A weighted vector-valued weak type \((1, 1)\) inequality and spherical summation

by

SHUICHI SATO (Kanazawa)

Abstract. We prove a weighted vector-valued weak type \((1, 1)\) inequality for the Bochner–Riesz means of the critical order. In fact, we prove a slightly more general result.

1. Introduction. For a nonnegative function \(w\) on \(\mathbb{R}^n\) \((n \geq 2)\), let \(L^p_w(\mathbb{R}^n) = \{f : \|f w^{1/p}\|_p = \|f\|_{p,w} < \infty\}\) be the weighted \(L^p\) space and let \(L^{1,\infty}_w\) be the weighted weak \(L^1\) space. We write for \(f \in L^{1,\infty}_w\),

\[
\|f\|_w^* = \sup_{\lambda > 0} \lambda w(\{x : |f(x)| > \lambda\}),
\]

where \(w(E) = \int_E w\). Next for \(R > 0\) let

\[
S^\delta_R(f)(x) = \int_{\mathbb{R}^n} f(\xi)(1 - |\xi|^2)^{\delta - R^2} e^{i2\pi\xi \cdot x} d\xi
\]

be the Bochner–Riesz means of order \(\delta\). In this note we shall prove a weighted vector-valued version of Christ [1, Theorem 1].

Theorem 1. Let \(w(x) = |x|^\beta, -n < \beta \leq 0\), and let \(\alpha = (n - 1)/2\) be the critical index. Then for a sequence \(\{R_k\}\) of positive numbers, we have

\[
\|\left(\sum |S^\delta_{R_k}(f_k)|^2 \right)^{1/2} \|_w^* \leq c \left(\sum |f_k|^2 \right)^{1/2} \|_1,w.
\]

See [2, 3, 4, 10] for related results. We shall prove a more general result. Following [3], we consider a sequence \(\{T_k\}\) of bounded linear operators on \(L^2\) such that there exists a sequence \(\{K_k\}\) of kernels satisfying

\[
(T_k(f), g) = \iint g(x)f(y)K_k(x - y) dy \, dx
\]

for \(f, g \in C_0^\infty\) with disjoint supports. Furthermore, we assume the following.

(1.1) The operators \(T_k\) are bounded on \(L^2_w\) and \(\sup_k \|T_k\|_{2,w} = c_1 < \infty\), where \(\| \cdot \|_{2,w}\) denotes the operator norm.

\[1991\ Mathematics\ Subject\ Classification:\ Primary\ 42B05,\ 42B10.\]
(1.2) The kernels K^k can be written in polar coordinates as

$$K^k(r, \theta) = r^{-n} \Omega^k(r, \theta),$$

where $\sup_{r, \theta, k} (\Omega^k(r, \theta) + |b_k \Omega^k(r, \theta)|) = c_2 < \infty$.

Then we can obtain a weighted vector-valued version of a special case of
[3, Theorem 4].

Theorem 2. Let $w(x) = |x|^\beta, -n < \beta \leq 0$, and $\{T_k\}$ be as above. Then there exists a constant c depending only on c_1, c_2, n and w such that

$$\left\| \left(\sum_k |T_k(f_k)|^2 \right)^{1/2} \right\|_{L^1} \leq c \left\| \left(\sum_k |f_k|^2 \right)^{1/2} \right\|_{L^1}.$$

Theorem 1 immediately follows from Theorem 2. In the rest of this note, we consider only a weight w as in Theorems 1 and 2. As a consequence of Theorem 1 for $R_k = 2^k$, by a standard argument we have the following.

Corollary 1. Define

$$\sigma(f)(x) = \left(\sum_{k \in \mathbb{Z}} |S^{\alpha+1}_k f (x) - S^\alpha_k f (x)|^2 \right)^{1/2}.$$

Then $\sigma(f)(x) \leq c \|f\|_{H^\alpha}$, where H^α denotes the weighted Hardy space (see [14]).

