Averages of uniformly continuous retractions

A. JIMÉNEZ-VARGAS (Almería), J. F. MENA-JURADO (Granada), R. NAHUM (Haifa) and J. C. NAVARRO-PASCUAL (Almería)

Abstract. Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively. We prove that the identity map on B can be expressed as an average of three uniformly continuous retractions of B onto S. Moreover, for every $0 \leq r < 1$, the three retractions are Lipschitz on rB. We also show that a stronger version where the retractions are required to be Lipschitz does not hold.

1. Introduction. Let Y be a strictly convex infinite-dimensional normed space, and let T be a topological space. Let $C = C(T, Y)$ be the normed space of continuous bounded functions from T into Y, with the usual uniform norm. Let B_Y and B_C be the closed unit balls of Y and C, respectively, and let S_Y be the unit sphere of Y. Note that f is an extreme point of B_C if and only if f maps into S_Y. Finally, for every metric space M denote the identity map on M by I_M.

Peck [8] proved that if T is a compact Hausdorff space, then B_C is the convex hull of its extreme points. In [2] it was proved that every $f \in B_C$ can be expressed as an average of four extreme points of B_C, a fact which implies that I_{B_C} can be expressed as an average of four retractions of B_Y onto S_Y. Cantwell [3] conjectured that the number of retractions can be reduced. Indeed, the number of retractions was reduced in [6] to three, the lowest possible number, and in [4] it was proved that this result holds in every infinite-dimensional complex normed space.

In this paper we focus on two subspaces of $C(M, X)$, where M is a metric space and X is an infinite-dimensional complex normed space. Namely, we consider the subspace $U = U(M, X)$ of uniformly continuous functions, and its subspace $L = L(M, X)$ of Lipschitz functions.

Received April 21, 1993
Revised version October 25, 1998

Key words and phrases: uniformly continuous retraction, Lipschitz retraction, extreme point.

The second author was partially supported by DGICYT PB 95-1146 and DGES PB 96-1406.
In Section 2 we prove the main theorem (2.1) of this paper: Let X be an infinite-dimensional complex normed space. Then I_B can be expressed as an average of three uniformly continuous retractions of B onto S. Moreover, for every $0 \leq r < 1$, the three retractions are Lipschitz on $rB = \{rx : x \in B\}$. We do not know if this is true for every infinite-dimensional real normed space.

In Section 3 we show (Lemma 3.4) that if X is a Hilbert space, then I_B cannot be expressed as an average of any finite number of retractions of B onto S which are Lipschitz (or even Hölder with exponent $p > 1/2$). We do not know if this is true for every normed space.

We also show (Corollary 3.3) that if X is strictly convex then the convex hull of the extreme points of B (respectively, B_{L}) is equal to B (respectively, contains B_{L}).

2. Main theorem. Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively.

In this section we prove the following theorem:

Theorem 2.1. Let $a_1, a_2, a_3 \in (0, 1/2)$ be such that $\sum_{i=1}^{3} a_i = 1$. Then there are three uniformly continuous retractions $f_1, f_2, f_3 : B \to S$ such that $I_B \equiv \sum_{i=1}^{3} a_i f_i$. Moreover, the restrictions $f_i|_{rB}$ are Lipschitz for every $0 \leq r < 1$.

We use the following theorem which was first proved by Nowak [7] for some Banach spaces, and later by Benyamini and Sternfeld [1] for arbitrary normed spaces (see also [5]).

Theorem 2.2. For every infinite-dimensional normed space Z, there exists a Lipschitz retraction from B onto S.

We also need the following three lemmas. The first one (and its proof) also holds for real spaces.

Lemma 2.3. Let $\alpha \in [0, 1/2)$. Then there are two Lipschitz functions $g : B \to S$ and $h : B \to B$ such that $g|_{S} \equiv h|_{S} \equiv I_S$ and $I_B \equiv \alpha g + (1 - \alpha) h$. Moreover, $h|_{rB} \subseteq rB$ for every $1/2(1 - \alpha) \leq r \leq 1$.

Proof. Let $\delta := (1 - 2\alpha)/2$ and note that $0 < \delta \leq 1/2$. By Theorem 2.2 there is a Lipschitz retraction $f : \delta B \to \delta S$.

