Ambiguous loci of the farthest distance mapping from compact convex sets

by

P. S. DE BLASI (Roma) and J. MYJAK (L’Aquila)

Abstract. Let E be a strictly convex separable Banach space of dimension at least 2. Let $K(E)$ be the space of all nonempty compact convex subsets of E endowed with the Hausdorff distance. Denote by K^0 the set of all $X \in K(E)$ such that the farthest distance mapping $a \mapsto M_X(a)$ is multivalued on a dense subset of E. It is proved that K^0 is a residual dense subset of $K(E)$.

1. Introduction and preliminaries. Throughout the present paper E denotes a strictly convex separable Banach space of dimension at least 2, and $K(E)$ (resp. $B(E)$) the family of all nonempty compact convex (resp. closed bounded) subsets of E. The spaces $K(E)$ and $B(E)$ are equipped with the Hausdorff distance h under which, as is well known, both are complete. For $X \in B(E)$ and $a \in E$ we set

$$e_X(a) = \sup \{\|x-a\| \mid x \in X\}.$$

Given $X \in B(E)$ and $a \in E$, let us consider the maximization problem, denoted $\max(a, X)$, which consists in finding some point $x \in X$ such that $\|x-a\| = e_X(a)$. Any such x is said a solution of $\max(a, X)$ and any sequence $\{x_n\} \subset X$ satisfying $\lim_{n \to \infty} \|x_n - a\| = e_X(a)$ is called a maximizing sequence of $\max(a, X)$.

In a metric space Z, $B_Z(z, r)$ (resp. $\bar{B}_Z(z, r)$) is an open (resp. closed) ball with center $z \in Z$ and radius $r > 0$ (resp. $r \geq 0$). For any $X \subset Z$, \bar{X} and diam X ($X \neq \emptyset$) stand for the closure of X and the diameter of X, respectively.

A set $X \subset Z$ is called everywhere uncountable in Z if for every $z \in Z$ and $r > 0$ the set $X \cap B_Z(z, r)$ is nonempty and uncountable.

For $X \in K(E)$ we denote by $M_X : E \to K(E)$ the farthest distance mapping, defined by

$$M_X(a) = \{x \in X \mid \|x-a\| = e_X(a)\}.$$
We call \(M_X(a) \) the solution set of the maximization problem \(\max(a, X) \). Moreover, the set
\[
A(M_X) = \{ a \in E \mid M_X(a) \text{ contains at least 2 points} \}
\]
is called the ambiguous locus of \(M_X \).

In this note we consider approximation problems for the mapping \(e_X \) from sets \(X \in K(E) \). It is known that, if \(E \) is also uniformly convex, then the ambiguous locus of any set \(X \in K(E) \) is \(\sigma \)-porous, thus of the first Baire category and of Lebesgue measure zero if \(E = \mathbb{R}^n \) (see [4] and, for similar results, Bartkić and Berens [2] and Zajićev [13]). However, the set \(A(M_X) \), though small from the category and the measure point of view, can be unexpectedly rich in points scattered all over \(E \). More precisely, we show that in every strictly convex separable Banach space \(E \) of dimension at least 2 there exists a nonempty compact convex set \(X \) for which the ambiguous locus \(A(M_X) \) is everywhere uncountable in \(E \). Actually we prove more, namely that such a property of \(X \) is shared by most compact convex sets in \(K(E) \), in the Baire category sense.

For \(a \in E \) and \(X \in B(E) \) the set \(M_X(a) \) can be empty (see Miyajima and Wada [11] for some examples). Under suitable assumptions on \(E \) and \(X \), Asplund [1] and Lau [9] (see also Edelman [7], Panda and Dwivedi [12], Deville and Zizler [5]) have proved that the set of all \(a \in E \) for which \(M_X(a) \) is empty is of the Baire first category in \(E \). The question whether this set can be locally rich in points seems not yet settled.

Our approach is based on the Baire theorem. This has proven to be a useful tool in order to get existence results in several problems of geometry, starting with the classical work of Klee [10]. Developments of such ideas can be found in Gruber [8] and Zamfirescu [14, 15].

