Acknowledgements. J. Lang wishes to record his gratitude to the Royal Society and NATO for support to visit the School of Mathematics at Cardiff during 1997/8, under their Postdoctoral Fellowship programme. He also thanks the Grant Agency of the Czech Republic for partial support under grant No. 201/96/0431.

References

Recall some notations and terminology from [4].

For closed subspaces M, L of a Banach space X we write $M \subset L$ (M is essentially contained in L) if there is a finite-dimensional subspace $F \subset X$ such that $M \subset L + F$. Equivalently, $\dim M/\langle M \cap L \rangle = \dim (M + L)/L < \infty$. Similarly we write $M \subsetneq L$ if $M \subset L$ and $L \not\subsetneq M$.

For a (bounded linear) operator $T \in \mathcal{L}(X)$ write $R^\infty(T) = \bigcap_{m=0}^\infty R(T^m)$ and $N^\infty(T) = \bigcup_{m=0}^\infty N(T^m)$.

An operator $T \in \mathcal{L}(X)$ is called semiregular (essentially semiregular) if $R(T)$ is closed and $N(T) \subset R^\infty(T)$ ($N(T) \subset R^\infty(T)$, respectively). Further, T is called quasi-Fredholm if there exists $d \geq 0$ such that $R(T^{d+1})$ is closed and $R(T^d + N(T)) = R(T) + N^\infty(T)$ (equivalently, $N(T) \cap R(T^d) = N(T) \cap R^\infty(T)$).

The proof of Theorem 15 of [4] relies on the following statement (where d is the integer whose existence is postulated in the definition of quasi-Fredholm operators):

If T is quasi-Fredholm and F of rank 1 then $N(T) \cap R(T^d) \subset R^\infty(T + F)$.

This, however, need not be satisfied.

Counterexample. Let H be the Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots\}$. Define $T, F \in \mathcal{L}(H)$ by

$Te_1 = 0, \quad Te_n = e_{n-1} \quad (n \geq 2), \quad Fe_2 = -e_1, \quad Fe_n = 0 \quad (n \neq 2)$.

1991 Mathematics Subject Classification: 47A10, 47A53.

Key words and phrases: quasi-Fredholm operators, ascent, descent.
Then T is quasi-Fredholm (with $d = 0$) and is surjective, F has rank 1, and $T + F$ is given by

$$(T + F)e_1 = (T + F)e_2 = 0, \quad (T + F)e_n = e_{n-1} \quad (n \geq 3).$$

It follows that $R^\infty(T + F) = R(T + F)$ is equal to the linear span of (e_2, e_3, \ldots), and $N(T)$ to the one-dimensional space spanned by e_1. Thus $N(T) \subset R^\infty(T + F)$.

We now proceed to give a correct proof of Theorem 15 of [4].

Theorem. Let $T \in \mathcal{L}(X)$ be a quasi-Fredholm operator and let $F \in \mathcal{L}(X)$ be a finite-rank operator. Then $T + F$ is also quasi-Fredholm.

Proof. Clearly it is sufficient to consider only the case of $\dim R(T) = 1$. Thus there exist $x \in X$ and $\varphi \in X^*$ such that $Fx = \varphi(x) x$ ($x \in X$).

Since $R((T + F)^n) \subset R((T^m)^n)$ for all n by Observation 8 following Table 1 in [4], $R((T + F)^n)$ is closed if and only if $R(T^n)$ is closed, and it is sufficient to show only the algebraic condition in the definition of quasi-Fredholm operators for $T + F$.

Since T is quasi-Fredholm, there exists $d \geq 0$ such that $N(T) \cap R(T^d) \subset R^\infty(T)$ and $R(T^d), R(T^{d+1})$ are closed. Set $M = R(T^d)$ and $T_1 = T|M$. Then $N(T_1) = N(T) \cap R(T^d) \subset R^\infty(T)$ and the range $R(T_1) = R(T^{d+1})$ is closed. Thus T_1 is semisimple.

It is sufficient to show that $N(T_1) \subset R^\infty(T + F)$. Indeed, then we have

$$N(T + F) \cap R((T + F)^d) = N(T) \cap R(T^d) = N(T_1) \subset R^\infty(T + F)$$

so that $N(T + F) \cap R((T + F)^d) = N(T + F) \cap R^\infty(T + F)$.

This means that $N(T + F) \cap R((T + F)^n) = N(T + F) \cap R^\infty(T + F)$ for some $n \geq d$ and $T + F$ is quasi-Fredholm.

