty} \gamma \log P_{m}(k) < \infty$ for any $\gamma < [P_{i,j}(0)]^{-1}$ whenever $\{P_{i,j}(k)\}$ has its support on the non-negative integers, the series (3) always converges.

Let

$$f(s) = \sum_{m=1}^{\infty} P_{m}(k) s^m; \quad U(s) = \sum_{m=1}^{\infty} u_m s^m; \quad D(s) = \sum_{m=1}^{\infty} d_m s^m;$$

where $|s| < 1$. By (4) and the Hardy–Littlewood Tauberian theorem (see e.g. Theorem 5, p. 423 of Feller, Vol. II [4])

$$D(s) \sim \frac{1}{1-\frac{s}{1-s}} \log\left(\frac{1}{1-s}\right), \quad \text{as } s \to 1.$$

But from (3) and (5)

$$U(s) = D[f(s)],$$

and hence, since $f(s) \neq 1$ as $s \to 1$

$$U(s) \sim \frac{1}{1-f(s)} \log\left(\frac{1}{1-f(s)}\right) \quad \text{as } s \to 1.$$

But $1-f(s) = \mu (1-s) + o(1-s)$, and thus

$$U(s) \sim \frac{1}{\mu (1-s)} \log\left(\frac{1}{1-s}\right), \quad \text{as } s \to 1.$$

The Hardy–Littlewood theorem applied in the converse direction implies (1).

3. The local theorem. If $F(s) = s$ then $u_n = d_n$, which is known to oscillate wildly. Clearly

$$\liminf\frac{u_n}{d_n} = 2,$$

and on the other hand (see [7]) the statement

$$d_n = O((\log n)^{\gamma})$$
is false for every \(\delta > 0 \). The key question is thus whether in replacing \(z \) by a generating function \(f(z) \neq z \), we sufficiently smooth out the renewal sequence.

In the next theorem we show rather easily that under a fourth moment assumption, the answer is affirmative. (Here the \(X_t \) are not restricted to be non-negative random variables.) Let \(\sigma^2 \) = variance \(\langle X_t^2 \rangle \), and recall that \(\mu = \text{Var}_t \).

Theorem 2. Let \(\{u_n; k \geq 1\} \) be the renewal sequence associated with \(\langle X_t \rangle \), and assume that \(\text{Var}_t < \infty \), \(\mu > 0 \), and \(\sigma^2 > 0 \). Then

\[
u_n \sim \mu^{-1} \log n \quad \text{as } n \to \infty.
\]

Proof. Recall that

\[
u_n = \sum_{k=1}^{n} d_n P_n(k),
\]

where \(P_n(\cdot) \) and \(P_n(\cdot) \) are as in Section 2. The fourth moment assumption assures us that the series in (4) converges. (To see this just apply the Chebyshev inequality to \(P_n(\cdot) \), and the bound in (7) below to \(d_n \).) We will use the local central limit estimate

\[
P_n(k) = \phi_n(k; \mu, \sigma^2) + O \left(\frac{1}{\sqrt{n}} \phi_n(k; \mu, \beta^2) + O \left(\frac{1}{n} \right) \right),
\]

where \(\phi_n(k; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi n}} \exp \left\{ -\frac{(k-\mu n)^2}{2\sigma^2 n} \right\} \mu \) and \(\sigma^2 \) are the mean and variance of \(X_t \), and \(\beta \) is some positive number. The remainder terms in (5) are uniform in \(k \). One can deduce (5) from Theorem 1 of [51] of Gnedenko and Kolmogorov [5]. We also use two more facts about \(d_n \) (see [6]), namely that

\[
d_n = D_n = n \log n + (2\gamma - 1)n + O(n^{-\frac{1}{2}}),
\]

where \(\gamma \) = Euler's constant, and

\[
d_n = O(n^q) \quad \text{for any } q > 0.
\]

From (7) we see that

\[
\sum_{n=1}^{\infty} d_n n^{-s+1} < \infty.
\]

We will show that when \(0 < \mu < \infty, \ 0 < \sigma^2 < \infty, \)

\[
\sum_{n=1}^{\infty} d_n \phi_n(k; \mu, \sigma^2) \sim \mu^{-1} \log k \quad \text{as } k \to \infty.
\]

One then easily see from (7) that

\[
\sum_{n=1}^{\infty} d_n \phi_n(k; \mu, \beta^2) = o(\log k).
\]

Combining (4), (5), (8), (9) and (10) we obtain Theorem 2.