2. Lemmas

Lemma 2.1. Let \(a, x_1, x_2 \in E \), \(x_1 \neq x_2 \), be such that \(\|x_1 - a\| = \|x_2 - a\| \). For \(\theta \in \Delta = \{d_1, d_2\}, 0 < d_1 \leq d_2 \leq 1 \), set \(a_i(\theta) = a + \theta(x_i - a), \ i = 1, 2 \). Then there exists an \(\varepsilon_0 > 0 \) such that, for every \(\theta \in \Delta \),
\[
(2.1) \quad \|x_2 - a_1(\theta)\| > \|x_1 - a_1(\theta)\| + \varepsilon_0,
\]
\[
(2.2) \quad \|x_1 - a_2(\theta)\| > \|x_2 - a_2(\theta)\| + \varepsilon_0.
\]

Proof. It suffices to prove (2.1) (the proof of (2.2) is analogous). If the statement is not true, there exists a \(\delta \in \Delta \) such that \(\|x_2 - a_1(\delta)\| \leq \|x_1 - a_1(\delta)\| \). Furthermore,
\[
\|x_1 - a\| = \|a_1(\delta) - a\| + \|x_1 - a_1(\delta)\| \geq \|a_1(\delta) - a\| + \|x_2 - a_1(\delta)\|
\]
\[
\geq \|a_1(\delta) - a\| + \|x_2 - a\| - \|a_2(\delta) - a\| = \|x_2 - a\|,
\]
which implies that
\[
\|x_2 - a_1(\delta)\| + \|a_2(\delta) - a\| = \|x_2 - a_1(\delta)\| + \|a_1(\delta) - a\|.
\]
Since \(E \) is strictly convex, for some \(\beta > 0 \) we have \(x_2 - a_1(\delta) = \beta(a_1(\delta) - a) \). Hence \(x_2 - a = (1 + \beta)(a_1(\delta) - a) = (1 + \beta)(x_1 - a_1(\delta)) \), which yields \(x_2 = x_1 \), a contradiction. This completes the proof.

Lemma 2.2. In addition to the assumptions of Lemma 2.1, set \(b_\theta(t) = (1 - t)a_1(\theta) + ta_2(\theta), \ t \in [0, 1] \). Then there exists an \(\varepsilon > 0 \) such that, for every \(\theta \in \Delta \) and every \(C_1 \subset B_E(x_1, \varepsilon) \), \(C_2 \subset B_E(x_2, \varepsilon) \) with \(C_1, C_2 \neq \emptyset \),
\[
(2.3) \quad e_{C_1}(a_1(\theta)) > e_{C_1}(a_1(\theta)),
\]
\[
(2.4) \quad e_{C_1}(a_2(\theta)) > e_{C_2}(a_2(\theta))
\]
Moreover, there exists a \(t = t(\theta, C_1, C_2) \in [0, 1] \) such that
\[
(2.5) \quad e_{C_1}(b_\theta(t)) = e_{C_2}(b_\theta(t)).
\]

Proof. By Lemma 2.1 there exists an \(\varepsilon_0 > 0 \) such that for every \(\theta \in \Delta \),
\[
(2.1) \quad \|x_2 - a_1(\theta)\| > \|x_1 - a_1(\theta)\| + \varepsilon_0,
\]
\[
(2.2) \quad \|x_1 - a_2(\theta)\| > \|x_2 - a_2(\theta)\| + \varepsilon_0.
\]
Hence \((2.3) \) is proved. The proof of \((2.4) \) is analogous. Furthermore, the function \(\theta \mapsto e_{C_1}(b_\theta(t)) - e_{C_2}(b_\theta(t)) \) is continuous on \([0, 1]\) and, by \((2.3) \) and \((2.4) \), assumes values of opposite signs at the end points of \([0, 1]\). Thus there exists a \(t = t(\theta, C_1, C_2) \in [0, 1] \) for which \((2.5) \) is satisfied. This completes the proof.