To prove $N(T_1) \subset R^\infty(T + F)$ we distinguish two cases:

A. $N(T_1) \subset \ker \varphi$. Let $x_0 \in N(T_1)$. Since T_1 is semisimple, there exist vectors $x_1, x_2, \ldots \in R^\infty(T_1)$ such that $Tx_i = x_{i-1}$ for all i. By the assumption $\varphi(x_i) = 0$, so that $Fx_i = 0$ for all i. Then for $n \in N$ we have

$$(T + F)^nx_0 = (T + F)^{n-1}x_{n-1} = \ldots = (T + F)x_1 = x_0,$$

so that $x_0 \in R((T + F)^n)$. Since x_0 and n were arbitrary, we have $N(T_1) \subset R^\infty(T + F)$.

B. $N(T_1) \not\subset \ker \varphi$. There exists $k \geq 1$ such that $N(T_1^k) \not\subset \ker \varphi$. Choose the minimal k with this property so that $N(T_1^{k-1}) \subset \ker \varphi$ and there exists $u \in N(T_1^k)$ with $\varphi(u) = 1$.

Set

$$Y = \{x \in N(T_1) : \text{there is } y \in M \text{ with } T^{k-1}y = x \text{ and } T^iy \in \ker \varphi \text{ (} i = 0, \ldots, k - 1 \text{)}.\}
$$

We show that $\dim N(T_1)/Y \leq k$. Indeed, let $x^{(1)}, \ldots, x^{(k+1)} \in N(T_1)$. Since T_1 is semisimple, there are $y^{(1)}, \ldots, y^{(k+1)} \in M$ such that $T^{k-1}y^{(i)} = x^{(i)}$ ($i = 1, \ldots, k + 1$). Then there exists a nontrivial linear combination

$$y = \sum_{j=1}^{k+1} \alpha_j y^{(j)}$$

such that $T^i y \in \ker \varphi$ for all $i = 0, \ldots, k - 1$. Consequently,

$$\sum_{j=1}^{k+1} \alpha_j x^{(j)} \in Y \text{ and } \dim N(T_1)/Y \leq k.$$

Hence $Y \cong N(T_1)$ and it is sufficient to show $Y \subset R^\infty(T + F)$.

Let $x \in Y$. We prove by induction on n the following statement:

(1) There exists $x_n \in M$ such that

$$T^nx_n = x \quad \text{and} \quad T^nx_n \in \ker \varphi \quad (i = 0, \ldots, n).$$

Clearly (1) for $n = 0, \ldots, k - 1$ follows from the definition of Y.

Suppose that (1) is true for some $n \geq k - 1$, i.e., there is $x_n \in M$ such that $T^nx_n = x$ and $T^nx_n \in \ker \varphi$ ($i = 0, \ldots, n$). Since T_1 is semisimple, we can find $x'_{n+1} \in M$ such that $T_1x_{n+1} = x_n$. Set $x_{n+1} = x'_{n+1} - \varphi(x'_{n+1})u$.

Then

$$T^{n+1}x_{n+1} = T^nx_n - \varphi(x'_n)T^nu = x.$$

Clearly $\varphi(x'_{n+1}) = 0$. For $1 \leq i \leq k - 1$ we have $\varphi(T_1x_{n+1}) = \varphi(x'_{n+1}) = \varphi(T^iu) = 0$ since $T^iu \in N(T_1^{k-1}) \subset \ker \varphi$. For $k \leq i \leq n$ we have $T^iu = 0$ so that $\varphi(T_1x_{n+1}) = \varphi(T^iu) = 0$ by the induction assumption.

Thus (1) is true for all n and $(T + F)^nx_n = (T + F)^{n-1}T_1x_n = \ldots = T^nx_n = x$. Thus $x \in R((T + F)^n)$ for all n and consequently $Y \subset R^\infty(T + F)$.

This finishes the proof of the theorem.

As a corollary we obtain the corresponding result for essentially semisimple operators (see [2]). Recall the numbers $k_n(T)$ defined for an operator $T \in \mathcal{L}(X)$ and $n \geq 0$ by

$$k_n(T) = \dim[R(T) + N(T^{n+1})]/[R(T) + N(T^n)]$$

(see [4] and [1]).

Corollary. If $T, F \in \mathcal{L}(X)$, T is essentially semisimilar and F of finite rank then $T + F$ is essentially semisimilar.

Proof. By the previous theorem $T + F$ is quasi-Fredholm so $k_i(T + F) = 0$ for all i sufficiently large. Also $k_i(T) \leq \infty$ implies $k_i(T + F) \leq \infty$ so all i. Thus $T + F$ is essentially semisimilar.