Here we give a sketch of the proof. First we note that there are $\hat{\phi}, \hat{\psi} \in C_0^\infty$ such that $\hat{\phi}(0) = \hat{\psi}(0) = 0$ and

$$S^{\alpha+1}_k f (x) - S^\alpha_k f (x) = f * \phi_R + S^\alpha_k (f * \psi_R),$$

where $g_n(x) = R^n g(Rx)$. Then we have

$$\sigma(f) \leq \left(\sum |f * \varphi_{2^k}|^2 \right)^{1/2} + \left(\sum |S^\alpha_k (f * \psi_{2^k})|^2 \right)^{1/2}.$$

By Chebyshev’s inequality, Theorem 1 and the Littlewood-Paley inequality for H^α, we obtain the assertion of Corollary 1.

By Corollary 1 we have the following.

Corollary 2. Let $S^\alpha_k (f)(x) = \sup_{|\xi| \leq 2^k} |\hat{S}_k f (\xi)|$. Then

$$\|S^\alpha_k (f)\|_{L^1} \leq c \|f\|_{H^\alpha}.$$

The inequality $S^\alpha_k (f) \leq S^{\alpha+1}_k (f) + \sigma(f)$ proves the corollary. From this we obtain almost everywhere convergence of the lacunary Bochner–Riesz means for H^α. See [13] and also [7], [8], [16, Chap. XV]. We can prove in the same way a continuous analogue of Theorem 1 where L^2 is replaced by $L^2((0,\infty), dR/R)$. Using this, we obtain the following similarly to Corollary 1.

Corollary 3. Let $f \in H^\alpha_w$. Then $\|\sigma(f)(x)\|_{L^1} \leq c \|f\|_{H^\alpha}$, where

$$\sigma(f)(x) = \left(\int_0^\infty |S^{\alpha+1}_k (f)(x) - S^\alpha_k (f)(x)|^2 \frac{dR}{R} \right)^{1/2}.$$

See [6] for the pointwise equivalence between σ and other square functions.

The proof we shall give below is a combination of arguments of Christ–Rubiño de Francia [3] and Hofmann [5]. Theorems 1 and 2 and their corollaries for $w = 1$ can be found in [9].

2. Outline of proof of Theorem 2. Let $L^\infty_{\lambda}(L^2)$ be the space of λ^∞-valued functions $f = (f_k)$ such that $f_k \in L^\infty_{\lambda}$, where \cdot_λ denotes the λ^∞ norm. We also write $\|f\|_{\lambda, w} = (\int |f|^2 w \, dx)^{1/p}$ for the norm of $f \in L^\infty_{\lambda}(L^2)$ and when $w = 1$ this norm is denoted by $\| \cdot \|_\lambda$ (this will not cause any confusion).

Let $f = (f_k) \in L^\infty_{\lambda}(L^2) \cap L^2_{\lambda}(L^2)$ and $\lambda > 0$. We use a Calderón–Zygmund decomposition, i.e., a collection $\{Q\}$ of nonoverlapping dyadic cubes and a decomposition $f = g + b$, $b = \sum b_Q$, with the following properties:

$$w(\bigcup Q) \leq c \|f\|_{L^2}/\lambda,$$

$$\|b_Q\|_1 \leq c \lambda|Q|, \quad \int b_Q = 0, \quad b_Q \text{ is supported on } Q.$$

Define $S(f) = (T_k(f_k))$. Then by (1.1), S is bounded on $L^2_{\lambda}(L^2)$. Thus by (2.1) we have

$$w(\{ |S(g)|_2 > \lambda \}) \leq \lambda^{-2} \|S(g)^2\|_{L^2_{\lambda}} \leq c \lambda^{-2} \|g\|^2_{L^2_{\lambda}} \leq c \lambda^{-2} \|f\|_{L^2},$$

so that, by (2.2), Theorem 2 follows from

$$\|w(\{ x \in \mathbb{R}^n \cap E^* : |S(b)(x)|_2 > \lambda \}) \|_1 \leq c \|f\|_{L^2},$$

where $E^* = \bigcup Q^*$ with Q^* denoting the cube with the same center as Q and with sidelength 2^{10+n} times that of Q.