Lemma 2.3. Let \(a \in E \) and \(0 < r < R \) and \(x_1, x_2 \in E \), \(x_1 \neq x_2 \), be such that \(\|x_1 - a\| = \|x_2 - a\| = R \). Let \(X \subset B_E(a, r) \) with \(X \in K(E) \). Set \(\Delta = [d/8, d/4] \), where \(d = (R - r)/R \). Define
\[
Z = \overline{c}(X \cup \{x_1, x_2\})
\]
and let \(b_\theta(t) \) and \(a_\theta(\theta) \) be defined as in the previous lemmas. Then:
(i) For \(\theta \in \Delta \) and \(t \in [0, 1] \), the maximization problem \(\max(b_\theta(t), Z) \) has solution set \(M_Z(b_\theta(t)) \) satisfying
\[
(2.6) \quad M_Z(b_\theta(t)) \subset \{x_1, x_2\},
\]
Moreover, \(M_Z(b_\theta(0)) = x_2 \) and \(M_Z(b_\theta(1)) = x_1 \).
(ii) For \(\theta \in \Delta \) and \(t \in [0, 1] \), every maximizing sequence \(\{x_n\} \) of \(\max(b_\theta(t), Z) \) has a subsequence which converges to a point \(z \in \{x_1, x_2\} \).
P. S. De Blasi and J. Myjak

\textbf{Proof.} For \(\theta \in \Delta \) and \(t \in [0,1] \), define \(\varphi_{b(t)} : Z \to \mathbb{R} \) by \(\varphi_{b(t)}(x) = \|x - b(t)\| \). As the function \(\varphi_{b(t)} \) is continuous on the compact set \(Z \), \(\varphi_{b(t)} \) attains its supremum at some point, say \(\bar{x} \in \bar{Z} \). Set

\[E = \{ z \in Z \mid \varphi_{b(t)}(z) = \varphi_{b(t)}(\bar{x}) \} \]

and observe that \(E \neq \emptyset \). We claim that \(E \subset \{ \varphi_1, \varphi_2 \} \).

Indeed, as \(\varphi_{b(t)} \) is strictly convex on \(Z \), a convex set, we have \(E \subset \text{ext} \bar{Z} \), where \(\text{ext} \bar{Z} \) denotes the set of the extreme points of \(Z \). Moreover, by Krein–Milman’s theorem [6], \(\text{ext} \bar{Z} \subset X \cup \{ \varphi_1, \varphi_2 \} \), and thus \(E \subset X \cup \{ \varphi_1, \varphi_2 \} \). To prove the claim it suffices to show that \(E \cap X = \emptyset \). Suppose otherwise, and let \(u \in E \cap X \). Then

\[\varphi_{b(t)}(u) = \|u - b(t)\| \leq \|u - a\| + \|a - b(t)\| \leq r + \frac{R - r}{4} \]

since, by a simple calculation, \(\|a - b(t)\| \leq \theta R \leq (d/4)R = (R - r)/4 \). On the other hand, for \(i = 1, 2 \), we have

\[\varphi_{b(t)}(x_i) = \|x_i - b(t)\| \geq \|x_i - a\| - \|a - b(t)\| \geq R - \frac{R - r}{4} \]

Hence \(\varphi_{b(t)}(u) < \varphi_{b(t)}(x_i) \), \(i = 1, 2 \), which implies that \(u \notin E \), a contradiction. Thus \(E \subset \{ \varphi_1, \varphi_2 \} \). Since \(E = M_Z(b_b(t)) \), (2.6) is proved. Moreover, by Lemma 2.1, we have

\[\varphi_{b(t)}(x_2) = \|x_2 - a(t)\| > \|x_1 - a(t)\| = \varphi_{b(t)}(x_1) \]

which implies that \(M_Z(b_b(t)) = x_2 \). Similarly one can show that \(M_Z(b_b(1)) = x_1 \), and so (i) is proved.

To prove (ii), for given \(\theta \in \Delta \) and \(t \in [0,1] \), let \(\{ \varphi_n \} \subset Z \) be a maximizing sequence of \(\max(b_b(t), Z) \). As \(Z \) is compact, passing to a subsequence we can assume that \(\lim_{n \to \infty} \varphi_n = \bar{x} \) for some \(\bar{x} \in Z \). This implies that \(\bar{x} \in M_Z(b_b(t)) \) and so, by (i), \(\bar{x} \in \{ \varphi_1, \varphi_2 \} \). This completes the proof.

