Concerning entire functions in B_0-algebras

by

W. ŻELAZKO (Warszawa)

Abstract. We construct a non-m-convex non-commutative B_0-algebra on which all entire functions operate. Our example is also a Q-algebra and a radical algebra. It follows that some results true in the commutative case fail in general.

A B_0-algebra (an algebra of type B_0) is a topological algebra whose underlying topological vector space is a completely metrizable locally convex space. The topology of a B_0-algebra A can be given by means of a sequence $(\| \cdot \|_i)$ of seminorms such that

$$|x|_1 \leq |x|_2 \leq \ldots \quad \text{for all } x \in A$$

and

$$|xy|_i < C_i|x|_{i+1}|y|_{i+1} \quad \text{for all } x, y \in A, \ i = 1, 2, \ldots,$$

where C_i are positive constants (one can easily have $C_i = 1$ for all i, but here it is more convenient to have inequalities of the form (2)). A B_0-algebra A is said to be multiplicatively-convex (m-convex for short) if the seminorms

(1) $$|x|_1 \leq |x|_2 \leq \ldots \quad \text{for all } x \in A$$

and

(2) $$|xy|_i < C_i|x|_{i+1}|y|_{i+1} \quad \text{for all } x, y \in A, \ i = 1, 2, \ldots,$$

where C_i are positive constants (one can easily have $C_i = 1$ for all i, but here it is more convenient to have inequalities of the form (2)). A B_0-algebra A is said to be multiplicatively-convex (m-convex for short) if the seminorms

(3) $$|xy|_i \leq |x|_i|y|_i \quad \text{for all } x, y \in A, \ i = 1, 2, \ldots$$

Note that (1) implies that if $\| \cdot \|$ is a continuous seminorm on a B_0-algebra A, then there is an index m and a positive constant C such that

(4) $$\|x\| \leq C|x|_m \quad \text{for all } x \in A.$$

An element x of an algebra A is said to be quasi-invertible if there is an element y in A, called a quasi-inverse of x, such that $xy = yx = 0$, where $xy = xy + x \cdot y$. This is equivalent to $(x + c) \cdot (y + c) = (y + c) \cdot (x + c) = c$, if A has a unit element e, or to this relation in the unitization A_1 of A, if there is no unit in A. That means that the quasi-inverse of an element x is uniquely determined by x. ```
A topological algebra A is said to be a Q-algebra if the set of all its quasi-invertible elements is open. If A has a unit, then A is a Q-algebra if and only if the set of all invertible elements of A is open. Clearly the unitization of a Q-algebra without unit is again a Q-algebra.

One can prove that the complexification of a real Q-algebra is a complex Q-algebra. Also, one can easily see that if for an element x of a topological algebra A the series $\sum_{i=1}^{\infty} (-1)^i x^i$ is convergent, then x is quasi-invertible in A with quasi-inverse $\sum_{i=0}^{\infty} (-1)^i x^i$.

Let $\varphi(\zeta) = \sum_{n=0}^{\infty} a_n \zeta^n$ be an entire function of a complex variable ζ. We say that φ operates on a complex topological algebra A if the series $\sum_{n=1}^{\infty} a_n x^n$ converges for every x in A. If A has a unit element e, we can start the summation from 0, setting $x^0 = e$ for each x in A. The same definition can be given for a real algebra A, provided all coefficients a_i are real numbers.

If A is a real or complex m-convex B_0-algebra then all entire functions (with real coefficients in case of a real algebra) operate on A. This follows immediately from the formula (3) and the estimate

$$\sum_{n} |a_n x^n|_1 \leq \sum_{n} |a_n| |x|^n, \quad x \in A, \quad i = 1, 2, \ldots$$

The main result in [2] gives a partial converse:

Theorem A. If A is a commutative complex B_0-algebra, then A is m-convex if and only if all entire functions operate on A.

The same proof works for real algebras, provided we only consider functions with real coefficients.

It is a long-standing question ([2], Problem 3, see also [5], Problem 13.15, [6], Problem 16.8, and [8], Problem 17) whether Theorem A is also true for non-commutative algebras. In this paper we give a counterexample showing that the condition of commutativity cannot be dropped.

In [2] it was also shown that for every entire function φ there is a commutative non-m-convex algebra A_φ such that φ operates on A_φ. Thus we cannot substantially relax the condition that all entire functions operate on the algebra in question.

Turpin [3] constructed a commutative completely metrizable locally pseudoconvex algebra A with exponent p, $0 < p < 1$, on which all entire functions operate but which is not m-convex. (The definitions are similar to those for B_0-algebras. The only difference is that the seminorms satisfying (1), (2), or (3) are not homogeneous, but p-homogeneous with exponent p, i.e., $|\lambda x| = |\lambda|^p |x|$ for each scalar λ and element x.) Thus the condition of local convexity cannot be relaxed either.

Later the author [7] showed that there is a complete, commutative non-m-convex locally convex algebra on which all entire functions operate. Thus we cannot relax the condition of metrizability. All that means that Theorem A gives the strongest possible result.