It remains only to prove (9). To this end we sum (9) by parts, obtaining

\[
\sum_{n=1}^{\infty} d_n \phi_n = \sum_{n=1}^{\infty} D_n (\phi_n - \phi_{n+1}),
\]

where the boundary term for the summation by parts is \(\lim D_n \phi_n = 0 \).

From now on, write \(\phi_n(k; \mu, \sigma^2) = \phi_n(k) \) for short.

Let \(A_n = \log n + (2\gamma - 1) - \frac{1}{\mu} \log n \). We will sum back by parts

\[
\sum_{n=1}^{\infty} A_n (\phi_n - \phi_{n+1}) = \sum_{n=1}^{\infty} a_n \phi_n - \lim \phi_n A_n,
\]

where \(a_n = A_{n+1} - A_n = \log n + C_n \), \(\lim \phi_n A_n = 0 \), and \(C_n = O(1) \).

Thus

\[
\sum_{n=1}^{\infty} A_n (\phi_n - \phi_{n+1}) = \sum_{n=1}^{\infty} (\log n) \phi_n + \sum_{n=1}^{\infty} G_n \phi_n(k).
\]

But by the renewal density theorem [see (4)]

\[
\sum_{n=1}^{\infty} G_n \phi_n(k) \sim \frac{1}{\mu} \quad \text{as } k \to \infty,
\]

and hence

\[
\sum_{n=1}^{\infty} C_n \phi_n(k) = O(1) \quad \text{as } k \to \infty.
\]

Let \(S = \{n > 0: |k - \mu n| > k^2 n\} \) and \(S = \text{compl. of } S \). Then

\[
\sum_{n \in S} (\log n) \phi_n(k) < \infty.
\]

Note that

\[
|\log n - \log k/\mu| < (\text{const.}) k^{-1/2} \quad \text{for } k \in S.
\]

Hence by decomposing \(\sum_{n \in S} (\log n) \phi_n(k) \) into the sums over \(S \) and \(S \), and applying (14)-(17), a straightforward calculation shows that

\[
\sum_{n=1}^{\infty} A_n (\phi_n(k; \mu, \sigma^2) - \phi_{n+1}(k)) \sim \mu^{-1} \log k \quad \text{as } k \to \infty.
\]
Finally (due to (6)), it is sufficient to show that

\[\sum_{n=1}^{n_1} |p_n(k) - p_{n+1}(k)| = O(1). \]

If we could remove the absolute value signs then we could sum by parts and make the desired conclusion. To this end, let

\[h(t) = \frac{1}{V(t)} \exp\left\{ -\frac{(k-t)^{\beta}}{\alpha}\right\}, \quad t > 0, \]

and observe that

\[\frac{dh(t)}{dt} = q(t) \Gamma^{-1/\alpha} \exp\left\{ -\frac{(k-t)^{\beta}}{\alpha}\right\} \]

where \(q(\cdot) \) is a quadratic. Hence there exists an integer \(0 < N(k) < \infty \) such that \(p_n(k) - p_{n+1}(k) \) is monotone on each of the intervals \((0, N(k))\), \([N(k), \infty)\). Then, for example, on \((0, N)\) we have

\[\sum_{n=1}^{N} |p_n(k) - p_{n+1}(k)| = \sum_{n=1}^{N} |p_n(k) - p_{n+1}(k)| = O\left(\sum_{n=1}^{N} |p_n(k) - p_{n+1}(k)| + O\left(N^{1/\alpha} p_{N}(k) \right) \right) = o(1). \]

The sum on \((N, \infty)\) is treated similarly. This proves the theorem.