\textbf{Lemma 2.4.} Under the assumptions of Lemma 2.3, for every \(\varepsilon > 0 \) there exists a \(\sigma > 0 \) such that for every \(Y \in \mathcal{K}(E) \) and every \(\theta \in \Delta \),

\begin{enumerate}
\item[(i)] \(M_Y(b_b(0)) \subset B_{E}(x_2, \varepsilon) \), \(M_Y(b_b(1)) \subset B_{E}(x_1, \varepsilon) \),
\item[(ii)] \(M_Y(b_b(t)) \subset B_{E}(x_1, \varepsilon) \cup B_{E}(x_2, \varepsilon) \) for every \(t \in [0,1] \).
\end{enumerate}

\textbf{Proof.} For (i) it suffices to prove the first inclusion (the proof of the second being analogous). Suppose that, on the contrary, there exist an \(\varepsilon > 0 \), a sequence \(\{ Y_n \} \subset \mathcal{K}(E) \) converging to \(Z \), and a sequence \(\{ \theta_n \} \subset \Delta \) such that

\[M_{Y_n}(a(t_\theta)(n)) \nsubseteq B_{E}(x_2, \varepsilon), \quad n \in \mathbb{N}. \]

Passing to a subsequence, we assume that \(\{ \theta_n \} \) converges to a \(\theta \in \Delta \). Let \(\{ y_n \} \subset E \) be a sequence such that

\[y_n \in M_{Y_n}(a(t_\theta)(n)) \setminus B_{E}(x_2, \varepsilon), \quad n \in \mathbb{N}. \]

Thus \(y_n \in Y_n \), and \(\|y_n - a(t_\theta)(n)\| = e_2(a(t_\theta)(n)) \), \(n \in \mathbb{N} \). Since \(\{ \theta_n \} \) converges to \(\theta \) and \(\{ Y_n \} \) converges to \(Z \), there exists a sequence \(\{ \sigma_n \} \), \(\sigma_n > 0 \), converging to zero such that

\[\|y_n - a(t_\theta)\| \geq e_2(a(t_\theta)) - \sigma_n, \quad n \in \mathbb{N}. \]

As \(y_n \in Y_n \), and \(\{ Y_n \} \) converges to \(Z \), there exists a sequence \(\{ \varepsilon_n \} \subset Z \) satisfying

\[\lim_{n \to \infty} \|y_n - y_n\| = 0. \]

Clearly,

\[\|y_n - a(t_\theta)\| \geq e_2(a(t_\theta)) - \sigma_n - \|y_n - y_n\|, \quad n \in \mathbb{N}. \]

Hence \(\{ \varepsilon_n \} \) is a maximizing sequence of \(\max(a(t_\theta), Z) \), and so, by Lemma 2.3(ii), there is a subsequence, say \(\{ \varepsilon_n \} \), which converges to a point \(\varepsilon \in [\varepsilon_1, \varepsilon_2] \). Since \(z \in M_Z(a(t_\theta)) \) and, by Lemma 2.3(i), \(M_Z(a(t_\theta)) = x_2 \), we have \(z = x_2 \). Consequently, there exists an \(n_0 \in \mathbb{N} \) such that \(x_n \in B_{E}(x_2, \varepsilon/2) \) for \(n \geq n_0 \). Thus, by (2.8), there exists an \(n_1 \geq n_0 \) such that \(y_n \in B_{E}(x_2, \varepsilon) \) for \(n \geq n_1 \), contrary to (2.7). We can conclude that, given \(\varepsilon > 0 \), there exists a \(\sigma_0 > 0 \) such that for every \(Y \in \mathcal{K}(E) \), \(\theta \in \Delta \), (i) is satisfied. It remains to prove (ii). Suppose that it is not true. Then there exist an \(\varepsilon > 0 \), a sequence \(\{ Y_n \} \subset \mathcal{K}(E) \) converging to \(Z \), and two sequences \(\{ \theta_n \} \subset \Delta \) and \(\{ \varepsilon_n \} \subset [0,1] \) such that

\[M_{Y_n}(b_{\theta_n}(\varepsilon_n)) \nsubseteq B_{E}(x_1, \varepsilon) \cup B_{E}(x_2, \varepsilon), \quad n \in \mathbb{N}. \]