Define the two required functions $g : B \to S$ and $h : B \to B$ by

$$g(x) = \begin{cases} \frac{x}{\|x\|} & \text{if } \|x\| \geq \delta, \\ \frac{f(x)}{\delta} & \text{if } \|x\| \leq \delta, \end{cases} \quad h(x) = \frac{x - \alpha g(x)}{1 - \alpha}.$$

Clearly, g and h are Lipschitz, $I_B \equiv \alpha g + (1 - \alpha) h$, and $g|_{S} \equiv h|_{S} \equiv I_S$. To see that h maps into B and the second property in the theorem holds, let $x \in B$ and let $1/(2(1 - \alpha)) \leq r \leq 1$. Note that $2\alpha \leq r$. Hence, for every $0 \leq t \leq r$.

$$|t - \alpha| \leq r - \alpha$$

Consider three cases.

1. If $0 \leq \|x\| \leq \delta$, then

$$\|h(x)\| \leq \frac{\|x\| + \alpha \|g(x)\|}{1 - \alpha} \leq \frac{\delta + \alpha}{1 - \alpha} \leq \frac{1}{2(1 - \alpha)} \leq \|x\|.$$

2. If $\delta \leq \|x\| \leq r$, then

$$\|h(x)\| = \frac{\|x - \alpha g(x)\|}{1 - \alpha} = \frac{\|x\| - \alpha}{1 - \alpha} \leq \frac{r - \alpha}{1 - \alpha} \leq r \quad \text{by (x)}.$$

3. If $r \leq \|x\| \leq 1$, then

$$\|h(x)\| = \frac{\|x\| - \alpha}{1 - \alpha} \leq \frac{\|x\| - \alpha}{1 - \alpha} \leq 1.$$}

Notation. For every $0 \leq r_1 \leq r_2$, define $R(r_1, r_2) = \{x \in X : r_1 \leq \|x\| \leq r_2\}$.

The next lemma is the only place in the proof of the theorem where we use the fact that X is a complex space.

Lemma 2.4. Let $\alpha \in (0, 1)$ and let $\beta \in [1/2 - \alpha, 1/2, 1/2)$. Then there are two uniformly continuous retractions $\varphi_1, \varphi_2 : R(\alpha, 1) \to S$ such that $I_{R(\alpha, 1)} \equiv \beta \varphi_1 + (1 - \beta) \varphi_2$. Moreover, the restrictions $\varphi_i|_{R(\alpha, r)}$ are Lipschitz for every $0 \leq r < 1$.

Proof. Define a Lipschitz function $G : [a, 1] \to [-1, 1]$ by

$$G(t) = \frac{t^2 + 2\beta t - 1}{2\beta}.$$

Define two functions $z_1, z_2 : [\alpha, 1) \to S$ by

$$z_1(t) = G(t) + i\sqrt{1 - (G(t))^2} \quad \text{and} \quad z_2(t) = \frac{t - \beta z_1(t)}{1 - \beta}.$$

Then $z_1(1) = z_2(1) = 1, t = \beta z_1(t) + (1 - \beta) z_2(t)$ for every $t \in [\alpha, 1]$, z_1 and z_2 are uniformly continuous, and $z_1|_{R(\alpha, r)}$ and $z_2|_{R(\alpha, r)}$ are Lipschitz for every $0 \leq r < 1$.

Define the required retractions $\varphi_1, \varphi_2 : R(\alpha, 1) \to S$ by

$$\varphi_1(x) = z_1(\|x\|) \frac{x}{\|x\|} \quad \text{and} \quad \varphi_2(x) = z_2(\|x\|) \frac{x}{\|x\|}.$$
that $g|_S \equiv h|_S \equiv I_S$. Then there are two uniformly continuous retractions $f_1, f_2 : B \to S$ such that:

1. $ag + dh \equiv cf_1 + bf_2$ (as functions from B into X).
2. For every $0 \leq r < 1$, if $g|_{rB}$ and $h|_{rB}$ are Lipschitz and $h[rB] \subseteq rB$, then $f_1|_{rB}$ are Lipschitz.

Proof. Let

$$
\alpha := \frac{a-d}{a+d} \quad \text{and} \quad \beta := \frac{c}{a+d}.
$$

Then $\alpha \in (0,1)$ and

$$
\frac{1}{2} \geq \frac{c}{b+c} = \frac{c}{a+d} = \beta \geq \frac{d}{a+d} = \frac{1}{2} - \alpha.
$$

Let φ_1 and φ_2 be the retractions from Lemma 2.4 with respect to α and β.

Define a uniformly continuous function $f : B \to X$ by

$$
f(x) = \frac{ag(x) + dh(x)}{a+d}.
$$

Then f maps into $R(\alpha,1)$ because for every $x \in B$,

$$
1 \geq \|f(x)\| \geq \frac{\|a\|g(x)| - d\|h(x)|}{a+d} = \frac{|a-d\|h(x)|}{a+d} = \frac{\alpha - d\|h(x)|}{a+d} = \alpha.
$$

Also, $f|_S \equiv I_S$. Hence, we can define the two required uniformly continuous retractions by $f_i \equiv \varphi_i \circ f : B \to S$.