This finishes the "corrigendum" part of the paper. For the "addendum" part, we give counterexamples that will complete Table 2 of [4] answering thus some questions posed in that paper.
Recall the classes defined in [4]:
\[R_{11} = \{ T \in \mathcal{L}(X) : T \text{ is semiregular} \}, \]
\[R_{12} = \{ T \in \mathcal{L}(X) : T \text{ is essentially semiregular} \}, \]
\[R_{13} = \{ T \in \mathcal{L}(X) : R(T) \text{ is closed and } k_n(T) < \infty \text{ for all } n \in \mathbb{N} \}, \]
\[R_{14} = \{ T \in \mathcal{L}(X) : T \text{ is quasi-Fredholm} \}, \]
\[R_{15} = \{ T \in \mathcal{L}(X) : \text{there is } d \in \mathbb{N} \text{ with } R(T^{d+1}) \text{ closed and } k_n(T) < \infty (n \geq d) \}. \]

Further, for \(i = 11, \ldots, 15 \), set \(\sigma_i(T) = \{ \lambda \in \mathbb{C} : \lambda \notin R_i \} \).

EXAMPLE 1. In general, \(\sigma_{13} \) and \(\sigma_{15} \) are not closed. Consequently, \(R_{13} \) is not stable under small commuting perturbations:

Consider the operator defined in Example 14 of [4],
\[S = \bigoplus_{n=1}^{\infty} S_n, \]
where \(S_n \in \mathcal{L}(H_n), H_n \) is an \(n \)-dimensional Hilbert space with an orthonormal basis \(e_{n1}, \ldots, e_{nn} \) and \(S_n \) is the shift operator, that is, \(S_ne_{ni} = 0, S_ne_{ni} = e_{n,i+1} (2 \leq i \leq n) \). Then \(S \in R_{13} \subset R_{15} \) (see Example 14 of [4]).

Let \(\epsilon \neq 0, |\lambda| < 1 \). Then \(S_n - \epsilon \) is invertible for all \(n \in \mathbb{N} \) so that \(S - \epsilon \) is injective.

For \(n \in \mathbb{N} \) set \(x_n = \sum_{i=1}^{n} \epsilon^{n-i} e_{ni} \). Then \(||x_n|| \geq 1 \) and
\[||(S - \epsilon)x_n|| = ||\epsilon^n e_{nn}|| = |\epsilon^n|. \]
Thus \(S - \epsilon \) is not bounded below and \(R(S - \epsilon) \) is not closed. Hence \(S - \epsilon \notin R_{13} \) and \(\sigma_{13}(S) \) is not closed.

Further, for each \(k \in \mathbb{N} \), we have
\[||(S - \epsilon)^k x_n|| = ||\epsilon^n|| \cdot ||(S - \epsilon)^{k-1} e_{nn}|| \leq ||\epsilon^n|| \cdot ||(S - \epsilon)^{k-1}|| \]
\[\leq ||\epsilon^n|| \cdot (1 + |\epsilon|)^{k-1} \]
so that \(\lim_{n \to \infty} ||(S - \epsilon)^k x_n|| = 0 \) for all \(k \in \mathbb{N} \) and \(R((S - \epsilon)^k) \) is not closed. Consequently, \(S - \epsilon \notin R_{15} \) and \(\sigma_{15}(S) \) is not closed.

EXAMPLE 2. The class \(R_{13} \) is not stable under commuting compact perturbations:

Consider the operator \(S \) from Example 1 and let \(K = \bigoplus_{n=1}^{\infty} (1/n)I_n \), where \(I_n \) denotes the identity operator on \(H_n \). Clearly \(K \) is compact, \(KS = SK, S + K \) is injective and, as above, \(S + K \) is not bounded below. Thus \(R(S + K) \) is not closed and \(S + K \notin R_{13} \).

EXAMPLE 3. \(R_{13} \) is not stable under commuting quasinilpotent perturbations:

For \(k \in \mathbb{N} \) let \(H^{(k)} \) be the Hilbert space with an orthonormal basis \(e_{ni}^{(k)} \) \((n \in \mathbb{N}, i = 1, \ldots, \max\{k, n\})\). Let \(S^{(k)} \in \mathcal{L}(H^{(k)}) \) be the shift to the left,
\[S^{(k)} e_{ni}^{(k)} = \begin{cases} e_{n,i-1}^{(k)} & (i \geq 2), \\ 0 & (i = 1). \end{cases} \]
Set \(S = \bigoplus_{k=1}^{\infty} S^{(k)} \). Clearly \(S \) is a direct sum of finite-dimensional shifts where an \(n \)-dimensional shift appears \(2n - 1 \) times (once in each \(S^{(1)}, \ldots, S^{(n-1)} \) and \(n \) times in \(S^{(n)} \)). Thus \(S \in R_{13} \).