Passing to subsequences, we can assume that \(\{ \theta_n \} \) converges to \(\theta \in \Delta \), and that \(\{ \varepsilon_n \} \) converges to \(t \in [0,1] \). Now let \(\{ y_n \} \subset E \) be a sequence such that

\[y_n \in M_{Y_n}(b_{\theta_n}(\varepsilon_n)) \setminus (B_{E}(x_1, \varepsilon) \cup B_{E}(x_2, \varepsilon)), \quad n \in \mathbb{N}. \]

As in the proof of (i), one can construct a sequence \(\{ z_n \} \subset Z \) which satisfies (2.8) and is maximizing for \(\max(b_b(t), Z) \). Then, by Lemma 2.3(ii), a subsequence, say \(\{ z_n \} \), converges to a point \(z \in [x_1, x_2] \). This and (2.8) imply that there exists an \(n_0 \in \mathbb{N} \) such that \(y_n \in B_{E}(x_1, \varepsilon) \cup B_{E}(x_2, \varepsilon) \) for \(n \geq n_0 \), contrary to (2.9). Hence, given \(\varepsilon > 0 \), there exists a \(0 < \sigma < \sigma_0 \) such that for every \(Y \in \mathcal{K}(E) \), \(\theta \in \Delta \), (ii) as well as (i) are satisfied. This completes the proof.

\textbf{3. Main result}

\textbf{Theorem 3.1.} Let \(E \) be a strictly convex separable Banach space of dimension at least 2. Then

\[\mathcal{K}^0 = \{ X \in \mathcal{K}(E) \mid A(X) \text{ is everywhere uncountable in } E \} \]

is a residual dense subset of \(\mathcal{K}(E) \).
Proof. We follow some ideas from Klee [10] and Zamfirescu [15]. For $a \in E$ and $s > 0$, set

$$N_{a,s} = \{ X \in K(E) | A(M_X) \cap B_2(a,s) \text{ is empty or at most countable} \}.$$

Claim. $N_{a,s}$ is nowhere dense in $K(E)$.

For this it suffices to show that, given $X \in K(E)$ and $0 < \varrho < s$, both arbitrary, there exist $Z \in K(E)$ and $\sigma > 0$ such that

$$B_{K(E)}(Z, \sigma) \subset B_{K(E)}(X, \varrho) \cap (K(E) \setminus N_{a,s}).$$ \hfill (3.1)

Case 1. Suppose $X \neq \{a\}$. Take $x_0 \in X$ such that $\|x_0 - a\| = r$, where $r = \varepsilon(x,a)$, and set

$$x_1 = a + \left(1 + \frac{\varrho}{4r}\right)(x_0 - a).$$

We have $\|x_1 - a\| = R$, where $R = r + \varrho/4$. Next take $x_2 \in E$ such that

$$\|x_2 - a\| = \|x_1 - a\|, \quad \|x_2 - x_1\| = \varrho/4.$$

Define $Z = \overline{B}(x_1, x_2) \cup \overline{B}(x_2, x_3)$. Clearly $Z \in K(E)$. By construction, $\|x_1 - x_0\| = \varrho/4$ and $\|x_2 - x_1\| = \|x_2 - x_0\| = \varrho/2$, thus $h(Z, X) \leq \varrho/2$.

Set $\Delta = \{d/8, d/4\}$, where $d = (R - r)/R$. Now define $a_i(\theta) = a + \theta(x_i - a), i = 1, 2$, and $b_0(\theta) = (1 - t)a(\theta) + ta_0(\theta), t \in [0, 1]$.