Let $\eta \in C_0^\infty$ be radial $(\eta(x) = \eta_0(|x|))$, nonnegative and such that $\text{supp}(\eta) \subset \{ 1/4 \leq |x| \leq 4 \}$ and $\sum_{j \in \mathbb{Z}} \eta(2^{-j} x) = 1$ for $x \in \mathbb{R}^n \setminus \{ 0 \}$. Define $K_j(x) = (\eta(2^{-j} x)) K^k(x)$. Then to obtain (2.4) it is sufficient to prove that

$$\left\| \sum_j K_j * B_{j-\delta} \right\|_{L^2_{\lambda}} \leq c \lambda^{-\delta} \|f\|_{L^2}$$

for all $\delta > n + 4$ with some $\delta > 0$, where $B_j = \sum_{|\xi| = 2^j} b_Q$, the convolution is defined by $f * g(x) = (f_k * g_k(x))$ for $f = (f_k), g = (g_k)$ and by our
construction of the exceptional set E^* we may assume that $s > n + 4$. (See [3].)

Now using the Schwarz inequality, we see that

$$\left\| \sum_j K_j * B_{j-s} \right\|_{L^2, w}^2 \leq c \sum_j \left| (K_j * B_{j-s})_w \right| + c \sum_j \sum_i \left| (K_j * B_{j-s}, K_i * B_{i-s})_w \right|,$$

where $(,)_w$ denotes the inner product of the Hilbert space $L^2_w(\mathbb{R}^d)$. Let $K_j = (K_f^j)$, $B_i = (B_{i}^f)$. Then

$$\langle K_j * B_{j-s}, K_i * B_{i-s} \rangle = \sum_k \int K_j^k * B_{j-s}(x) \overline{K_i^k} * B_{i-s}(x) w(x) \, dx$$

$$= \sum_k \int K_j^k(x-y) B_{j-s}^*(y) dy \int \overline{K_i^k}(x-z) B_{i-s}^*(z) w(x) \, dx$$

$$= \sum_k \int B_{j-s}(y) \int \overline{K_i^k}(x-y) K_j^k(x-z) w(x) \, dx dy$$

$$= \sum_k \int B_{j-s}(y) \int \overline{K_i^k}(x-y) w(x) \, dx dy$$

$$= \int \langle B_{j-s}(y), B_{i-s} * L_{i}^f(y) \rangle_2 dy,$$

where $K^k(x) = K_f^k(-x)$, $w_i(x) = w(x+y)$, $L_{i}^f(x) = (K_f^i \overline{w}_y * K_f^i)(x)$ and \langle , \rangle_2 denotes the inner product in L^2.

Next, let $B_{1, j-s} = \sum_b Q_b$, where $b Q$ ranges over the collection of those $b Q$ which satisfy supp$(b Q) \subset \{ 2^{j-3} \leq |x| \leq 2^{j+3} \}$ and $|Q| = 2^n(j-s)$. Then following Hofmann [5], we make a decomposition

$$B_{j-s} = B_{1, j-s} + B_{2, j-s}.$$

We note that since $s > n + 4$, if $B_{2, j-s} = \sum b Q$, then each Q is contained in $\{ 2^{j-4} \leq |x| \leq 2^{j+4} \}$. We shall prove (2.5) for $B_{1, j-s}$ and $B_{2, j-s}$ separately. By the above expression of $(K_j * B_{1,j-s}, K_i * B_{i-s})_w$ and the inequality $\sum_j \left\| B_{j-s} \right\|_{L^2, w} \leq c \| f \|_{L^2, w}$, for this it is sufficient to prove the following results.