4. The main result. From now on we shall only assume existence of a first moment. We also limit ourselves to non-negative random variables \(X_k \).

The proof consists of two parts. One part treats the remainder term by a method in which the principal tool is the Hardy-Littlewood maximal theorem. The other part expresses the main term in the answer in terms of the standard one-dimensional renewal function. It crucially uses the Wiener-Levy theorem, somewhat along the same lines that Wiener's theorem was used by Karlin [8] in the proof of the one-dimensional case.

Theorem 3. Let \(u_k \) be the renewal sequence associated with \(\{X_i\} \geq 0 \); \(i \geq 0, j \geq 0 \), and assume that \(E|X_{ij}| < \infty \), and variance \(X_0 > 0 \). Then

\[u_k = k^{-1} * v_k + (\gamma - 1) v_k + w_k + \beta_k, \]

where

\[v_k = \sum_{n=1}^{N} P_n(k) = \text{the one-dimensional renewal function}, \]

\[w_k \to \frac{\log \mu}{\mu} \text{ as } k \to \infty, \]

\[\sum_{i=1}^{k} \beta_i = O(k^{1/\alpha}), \]

and * denotes convolution.

Without further moment assumptions we can use the fact that

\[\frac{1}{\mu} \to 1, \]

to conclude

Corollary. Under the hypotheses of Theorem 3

\[u_k = m^{-1} \log \mu + a_k + \beta_k, \]

where \(a_k = o(\log k) \) and \(\sum_{i} \beta_i = O(k^{1/\alpha}). \)

Remark. Actually \(w_k \to \frac{\log \mu}{\mu} \) is the tail of an absolutely convergent series, that is

\[w_k - \frac{\log \mu}{\mu} = \sum_{i} a_i \text{ where } \sum |a_i| < \infty. \]

If one makes extra moment assumptions on \(P(k) \), then one can conclude more about the \(a_i, v_k \), and hence also \(\frac{1}{k} * v_k \). For example if \(\sum k^{1/\alpha} P(k) < \infty \), then (i) \(\sum |a_i| P(k) \to \infty \), and (ii) \(\sum \left| v_k - \frac{1}{\mu} \right| k^{1/\alpha} < \infty \).

Proof of Theorem 3. Let \(b_k = \sum_{i=1}^{k} f^i \); \(b_0 = 0 \); \(H_k = \sum_{n=1}^{k} h_n \). Then

\[H_k = a \log n + \gamma n + o(\log n), \]

where \(a = \text{Euclid's constant} \), and according to (2.5)

\[D_n = H_n + (\gamma - 1)n + B_n \]

where \(B_n = o(n^{1/\alpha}) \).

Thus, summing by parts in (2.3) we get

\[u_k = \sum_{n=1}^{N} a_n p_n(k) = \sum_{n=1}^{N} D_n \left[P_n(k) - P_{n+1}(k) \right] \]

\[= \sum_{n=1}^{N} H_k P_n(k) - P_{n+1}(k) + (\gamma - 1) \sum_{n=1}^{N} [P_n(k) - P_{n+1}(k)] \]

\[+ \sum_{n=1}^{N} B_n [P_n(k) - P_{n+1}(k)] \]

\[= b_k + \gamma n + \beta_k \] (\(H_k = B_k = 0 \)).

(For fixed \(k \), \(p_n(k) \to 0 \) exponentially fast, and hence all the above series converge.

The behavior of \(\gamma_k \) is trivially determined. Namely

\[\gamma_k = (\gamma - 1) \sum_{i=1}^{N} \left[P_n(k) - P_{n+1}(k) \right] - (\gamma - 1) \sum_{i=1}^{N} \left[P_n(k) - P_{n+1}(k) \right] \]
or
\[\gamma_k = (\gamma - 1) \nu_k, \]
where
\[\nu_k = \sum_{n=0}^{\infty} P_n(k) \] is the one-dimensional renewal sequence.