Define \(Q^{(k)} \in \mathcal{L}(H^{(k)}) \) by \(Q^{(k)} e_{ni}^{(k)} = (1/n) e_{n+1, i}^{(k)} \) for all \(n, i \). Let \(Q = \bigoplus_{k=1}^{\infty} Q^{(k)} \). Clearly \(SQ \) and \(Q \) is quasinilpotent since \(||Q||^{1/2} = (1/j)!^{1/2} \to 0 \).

We prove that \(S - Q \notin R_{13} \). Set
\[x^{(k)} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} e_{n,n}^{(k)} \in H^{(k)}. \]
Then
\[(S - Q)x^{(k)} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} e_{n,n-1}^{(k)} - \sum_{n=1}^{\infty} \frac{1}{n!} e_{n+1,n}^{(k)} = 0. \]
Further \(x^{(k)} \notin R(S^{(k)}) + R(Q^{(k)}) \) so that \(x^{(k)} \notin R(S^{(k)} - Q^{(k)}) \). It is easy to see that each linear combination of \(x^{(k)} \)'s has the same property with respect to \(S \) and \(Q \) so that these vectors are linearly independent modulo \(R(S - Q) \). Thus
\[k_0(S - Q) = \dim N(S - Q)/(N(S - Q) \cap R(S - Q)) = \infty \]
and \(S - Q \notin R_{13} \).

Consequently, the complete version of Table 2 of [4] is:

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(E)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>semireg.</td>
<td>closed</td>
<td>small comm.</td>
<td>perturb.</td>
<td>finite-dim.</td>
<td>perturb.</td>
</tr>
<tr>
<td>R_{11}</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>R_{12}</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>R_{13}</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>R_{14}</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>R_{15}</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
References

Department of Mathematics
The University of Melbourne
Parkville, Victoria 3052
Australia
E-mail: j.koliha@ms.unimelb.edu.au

Institute of Mathematics AV ČR
Žitná 25
115 67 Praha 1
Czech Republic
E-mail: muller@math.cas.cz

Received November 19, 1997

Banach Center Publications, Volume 38

Linear Operators

Editors of the Volume
Jan Janas, Franciszek Hugon Szafraniec, Jaroslav Zemánek

1997, 457 pages, soft cover, ISSN 0137-6934
$50 ($30 for individuals)

This is a continuation of Functional Analysis and Operator Theory (Banach Center Publications, Volume 30, 1994) showing yet other aspects of current research. The 27 invited papers point out some intriguing open problems along with the corresponding motivation, background, and relevant references.

About 40% of the volume is devoted to semigroups (in particular, powers) of operators, their various means, spectral and resolvent conditions (G. R. Allan, J. A. van Casteren, T. A. Gillespie, Yu. Lyubich, O. Nevanlinna, H. C. Rönnefarth, J. C. Strikwerda and B. A. Wade, A. Święch, Vũ Quốc Phong), their role in the differential problems (R. deLaubenfels, G. Lumer, N. Sauer), and the existence of common invariant subspaces (H. Radjavi).

A 30-page survey of moment problems and their connections with subnormal operators is given by R. E. Curto. Operators on function spaces, operator algebras and complex analysis methods appear throughout (dominating the contributions by A. Böttcher and H. Wolk, B. Magajna, K. Rudol, K. Stroethoff, H. Upmeier). Spectral decompositions are considered by M. Putinar, and unitary extensions of isometries by R. Aroczna.

Algebraic aspects of operator structures are highlighted by M. Brešar and P. Šemrl (linear preservers), and R. Zaidinjak (complementary triangularization).

A 63-page survey of operator inequalities is written by T. Hiai, and the inverse eigenvalue problem for nonnegative matrices is touched on by T. J. Laffey.

There is a neat proof of the Lipschitz continuity of the spectrum for the Sturm–Liouville operators by P. Kosowski, as well as of a strong maximum principle for the resolvents of Hilbert space operators by A. Daniluk.

Localization of the spectrum of matrices by means of unitary similarities is studied by A. Zalewska-Mitura and J. Zemánek.

To be ordered through your bookseller or directly from
Institute of Mathematics, Polish Academy of Sciences
P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997