Lemma 1. Let $y \in \text{supp}(B_{1, j-s})$. Then

$$\left\| B_{1, j-s} * L_{i}^f(y) \right\|_2 \leq c \lambda 2^{-s \epsilon} w(y).$$

Lemma 2. Let $y \in \text{supp}(B_{2, j-s})$. Then

$$\left\| B_{2, j-s} * L_{i}^f(y) \right\|_2 \leq c \lambda 2^{-s \epsilon} w(y).$$

Lemma 3. Let $y \in \text{supp}(B_{1, j-s})$. Then

$$\left| B_{1, j-s} * L_{i}^f(y) \right|_2 \leq c \lambda 2^{-s \epsilon} w(y).$$

Lemma 4. Let $y \in \text{supp}(B_{2, j-s})$. Then

$$\left| B_{2, j-s} * L_{i}^f(y) \right|_2 \leq c \lambda 2^{-s \epsilon} w(y).$$

We observe that by dilation invariance, to prove these lemmas we may assume that $j = 0$. Thus in the following sections, we shall give the proofs only for $j = 0$, and then we shall use a (vector-valued) version of [3, Lemma 6.1].

Let $E = (E^k)$ and $F_i = (F_{i}^k)$ be kernels which can be written in polar coordinates as

$$E^k(r, \theta) = r^{-n} \rho^k(r, \theta) \eta_0(r), \quad F_{i}^k(r, \theta) = r^{-n} \rho_{i}^k(r, \theta) \eta_0(2^{-i} r).$$

We assume that

$$(2.6) \sup_{r, \theta} | \rho^k(r, \theta) | + | \partial_r \rho^k(r, \theta) | \leq 1 \quad \text{uniformly in } k,$$

$$(2.7) \sup_{r, \theta} | \rho_{i}^k(r, \theta) | + | \partial_r \rho_{i}^k(r, \theta) | \leq 1 \quad \text{uniformly in } k.$$

Then we have the following (see [3, Lemma 6.1]).

Lemma 5. Let $x \in \mathbb{R}^n \setminus \{ 0 \}$, $|h| < |x|/2$. Then

(a) $|E * F_i(x + h) - E * F_i(x)|_\infty \leq c |h|^{1/2}$ (i \leq -10),

(b) $|E * F_0(x + h) - E * F_0(x)|_\infty \leq c |h|^{1/2} |x|^{-3/2}$.

We shall give a sketch of the proof in §7 for completeness.

3. Proof of Lemma 1. Let $\zeta \in C_0^\infty(\mathbb{R})$ be nonnegative and such that $\zeta(r) = 1$ if $1/4 \leq r \leq 4$ and supp$(\zeta) \subset \{ 1/6 \leq r \leq 6 \}$. We define

$$K^\zeta(x) = (K_f^\zeta(x) \overline{w}_y(x)) = (r^{-n} \omega_{i}^\zeta(r, \theta) \eta_0(r)), $$

where $\omega_{i}^\zeta(r, \theta) = \overline{K_{i}^\zeta(r, \theta) r^{-\theta} \zeta(\theta) \eta_0(\theta)}$. Then $L_{i}^\zeta(x) = K^\zeta * K_{i}(x)$.

Sublemma 1. Let $y \in \text{supp}(B_{1, j-s})$. Then

(a) $\sup_{k, r, \theta} | \omega_{i}^\zeta(r, \theta) | \leq c |y|^\beta,$

(b) $\sup_{k, r, \theta} | \partial_r \omega_{i}^\zeta(r, \theta) | \leq c |y|^\beta.$

Proof. If $y \in \text{supp}(B_{1, j-s})$, then $|y| \leq 2^{-3}$ or $|y| \geq 2^{3}$. Thus for $r \in [1/5, 6]$, we have $|y - r \theta| \approx |y/1|$, so that

$$|y - r \theta| \leq c \max(|y/1|, 1) \leq c |y|^\beta.$$
Combined with (1.2), this proves (a). Similarly we have
\[|\partial_\theta \omega^\delta_r(r, \theta) | \leq c (|y - r \theta| + |y - r \theta|^{\beta - 1}) \zeta(r) \]
\[\leq c \max(|y|, 1)^{\beta} + c \max(|y|, 1)^{\beta - 1} \leq c \max(|y|, 1)^{\beta} \leq c |y|^{\beta}, \]
proving (b).