The main term. Consider \(t_k = \sum_{n=0}^{\infty} [P_n(k) - P_{n+1}(k)] \) and sum back by parts to get
\[t_k = \sum_{n=0}^{\infty} h_n \nu_n(k). \]
Define,
\[t_k(r) = \sum_{n=0}^{\infty} h_n r^n P_n(k) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} r^{n-m} P_{n-m}(k) \right) * \left(\frac{r^m}{m} P_m(k) \right) \]
\[(*) = \text{convolution w.r.t. } k \]
\[= \left[\sum_{n=0}^{\infty} r^n P_n(k) \right] * \left[\sum_{n=0}^{\infty} \frac{r^n}{n} \delta_n(k) \right] \]
\[= \left[\sum_{n=0}^{\infty} r^n P_n(k) \right] \left\{ \sum_{n=0}^{\infty} \frac{r^n}{n} \delta_n(k) \right\} + \left[\sum_{n=0}^{\infty} r^n P_n(k) \right] \left(\sum_{m=0}^{\infty} \frac{r^m}{m} P_m(k) - \delta_m(k) \right) \]
and denote the last two terms by \(s_k(r) + w_k(r) \), \((\delta_k(k) \) is the Kronecker delta).

Now let
\[f(\theta) = \frac{P_k(1)e^{-\theta}}{\theta} \quad \text{and} \quad \varphi(r, \theta) = \sum_{n=0}^{\infty} w_n(r)e^{-\theta}. \]
Then
\[\varphi(r, \theta) = \frac{\log(1 - r f(\theta)) - \log(1 - re^{\theta})}{1 - r f(\theta)}. \]
But
\[(1 - re^{\theta}) \varphi(r, \theta) = w_k(r) + \sum_{n=1}^{\infty} \left(w_n(r) - r w_{n-1}(r) \right) e^{-\theta}, \]
and hence
\[w_k(r) - r w_{k-1}(r) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\theta r} \left(\frac{1 - re^{\theta}}{1 - r f(\theta)} \right) \log \left(\frac{1 - r f(\theta)}{1 - re^{\theta}} \right) d\theta. \]
Now note that
\[\frac{1}{1 - r f(\theta)} \approx \frac{\Theta(1)}{\theta}, \quad \text{and} \quad \frac{1}{1 - re^{\theta}} \approx \Theta(1). \]
also since \(1 - rf(\theta) \) and \(1 - re^{\theta} \) always have non-negative real parts their arguments are bounded; and hence
\[\left| \log \frac{1}{1 - r f(\theta)} \right| + \log \frac{1}{1 - re^{\theta}} = O \left(1 + \log \frac{1}{\theta} \right) \]
uniformly in \(r \). Furthermore, using the fact that \(f(\theta) = 1 + i\omega \theta + o(\theta) \), a rather straightforward calculation which we omit shows that
\[\left| \frac{1 - re^{\theta}}{1 - r f(\theta)} \right| \text{ is uniformly bounded.} \]
Hence the integrand in (5) is uniformly bounded by an integrable function and by Lebesgue's theorem we may take the limit as \(r \to 1 \) inside the integral. Thus
\[\omega_k(1) - \omega_{k-1}(1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\theta r} \frac{1 - e^{\theta}}{1 - f(\theta)} \log \frac{1 - f(\theta)}{1 - e^{\theta}} d\theta. \]