1 holds because for every $x \in B$, by Lemma 2.4,

$$
\frac{ag(x) + dh(x)}{a+d} = f(x) = \beta \varphi_1(f(x)) + (1-\beta)\varphi_2(f(x)) = \frac{c}{a+d}\varphi_1(f(x)) + \frac{b}{a+d}\varphi_2(f(x)) = \frac{c\varphi_1(f(x)) + b\varphi_2(f(x))}{a+d}.
$$

2 holds because if we let $0 \leq r < 1$ and let g and h be as in (3), then $f_1|_{rB}$ is Lipschitz. Let

$$
t := \frac{a+dr}{a+d}.
$$

Then $\alpha \leq t < 1$. By Lemma 2.4, $\varphi_1|_{R(\alpha,t)}$ are Lipschitz.

Since $h[rB] \subseteq rB$, for every $x \in rB$ we have

$$
\alpha \leq \|f(x)\| \leq \frac{\|a\|g(x)| + d\|h(x)|}{a+d} \leq \frac{\|a\|g(x)| + dr}{a+d} = t.
$$

Hence, $f_1|_{rB}$ maps into $R(\alpha,t)$. Therefore $f_1|_{rB} \equiv (\varphi_1 \circ f)|_{rB} \equiv \varphi_1|_{R(\alpha,t)} \circ f|_{rB}$. Thus, $f_1|_{rB}$ are Lipschitz functions as compositions of two Lipschitz functions.

Proof of Theorem 2.1. Let $\alpha_1, \alpha_2, \alpha_3 \in (0,1/2)$ be such that $\sum_{i=1}^{3} \alpha_i = 1$. Assume that $\alpha_0 \leq \alpha_2 < \alpha_1$. Choose α_0 such that $\alpha_1 < \alpha_0 < 1/2$. Let $g : B \to S$ and $h : B \to B$ be the Lipschitz functions from Lemma 2.3 with respect to α_0. Then

$$
I_B \equiv \alpha_0g + (1-\alpha_0)h \equiv \alpha_0g + \alpha_2h + (1-\alpha_2-\alpha_0)h.
$$

Applying Lemma 2.5 with respect to $0 \leq \alpha_0 \leq \alpha_2 < \alpha_0 \leq \alpha_3, g,$ and $h,$ we obtain two uniformly continuous retractions $f_2, f_3 : B \to S$ such that

$$
\alpha_0g + \alpha_3h \equiv \alpha_3f_3 + \alpha_1f_1.
$$

Applying Lemma 2.5 again but with respect to $0 < \alpha_1 + \alpha_3 - \alpha_0 \leq \alpha_3 \leq \alpha_1 < \alpha_0, h,$ and $f_0,$ we obtain two uniformly continuous retractions $f_3, f_1 : B \to S$ such that

$$
\alpha_0f_0 + (\alpha_1 + \alpha_3 - \alpha_0)h \equiv \alpha_3f_3 + \alpha_1f_1.
$$

Combining (1), (2), and (3), we get $I_B \equiv \sum_{i=1}^{3} \alpha_i f_i$.

To prove the second property in the theorem, let $0 \leq r < 1$. Choose r_0 such that $\max\{r,1/(2(1-\alpha_0))\} \leq r_0 < 1$. By Lemma 2.3, $h[r_0B] \subseteq r_0B$. Therefore, by Lemma 2.5, $f_2|_{r_0B}$ and $f_0|_{r_0B}$ are Lipschitz. Again by Lemma 2.5, $f_3|_{r_0B}$ and $f_1|_{r_0B}$ are Lipschitz. Thus, $f_1|_{rB}$ are Lipschitz since $r \leq r_0$.

3. Observations. First, we have two immediate corollaries of Theorem 2.1.

Corollary 3.1. There are three uniformly continuous retractions $f_1, f_2, f_3 : B \to S$ such that $I_B \equiv f_1 + f_2 + f_3$.

Corollary 3.2. Let $n \geq 3$ and let $0 < \alpha_1 \leq \ldots \leq \alpha_n < 1/2$ be such that $\sum_{i=1}^{n} \alpha_i = 1$. Then there are uniformly continuous retractions $f_1, \ldots, f_n : B \to S$ such that $I_B \equiv \sum_{i=1}^{n} \alpha_i f_i$.