By Lemma 2.2, there exists an $\varepsilon > 0$ with

$$B_2(x_1, \varepsilon) \cap B_2(x_2, \varepsilon) = \emptyset$$

such that for every $\theta \in \Delta$, and every $C_1 \subset B_2(x_1, \varepsilon), C_2 \subset B_2(x_2, \varepsilon)$ with $C_1, C_2 \neq \emptyset$, there exists a $t_0 \in [0, 1]$ (depending on C_1 and C_2) such that

$$e_{C_1}(b_0(t_0)) = e_{C_2}(b_0(t_0)).$$ \hfill (3.3)

By Lemma 2.4, given $\varepsilon/2$, there exists a σ with

$$0 < \sigma < \min\{\varepsilon/2, \varrho/2\}$$

such that for every $Y \in B_{K(E)}(Z, \sigma)$ and every $\theta \in \Delta$ we have

$$M_Y(b_0(t)) \subset B_2(x_1, \varepsilon/2) \cup B_2(x_2, \varepsilon/2), \quad t \in [0, 1].$$ \hfill (3.4)

Now, let $Y \in B_{K(E)}(Z, \sigma)$ be arbitrary. Set $C_1 = Y \cap B_2(x_1, \varepsilon/2), C_2 = Y \cap B_2(x_2, \varepsilon/2)$ and observe that C_1 and C_2 are compact, and also nonempty since $x_i \in Z, i = 1, 2$, and $\sigma < \varepsilon/2$. Let $t_0 \in [0, 1]$ be such that (3.3) is satisfied, with C_1 and C_2 defined above.

We claim that

$$M_Y(b_0(t_0)) \cap \overline{B}(x_1, \varepsilon/2) \neq \emptyset, \quad i = 1, 2.$$ \hfill (3.5)

Indeed, let $y_i \in C_i, i = 1, 2$, be such that

$$\|y_i - b_0(t_0)\| = e_{C_i}(b_0(t_0)), \quad i = 1, 2.$$

Clearly, $e_{C_i}(b_0(t_0)) \leq e_Y(b_0(t_0)), i = 1, 2$. Suppose that for $i = 1$ or $i = 2$ the strict inequality holds. Then, by (3.3),

$$e_{C_i}(b_0(t_0)) < e_Y(b_0(t_0)),$$ \hfill (3.6)

Now let $y \in Y$ be such that $\|y - b_0(t_0)\| = e_Y(b_0(t_0)), y \in M_Y(b_0(t_0))$.

From (3.4) it follows that for $i \in \{1, 2\}$, say $i = 1$, we have $y \in B_2(x_1, \varepsilon/2)$. Hence $y \in C_1$, and so $e_{C_1}(b_0(t_0)) \geq \|y - b_0(t_0)\|$, which gives $e_{C_1}(b_0(t_0)) \geq e_Y(b_0(t_0))$, contrary to (3.6). Hence,

$$e_{C_i}(b_0(t_0)) = e_Y(b_0(t_0)),$$ \hfill (3.7)

Since $C_1 \subset Y, i = 1, 2$, it follows that

$$M_{C_1}(b_0(t_0)) \subset M_Y(b_0(t_0)),$$ \hfill (3.8)

Moreover,

$$M_{C_1}(b_0(t_0)) \subset \overline{B}_2(x_1, \varepsilon/2), \quad i = 1, 2.$$ \hfill (3.9)

Combining (3.7) and (3.8) gives (3.3).

From (3.2) and (3.5) it follows that $b_0(t_0) \in A(M_Y)$. Furthermore, $b_0(t_0) \in B_2(a, \varepsilon)$, for

$$\|b_0(t_0) - a\| \leq \theta R \leq \frac{d}{4} R \leq \frac{\varepsilon}{16} < \varepsilon.$$

Hence $b_0(t_0) \in A(M_Y) \cap B_2(a, \varepsilon)$. As the set of such points $b_0(t_0)$ with $\theta \in \Delta$ is uncountable, we see that $Y \in K(E) \setminus N_{a,s}$. Since, in addition, $Y \in B_{K(E)}(Z, \sigma)$ is arbitrary, we have

$$B_{K(E)}(Z, \sigma) \subset K(E) \setminus N_{a,s}.$$ \hfill (3.10)

On the other hand, each $Y \in B_{K(E)}(Z, \sigma)$ satisfies $h(Y, X) \leq h(Y, Z) + h(Z, X) < \sigma + \varrho/2 \leq \varrho$ for, by construction, $\sigma \leq \varrho/2$ and $h(Z, X) \leq \varrho/2$.