We will use a version of the Wiener-Lévy theorem to show that
\[\sum_{k=1}^{\infty} |\omega_k(1) - \omega_{k-1}(1)| < \infty, \]
and thus \(\omega_k = \omega_k(1) \to \text{constant} \). But \(\sum w_n r^n \sim \log \mu / \mu(1 - r) \), and hence
\[\omega_k \to \log \mu / \mu. \]
Combining this with (2) and (3) we get
\[t_k = \lim_{r \to 1} t_k(r) = \lim_{r \to 1} s_k(r) + w_k. \]
But
\[\lim_{r \to 1} s_k(r) = \lim_{r \to 1} \sum_{n=0}^{\infty} \frac{r^n}{n} \delta_n(k) \]
\[= \lim_{r \to 1} \sum_{n=0}^{\infty} \frac{1}{m} r^{m+n} P_n(k-m) = \sum_{m=0}^{\infty} \nu_{k-m} \frac{1}{m} = \omega_k * \left(\frac{1}{k} \right), \]
and hence we can conclude that
\[t_k = \omega_k * \nu_k + w_k, \]
where \(\omega_k \to \mu^{-1} \log \mu. \)
Thus it remains to prove (7). To this end let
\[g(\theta) = \frac{1 - f(\theta)}{1 - e^{\theta}}. \]
Then we can write $g(\theta) = \sum_{k=0}^{\infty} c_k e^{ik\theta}$ where $c_k = \sum_{n=0}^{\infty} p_{nk}$, and since by hypothesis $\sum_{k=0}^{\infty} c_k = \sum_{n=0}^{\infty} p_n = \mu < \infty$, $g(\theta)$ has an absolutely convergent Fourier series. Now if $\psi(x)$ is a function which is analytic in a domain containing the range of $g(\theta)$, $-\pi < \theta < \pi$, and if $\psi(g(\theta))$ can be defined as a single-valued continuous function of θ, then by Theorem 6.8 of Arens and Calderón [1] with A the algebra of functions with absolutely convergent Fourier series, we can conclude that $\psi(g(\theta))$ has an absolutely convergent Fourier series.

In the present case

$$\psi(g(\theta)) = \frac{1}{g(\theta)} \log g(\theta).$$

From the first moment and periodicity hypotheses on f we can conclude that there is a $\delta > 0$ such that

$$|g(\theta)| \geq \delta,$$

and hence to prove (7) it suffices to show that $\log g(\theta)$ can be defined as a continuous function such that $\log g(\theta) = \log g(2\pi)$. To this end let

$$f(r, \theta) = \sum_{n=0}^{\infty} p_n e^{in\theta}, \quad g(r, \theta) = \frac{1 - f(r, \theta)}{1 - r e^{i\theta}}.$$

Since $\Re(1 - f(r, \theta)) > 0$ and $\Re(1 - r e^{i\theta}) > 0$ we see that $\log(1 - f(r, \theta))$ and $\log(1 - r e^{i\theta})$ are single valued continuous functions; and hence also $\log g(r, \theta)$ is continuous, and $\log g(r, \theta) - \log g(\theta)$ uniformly in θ, then we are done. But

$$\log g(\theta) - \log g(r, \theta) = \log \left(1 + \frac{g(\theta) - g(r, \theta)}{g(r, \theta)} \right).$$

Also $|g(r, \theta)| \geq \delta > 0$ for some $\delta > 0$, uniformly in $0 < r \leq 1$ and $-\pi < \theta < \pi$. Hence

$$\left| \frac{g(\theta) - g(r, \theta)}{g(r, \theta)} \right| \leq \frac{\delta}{\delta} \left| g(\theta) - g(r, \theta) \right| = \frac{\delta}{\delta} \left[\sum_{k=0}^{\infty} c_k (1 - r^k) e^{ik\theta} \right] \leq \frac{1}{\delta} \sum_{k=0}^{\infty} c_k (1 - r^k) \to 0 \quad \text{as} \quad r \to 1.$$

This proves (15), and hence (7).

The remainder term. Finally we consider the term

$$B_b = \sum_{n=0}^{\infty} B_n (P_n(k) - P_{n+1}(k)) = \sum_{n=0}^{\infty} b_n P_n(k).$$

where $B_n = O(n^{1/2})$, and $b_n = B_n - B_{n-1}$ when $n \geq 1$, $b_0 = B_0 = 0$. Let

$$B(z) = \sum_{n=0}^{\infty} b_n z^n (1 - z) \sum_{n=0}^{\infty} b_n z^n.$$

Then

$$B(f(\theta)) = \sum_{n=0}^{\infty} b_n f^n(\theta) = \sum_{n=0}^{\infty} b_n e^{i n \theta}$$

and

$$B(f(r, \theta)) = \sum_{n=0}^{\infty} b_n f^n(r, \theta) = \sum_{n=0}^{\infty} b_n e^{i n \theta}.$$