Remarks. 1. Each retraction $f_i : B \to S$ in Theorem 2.1 is a uniform limit of the Lipschitz functions $f^n_i : B \to S$ defined by $f^n_i(x) = f_i((1-1/n)x)$.

2. Corollary 3.2 fails if $\alpha_n > 1/2$ since otherwise it follows from $0_X = \sum_{i=1}^{n} \alpha_i f_i(0_X)$ that

$$
1 = \|f_n(0_X)\| = \left\|\sum_{i=1}^{n-1} \frac{\alpha_i}{\alpha_n} f_i(0_X)\right\| \leq \sum_{i=1}^{n-1} \frac{\alpha_i}{\alpha_n} \|f_i(0_X)\| = 1 - \frac{\alpha_n}{\alpha_n} < 1.
$$

This argument also shows that for strictly convex spaces the corollary fails if $\alpha_n = 1/2$.

Let U, L, B_U, and B_L be as in the Introduction, and let E_U and E_L be the extreme points of B_U and B_L, respectively.
Corollary 3.3. Assume that \(X \) is strictly convex. Let \(\alpha_1, \alpha_2, \alpha_3 \in (0, 1/2) \) be such that \(\sum_{i=1}^{3} \alpha_i = 1 \). Then there exists a uniformly continuous function \(F : B_H \to E_U \times E_U \times E_U \) such that for every \(g \in B_U \), \(\sum_{i=1}^{3} \alpha_i(F(g))_i = g \). Moreover, for every \(0 \leq r < 1 \), \(F|_{rB_U} \) is a Lipschitz function into \(E_U \times E_U \times E_U \). Hence, \(B_U = \frac{1}{2}(E_U + E_U + E_U) \) and \(B_L \setminus S_L \subseteq \frac{1}{2}(E_U + E_U + E_U) \).

Proof. Let \(f_i \) be the retractions from Theorem 2.1. We leave it to the reader to check that \(F(g) := (f_1 \circ g, f_2 \circ g, f_3 \circ g) \) is as required.\[\blacksquare\]

Lemma 3.4. Let \(H \) be an infinite-dimensional real Hilbert space. Let \(n \geq 3 \) and let \(\alpha_1, \ldots, \alpha_n \in (0, 1/2) \) be such that \(\sum_{i=1}^{n} \alpha_i = 1 \). Let \(f_1, \ldots, f_n \) be retractions of \(B_H \) into \(S_H \) such that \(I_{B_H} = \sum_{i=1}^{n} \alpha_i f_i \). Then there is \(1 \leq j \leq n \) such that \(f_j \) is not a locally \(p \)-Hölder function for any \(p > 1/2 \); in particular, \(f_j \) is not a locally Lipschitz function.

Proof. Let \(x \in S_H \). Assume, for contradiction, that for every \(1 \leq i \leq n \) there is a neighborhood \(N \) of \(x \) and there are \(1/2 < p_i \leq 1 \) such that \(f_i|_N \) is a \(p_i \)-Hölder function with constant \(k_i \geq 0 \). Let \(p := \min\{p_1, \ldots, p_n\} \) and \(k := \max\{k_1, \ldots, k_n\} \).

Let \(0 < t < 1 \) be large enough so that

\[
\frac{\sqrt{2(1-t)}}{(1-t)^p} > k \quad \text{and} \quad tx \in N.
\]

Then there is \(1 \leq j \leq n \) such that \(\langle x, f_j(tx) \rangle \leq t \), since otherwise

\[
t = \langle x, tx \rangle = \left\langle x, \sum_{i=1}^{n} \alpha_i f_i(tx) \right\rangle = \sum_{i=1}^{n} \alpha_i \langle x, f_i(tx) \rangle > \sum_{i=1}^{n} \alpha_i t = t.
\]

Therefore,

\[
\|f_j(x) - f_j(tx)\| = \sqrt{\|f_j(x)\|^2 + \|f_j(tx)\|^2 - 2\langle f_j(x), f_j(tx) \rangle} = \sqrt{1 + 1 - 2\langle x, f_j(tx) \rangle} = \sqrt{2(1 - \langle x, f_j(tx) \rangle)} \geq \sqrt{2(1-t)} > k(1-t)^p = k\|x - tx\|^p \geq k_j\|x - tx\|^{p_j},
\]

contradicting the fact that \(f_j|_N \) is a \(p_j \)-Hölder function with constant \(k_j \).\[\blacksquare\]

Acknowledgements. The contribution of Ronny Nahum to this paper is a part of his Ph.D. thesis, which was written at the University of Haifa under the supervision of Prof. Yaki Sternfeld. He would like to thank Prof. Yaki Sternfeld for his guidance and for his assistance throughout his studies.