Using Theorem A, the author obtained in ([5], Theorem 13.17) the following result:

Theorem B. Let A be a commutative complex B_0-algebra with unit which is a Q-algebra. Then A is multiplicatively-convex.

The same proof gives the result for an algebra without unit, and since the complexification of a Q-algebra is again a Q-algebra, the result is also true for real algebras. It was an open question (see [8], Problem 26) whether Theorem B is true in the non-commutative case. Our example here also provides a negative answer to that question.

Turpin [3] extended Theorem B to the non-metrizable case:

Theorem C. Let A be a commutative complex complete locally convex algebra with unit which is a Q-algebra. Then A is a multiplicatively-convex algebra provided the operation of taking inverse $x \rightarrow x^{-1}$ is continuous in A.

Similarly to Theorem B, this result can be extended to algebras without unit (provided the operation of taking quasi-inverse is continuous) and to real algebras. Our example shows that the problem of extending Theorem C to the non-commutative case ([8], Problem 27) has a negative answer.

Using Theorem B, the author proved ([5], Theorem 13.18)

Theorem D. If a commutative complex B_0-algebra A has a closed radical $\text{rad} A$, then this radical is an m-convex algebra.

Here again our example shows that the above result fails to be true if A is non-commutative.

For more information on the classes of topological algebras mentioned above the reader is referred to [1] and [4]–[6].

When presenting the above-mentioned example of a pseudoconvex algebra, Turpin used the following lemma given in [2] (see Lemmas 2.1 and 2.2).

Lemma E. For any continuous function $v(t) > 0$, $0 \leq t < \infty$, such that $\lim_{t \to \infty} v(t)/t = \infty$, there exists a continuous function $u(t) > 0$, $0 \leq t < \infty$, such that $\lim_{t \to \infty} u(t)/t = \infty$ and

$$u(t_1 + \ldots + t_n) \leq \delta [u(t_1) + \ldots + u(t_n)] + v(n), \quad 0 \leq t_1 < \infty.$$

Our construction will also be based upon this lemma. Following Turpin we choose v so that $u(n) = n (\log n)^{1/2}$ for $n \geq 2$. Thus

$$u(n) = n \log n$$

and for the corresponding function u we have

$$v(n) = r_n \log n$$

with $\lim_{n \to \infty} r_n = 0$.
Denote by A the completion of A_0 in the topology given by the seminorms (11). The algebra A consists of elements of the form (10) with infinite summation, such that all seminorms (11) are finite. Clearly these seminorms satisfy (1) and (2), so that A is a B_0-algebra.

Let x be an arbitrary element of A and let m be a natural number. We have

$$x^m = \sum_{k_0=0}^{\infty} \sum_{n_1=1}^{\infty} \sum_{n_2}^{\infty} \mu(k, n) t_{n_1} \cdots t_{n_2}$$

where

$$\mu(k, n) = \sum_{k_1 + \cdots + k_m = k} \xi(n, k_1) \xi(n + k_1 + 1, k_2 - 1) \cdots \xi(n + k_1 + \cdots + k_{m-1} + 1, k_m - 1).$$

Note that among the $m!$ products of elements of the form

$$\xi(n + k_1 + \cdots + k_j + 1, k_{j+1} - 1) t_{n+k_1+\cdots+k_{j}+1} \cdots t_{n+k_1+\cdots+k_{j+1}}$$

only one product is different from zero. Thus we have

$$|x^m|_j = \sum_{n, k} |\mu(k, n)| \exp(8^j u(k + 1))$$

$$\leq \sum_{n, k} \sum_{k_1 + \cdots + k_m = k} |\xi(n, k_1)| \xi(n + k_1 + 1, k_2 - 1) \cdots \xi(n + k_1 + \cdots + k_{m-1} + 1, k_m - 1)|$$

$$\times \exp(8^j [8^j 8u(k_1 + 1) + 8u(k_2) + \cdots + 8u(k_m) + u(m)])$$

$$= \exp(8^j v(m)) \sum_{n, k} \sum_{k_1 + \cdots + k_m = k} |\xi(n, k_1)| \exp(8^j u(k_1 + 1)) \cdots \xi(n + k_1 + \cdots + k_{m-1} + 1, k_m - 1)| \exp(8^j u(k_m)).$$

On the other hand, we have

$$|x|_{m+1} \geq m! \sum_{n, k} \sum_{k_1 + \cdots + k_m = k} |\xi(n, k_1)| \exp(8^j u(k_1 + 1)) \cdots \xi(n + k_1 + \cdots + k_{m-1} + 1, k_m - 1)| \exp(8^j u(k_m)).$$

Now (12) and (13) imply

$$|x^m|_j \leq \frac{\exp(8^j v(m))}{m!} |x|_{m+1}^j$$

for all x in A and all natural j.