Define

$$\lambda(s) = 1 - p + p_s \quad 0 < p < 1.$$

We will use the following lemma:

Lemma. There exists a $\lambda(0 < p < 1)$ such that as $r \to 1$

$$\int_{-\pi}^{\pi} \left[B(f(r, \theta)) \right]^2 d\theta = O \left(\left[B \left[\lambda \left(\exp \left(-\frac{(1 - r) \theta}{2p} + i \theta \right) \right) \right] \right]^2 d\theta \right) + O(1).$$

Proof. We write the inverse function of λ as

$$\lambda^{-1}(w) = 1 - t(1 - w), \quad \text{where} \quad t = 1/p.$$

Then we have $B(f) = B[\lambda^{-1}(f)]$ and

$$B(f(r, \theta)) = B[\lambda^{-1}(1 - f(r, \theta))].$$

Let $u(r, \theta) = \Re f(r, \theta)$ and $v(r, \theta) = \Im f(r, \theta)$. We note that $u(r, \theta) = u(r, 0) + o(\theta)$, $v(r, \theta) = \mu_r \theta + o(\theta)$ where $\mu_r = \sum_{n=0}^{\infty} n^r p_n$, and where the terms $o(\theta)$ above and in the rest of this discussion are uniform for $0 < r < 1$ (due to the mean value theorem and the fact that $\partial u/\partial \theta$ and $\partial v/\partial \theta$ are uniformly continuous in r and θ; also that

$$1 - u(r, 0) = \mu_r (1 - r) + o(1 - r).$$

We also claim that there is a $t_1 > 1$ and an $r_0 < 1$ such that for $r > r_0$

$$u(r, 0) - u(r, \theta) > t_1 \mu_r^2 \theta^2 + o(\theta^2).$$

8 — Studia Mathematica XLIV
To see this write (for \(\theta \) small)

\[
(24) \quad u(r, \theta) = \sum_{k=1}^{n-1} p_k r^k (1 - \cos k\theta) \geq \sum_{k=1}^{n-1} p_k r^k (1 - \cos k\theta)
\]

\[
= \frac{1}{n} \sum_{k=1}^{n-1} p_k r^k k^2 \theta^2 (1 + o(1)) = \theta^2 + o(\theta^2) \cdot \frac{1}{n} \sum_{k=1}^{n-1} p_k r^k k^2.
\]

Now if \(\sum_{k=1}^{n} p_k k^2 \mu_k = \infty \) then \(\mu^2 < \mu_k \), and hence we can find an \(r_0 < 1 \) and \(\theta_0 > 0 \) such that

\[
(25) \quad \sum_{k=1}^{n-1} p_k k^2 r^k > \mu^2 > \mu_k^2 \quad \text{for} \quad r < r_0 \quad \text{and} \quad \theta < \theta_0.
\]

If \(\sum_{k=1}^{n} p_k k^2 = \infty \) then \(\sum_{k=1}^{n-1} p_k k^2 r^k \) can be made arbitrarily large by taking \(\theta \) sufficiently small and \(r \) close to 1, and hence (25) is trivially true. Since the variance of \(\{p_k\} \) is assumed > 0 the inequality \(\mu^2 < \mu_k \) is strict, and hence we can insert the \(t_i \) required in (23).

Thus since \(\lambda^{-1}[f(r, \theta)] \neq 0 \) for \(r \) near 1 and \(\theta \) near 0 we can write

\[
(26) \quad \eta(r, \theta) = \log \lambda^{-1}[f(r, \theta)] = \log [1 - ((1 - f(r, \theta)) - 1)]
\]

\[
= \log [1 - \mu(u(r, \theta) - u(r, \theta))] + \tilde{u}(r, \theta).
\]