Hence,

$$B_{K(E)}(Z, \sigma) \subset B_{K(E)}(Z, \sigma).$$

Combining this with (3.9) gives (3.1), and thus the claim that $N_{a,s}$ is nowhere dense in $K(E)$ is proved, in Case 1.

Case 2. Suppose $X = \{a\}$. Take an $x_0 \in E$ with $\|x_0 - a\| = \varrho/4$, and fix $x_1, x_2 \in E$ as in Case 1. Set $Z = \overline{B}(x_0, x_1, x_2)$. Clearly $Z \in K(E)$, and $h(Z, X) = \varrho/2$. From this point the proof is as in Case 1 and so it is omitted.

Now we are ready to prove that the set K^* is residual in $K(E)$. To this end, let $D \subset E$ be a countable set everywhere dense in E, and let Q^+ be the set of all strictly positive rationals. Define

$$K^* = \bigcap_{a \in D} (K(E) \setminus N_{a,s}).$$
Clearly, K^* is residual in $K(\mathbb{E})$. Furthermore, $K^* \subseteq K^0$. Indeed, let $X \in K^*$, $x \in \mathbb{E}$ and $r > 0$. Take $a \in A$ and $s \in \mathbb{Q}^+$ so that $B_E(a,s) \subset B_E(x,r)$. Since $X \notin N_a$, the set $A(M_X) \cap B_E(a,s)$ is nonempty and uncountable. This shows that $A(M_X)$ is everywhere uncountable in \mathbb{E}, and so $X \in K^0$. Hence $K^* \subseteq K^0$, and K^0 is residual in $K(\mathbb{E})$, for K^* is so. As $K(\mathbb{E})$ is complete, K^0 is dense in $K(\mathbb{E})$. This completes the proof.

Remark 3.1. Let $\mathbb{E} = \mathbb{R}^n$ be endowed with the Euclidean norm. From Theorem 3.1 and the Mazur property it follows that most $X \in K(\mathbb{R}^n)$, in the Baire category sense, can be represented as the intersection of a family of closed balls containing X, having on their boundary at least two points of X.

Remark 3.2. If X is a nonempty closed convex bounded subset of \mathbb{E}, beside the ambiguous locus of uniqueness $A^u(M_X)$ given by $A^u(M_X) = A(M_X)$, one can consider the ambiguous locus of $x \in \mathbb{E}$ such that $\max \{a, X\} = \emptyset$. The ambiguous locus of well posedness $A^w(M_X) = \{a \in \mathbb{E} \mid \max \{a, X\} = \emptyset\}$ is not well posed. We recall that a maximization problem $\max \{a, X\}$ is said to be well posed if it has one and only one solution, say z, and every maximizing sequence converges to z. Clearly, $A^u(M_X) \cup A^u(M_X) \subseteq A^w(M_X)$. However, while the local cardinality of the set $A^w(M_X)$ can be studied, under appropriate hypotheses, by adapting the preceding approach, the investigation of the sets $A^u(M_X)$ and $A^w(M_X)$ seems to require a different approach.

Whenever $X \in K(\mathbb{E})$, we have $A^u(M_X) = \emptyset$ and $A^w(M_X) = A^u(M_X) = A(M_X)$, where the latter set is the ambiguous locus considered in Theorem 3.1.

Finally, we observe that the main result of this paper, proved for the farthest distance mapping from sets $X \in K(\mathbb{E})$, has no analog for the nearest distance mapping since, in this case, the corresponding ambiguous locus is empty for each $X \in K(\mathbb{E})$. A comprehensive treatment of nearest distance problems from closed sets can be found in Borwein and Fitzpatrick [3].

References