(14)
Put $a_{m,j} = \exp(8^j v(m))/m!$. Then (5) implies $a_{m,j} = m^j a_{m,j} / m!$. For large m we have $8^j r_m \leq 1/2$, and so

$$a_{m,j} \leq \left(\frac{m^j}{m!} \right)^{1/2} \frac{1}{(m^j)!^{1/2}}.$$

But $\lim_{m}(m^j/m!)^{1/m} = e$, thus $a_{m,j} \leq C_m/(m!)^{1/2}$, for large m, where C is a positive constant depending only upon j. Since $\lim_{m}(CM)^{m} / (m!)^{1/2} = 0$ for each fixed M, it follows that the right hand side of (14) tends to zero as $m \to \infty$ for each fixed $j = 2, \ldots$. This means that $\lim_{m} x_m = 0$ for each x in A.

Note that $\lim_{m} a_{m,j} = 0$ implies $a_{m,j} \leq C_j$ for all m, where C_j is a positive constant. Thus (14) implies

$$|x_m| \leq C_j |x|_{j+1}^{m+1}$$

for all x in A and all positive integers m and j.

It remains to be shown that A is a non-m-convex algebra. Suppose to the contrary that A is m-convex. Then there is a sequence $(\| \cdot \|_i)$ of seminorms on A satisfying (1) and (3) and giving the same topology as the sequence $(\| \cdot \|_i)$. Thus, by (4), there is a constant c_1 and a seminorm $\| \cdot \|_i$ such that $c_1 |x|_i \leq \|x\|_i$ for all x in A. Similarly, there is an index k and a positive c_2 such that together with the previous inequality we have

$$c_1 |x|_i \leq \|x\|_i \leq c_2 |x|_k, \quad x \in A.$$

By (3), this implies that for any sequence (x_i) in A such that $c_2 |x_i|_k \leq 1/2$, we have

$$\lim_n |x_1 \ldots x_n|_i = 0.$$

Put $x_i = e_i$, and choose a positive ε so that $c_2 |e_i|_k = c_2 \varepsilon \exp(8^k u(1)) \leq 1/2$. Then $\lim_n e_i |t_1 \ldots t_n|_i = 0$. But $e_i |t_1 \ldots t_n|_i = e_i \exp(8^k u(n))$, and the right hand term, in view of (6), tends to infinity for each positive ε. The conclusion follows.

As corollaries we obtain the following results.

Theorem 2. There exists a non-m-convex algebra A on which all entire functions operate.

Proof. Let A be the algebra constructed in Theorem 1. Let $\varphi(c_i) = \sum_n a_n c_n^i$ be an entire function. Then (15) implies

$$\sum_n a_n x^n |_i \leq C_j \sum_n a_n \|x\|_{j+1}^m < \infty$$

for all x in A. Thus all entire functions operate on the algebra A, which is non-m-convex.

If we wish to have in Theorem 2 an algebra with unit element, we just take the unitization A_1 of A. It is a non-m-convex algebra, and every commutative subalgebra of A_1 is m-convex, being the unitization of an m-convex algebra (see the Corollary below). Thus all entire functions operate on A_1.

Corollary. There exists a non-m-convex B_0-algebra with all commutative subalgebras m-convex.

Theorem 3. There exists a non-m-convex B_0-algebra which is a Q-algebra.

Proof. Let A be the algebra of Theorem 1 and let x be an element in A. Then $\lim_n |2^n x^n|_i = 0$ for every j, and so there is a positive constant C_j such that $|2^n x^n|_i \leq C_j$ for all n. This implies

$$\sum_{n=1}^{\infty} |2^n x^n|_i \leq \sum_{n=1}^{\infty} \frac{C_j}{2^n} < \infty$$

and the element x has quasi-inverse $\sum_{n=0}^{\infty} (-1)^n x^n$. Thus A is a Q-algebra.

The radical of a non-commutative algebra with unit is the intersection of all its maximal left ideals (equal to the intersection of all its maximal right ideals). Let A_1 be the unitization of the algebra A of Theorem 1, with unit e. Every element of A_1 of the form $\lambda e + x$, where $x \in A$ and λ is a non-zero scalar, is invertible with inverse $\sum_{n=0}^{\infty} (\lambda e + x)^n$. Thus every non-invertible element of A_1 is in A, and so A is the only (two-sided, or one-sided) maximal ideal of A coinciding with its radical. Thus we have

Theorem 4. There exists a non-m-convex B_0-algebra with closed radical which is not m-convex.

References

Index of Volumes 101–110

Aimar, H.
(with L. Forstani) Weighted weak type inequalities for certain maximal functions; 101 (1992), 105–111.
(with L. Forstani) On continuity properties of functions with conditions on the mean oscillation; 106 (1993), 139–151.

Albrecht, D. W.
Integral formulas for special cases of Taylor’s functional calculus; 105 (1993), 51–68.

Alsmeyer, G.

Alvarez, J.

Ancel, F. D.

Arguin, Z.

Arhippainen, J.

Asmar, N.
(with E. Berkson, J. Bourgain) Restrictions from R^n to Z^n of weak type (1,1) multipliers; 108 (1994), 291–299.

Aubertin, B.

Aupetit, B.

Auscher, P.
(with M. J. Carro) On relations between operators on R^N, ℓ^N and Z^N; 101 (1992), 165–182.