Using the estimates (21), and (22), and expanding the log about 1, a somewhat lengthy calculation (which we spare the reader) shows that

\[
(27) \quad \Re \pi(r, \theta) = -i\theta(1 - r) + i\theta r^2 \theta^2 \theta^2 + o(1 - r) + o(\theta^2) + o(1 - r) + o(\theta^2),
\]

\[
\Im \pi(r, \theta) = v(r, \theta) + [1 + o(1 - r) + o(1 - r)] + o(\theta^2) + o(1 - r).
\]

where all remainder terms are real and uniform in the variables not displayed. Applying (23) in (27), and taking \(t \) so that \(1 < t < t_1 \), we can in turn conclude that

\[
\Re \pi(r, \theta) = -i\theta(1 - r) - \tilde{u}(r, \theta), \quad \Im \pi(r, \theta) = v(r, \theta) + \tilde{v}(r, \theta),
\]

where \(\tilde{u} \) and \(\tilde{v} \) are real \(\tilde{u} \) is positive, and

\[
(28) \quad |\tilde{v}(r, \theta)| < \tilde{c} \tilde{u}(r, \theta)
\]

for \(1 - r \) and \(\theta \) sufficiently small; and where \(\epsilon \) is a positive constant and \(\tilde{u}(r, \theta) \to 0 \) as \(r \to 1, \theta \to 0 \).

We may now write

\[
(29) \quad \int_{-i}^{i} [B(f(r, \theta))]^2 d\theta = \int_{-i}^{i} [B(\lambda^{1-i})]^2 d\theta
\]

\[
= \int_{-i}^{i} [B(\lambda^{1-i-1})] d\theta.
\]

We now make the change of variable

\[
\theta = \theta - \left(r^\alpha \right) \theta, \quad \theta = r^2 \left(r^\alpha \right) \theta, \quad d\theta = \frac{1}{t} \frac{d\theta}{d\theta},
\]

and note that \(\frac{d\theta}{d\theta} \) is bounded since \(0 < \mu < \infty \). Then

\[
(30) \quad \int_{-i}^{i} [B(f(r, \theta))]^2 d\theta = \int_{-i}^{i} [B(\lambda^{1-i-1})] d\theta = \int_{-i}^{i} [B(\lambda^{1-i-1})] d\theta
\]

where \(\lambda(r, \theta) = \lambda(\lambda^{1-i-1}) \), \(\lambda(r, \theta) = \lambda(\lambda^{1-i-1}) \), and where \(\lambda \) can be chosen independent of \(r \) for \(r > r_0 \) close to 1. Finally, let

\[
(31) \quad \eta(r, \theta) = B(\lambda^{1-i-1}) = \sum_{n=1}^{n-1} n \eta_n(r) \quad |\eta| < 1
\]

and

\[
(32) \quad \zeta(r, \theta) = e^{-\lambda^{1-i-1} \omega(r, \theta)}
\]

Note that (due to (21) if \(|\eta| \leq \eta_0 \) for \(\eta_0 \) sufficiently small, we still have

\[
(33) \quad |\tilde{v}(r, \theta)| < \tilde{c} \tilde{u}(r, \theta), \quad r > r_0
\]

for some positive \(\tilde{c} \).

We thus have

\[
(34) \quad \int_{-i}^{i} [B(f(r, \theta))]^2 d\theta \leq \int_{-i}^{i} [B(\lambda^{1-i-1})] d\theta
\]

and it is to the right side of (32) that we apply the Hardy–Littlewood maximal theorem.

Let \(\Omega_r(x) \) denote the "Hardy–Littlewood domain" with vertex at \(x \), as defined in Zygmund [10], chapter IV, Section 1, formula (6) (7) and the paragraph preceding (7). From the geometry of the construction of \(\Omega_r \), and from (34), it is clear that one, can choose \(\epsilon \) sufficiently small and then \(\sigma \) sufficiently close to 1 so that

\[
(35) \quad \zeta(r, x) \epsilon^{\alpha} \leq \Omega_r(x)
\]

for \(\lambda(r, -\epsilon) = x \leq \lambda(r, \epsilon), \epsilon > r_0 \).

Hence

\[
|\eta[r, \zeta(r, x) \epsilon^{\alpha}]| \leq \sup_{r \in (r_0, \infty)} |\eta[r, \zeta]| = X_s(r, x) \quad (say)
\]
and
\[\int_{-\alpha}^{\alpha} \left[\int [N(r, s; \alpha)]^2 ds \right] \, dr \leq A \int_{-\alpha}^{\alpha} \left[\int [N(r, s; \alpha)]^2 ds \right] \, dr \]
where the constant \(A \) depends on \(\sigma \) but not on \(r \). The last inequality is a consequence of the Hardy–Littlewood theorem (see e.g. Theorem 7.16, chapter IV of [10]).

For \(|\theta| \geq \epsilon \), \(f(r, \theta) \leq 1 - \delta(\epsilon) \), \(\delta(\epsilon) > 0 \), and hence
\[\int_{-\epsilon}^{\epsilon} \left[\int |B(f(r, \theta))|^2 d\theta \right] \, dr \leq \text{constant}. \]

Combining (34), (35) and (37) we obtain the lemma.

Returning to the proof of the theorem, applying the lemma and Bessel's equality, and recalling the definitions (19) and (31), we see that
\[\sum b_n \eta_n^2 \leq c \sum \eta_n^2(r) \]
for \(r \gg n \) and \(c = \text{constant} \).

Write
\[B(\lambda(z)) = \sum \omega_n \eta_n^2. \]

Then
\[\eta_n^2(r) = \omega_n \frac{e^{-\frac{r^2}{2}}}{\cosh^2 \frac{r}{2}}, \]
and by taking \(r \) close enough to 1
\[\eta_n^2(r) \leq \omega_n \frac{e^{-\frac{r^2}{2}}}{\cosh^2 \frac{r}{2}} \]
for \(r \gg n \).

Thus
\[\sum b_n \eta_n^2 \leq c \sum \omega_n \eta_n^2, \]
for \(r \gg n \).

We will show below that
\[\omega_n = O(n^{-1/4}) \]
and hence
\[\sum_{n=1}^{\infty} b_n \eta_n^2 = O\left(\sum_{n=1}^{\infty} n^{-1/2}(\eta_n^2)^n \right) \quad \text{as } r \to 1. \]

This in turn implies that
\[\sum_{n=1}^{m} b_n^2 = O(n^{20}) \]
(see section XIII.5 of Feller [4]).

Putting together (1), (11), and (43) implies the theorem. It thus remains only to prove (41). To this end we note that
\[\omega_n = \text{coeff. of } x^\alpha \text{ in } B(\lambda(x)) = \sum b_n \lambda_n(k), \]
where \(\lambda_n(k) = \left(\frac{n}{k} \right) p^k(1-p)^{n-k} \), and \(b_n = B_n - B_{n-1} \), \(B_n = O(n^{10}) \); or
\[\omega_n \leq \text{constant} \sum_{n=1}^{\infty} n^{-13} |\lambda_n(k) - \lambda_{n-1}(k)|. \]

Now \(\lambda_n(k) - \lambda_{n-1}(k) \) changes sign only once; namely when \(n = k/p \) and hence we may break the sum in (44) into two ranges: \(n \leq \frac{k}{p} \) and \(n > \frac{k}{p} \); and sum these by parities. One gets
\[\sum_{n=1}^{\infty} n^{-13} |\lambda_n(k) - \lambda_{n-1}(k)| = \sum_{n=k/p+1}^{\infty} n^{-13} \lambda_n(k) + \lambda_{n+1}(k) k^{12}. \]

The sum in this expression is \(O(k^{-25}) \) as \(\lambda_n(k) k^{12} \sim \text{const.} k^{-18} \). Similarly
\[\sum_{n=k/p+1}^{\infty} n^{-13} |\lambda_n(k) - \lambda_{n-1}(k)| \sim \text{const.} k^{-18}. \]

This proves (41) and completes the proof of Theorem 3.

Proof of Remark. To prove (i) we repeat the argument using the Banach Algebra of sequences \(a_n \) such that \(\sum |a_n| k^2 < \infty \). (See Essen [3] for details.) For a proof of (ii) see Essen [3] or Stone and Wainger [9].

References

Received April 21, 1971 (225)