By Lemma 5 and Sublemma 1 we have the following.

Sublemma 2. Let \(y \in \text{supp}(B_{1, -s}) \), \(x \in \mathbb{R}^n \setminus \{0\} \) and \(|h| < \frac{|x|}{2} \). Then
\[
\begin{align*}
(4.1) & \quad |L^0_{y} (x + h) - L^0_{y} (x)|_{\infty} \leq \alpha y (|y|) |y|^{2 - s} |h|^{1/2} \quad (i \leq -10), \\
(4.2) & \quad |L^0_{y} (x + h) - L^0_{y} (x)|_{\infty} \leq \alpha y (|y|) |h|^{1/2} |x - y|^{-s/2}.
\end{align*}
\]

Now we prove Lemma 1. Denote by \(c_Q \) and \(d(Q) \) the center and the diameter of a cube \(Q \), respectively. Then for \(s > n + 4 \) and \(y \in \text{supp}(B_{1, -s}) \), we have
\[
\sum_{i \leq -10} \left| \int B_{1, -s} (x) L^0_{y} (y - z) \, dz \right|_{2}^2 = \sum_{i \leq -10} \left| \sum_{Q \subset Q} \int b_Q (z) L^0_{y} (y - z) \, dz \right|_{2}^2,
\]
where \(\int f(z) g(z) \, dz = \int f(z) g(z) \, dz \) for \(f = (f_k), \ g = (g_k) \). By Sublemma 2(a), (2.3) and Minkowski's inequality, this is majorized by
\[
\sum_{i \leq -10} \sum_{Q \subset Q} \left| \int b_Q (z) L^0_{y} (y - z) - L^0_{y} (y - c_Q) \right|_{2}^2 \leq c \sum_{i \leq -10} \sum_{Q \subset Q} \int \left| b_Q (z) \right| |z - c_Q|^{1/2} w(y) |y|^{2 - s/2} \, dz
\]
\[
\leq c \lambda \int w(y)^{2 - s/2} \sum_{Q \subset Q} \left| Q \right| \leq \lambda \int w(y)^{2 - s/2} \, w(y),
\]
where in the last summation, \(Q \) ranges over a family of nonoverlapping dyadic cubes contained in \(\{ x : |x - y| < 100 \} \). This completes the proof of Lemma 1.

4. Proof of Lemma 2. Let \(\mu, \nu \in C^\infty_0 (\mathbb{R}^n) \) be radial, nonnegative and such that \(\mu(x) + \nu(x) = 1 \) for all \(x \in \mathbb{R}^n \), supp(\(\mu \)) \(\subset \{ x : |x| \leq 1 \} \) and \(\mu(x) = 1 \) if \(|x| \leq 1/2 \). Let
\[
\omega^\delta_r(x) = w(x + y) \mu(2^s (x + y)) \quad \text{and} \quad w^\delta_r(x) = w(x + y) \nu(2^s (x + y))
\]
with \(\delta > 0 \) which will be specified later. We decompose \(L^0_{y} \) as \(L^0_{y} = M^0_{y} + N^0_{y} \), where
\[
M^0_{y} (x) = (\tilde{K}^0_{y} w^0_{y} * K^1_{y} (x)), \quad N^0_{y} (x) = (\tilde{K}^0_{y} w^1_{y} * K^1_{y} (x)).
\]
Let \(y \in \text{supp}(B_{2, -s}) \). We note that \(|y| \approx 1 \). Thus in order to prove Lemma 2 it is sufficient to prove
\[
\sum_{i \leq -10} |B_{2, i - s} * M^0_{y} (y)| \leq c \lambda \int w(x) \mu(2^s x) \, dx \| B_{2, i - s} \|_1
\]
and
\[
\sum_{i \leq -10} |B_{2, i - s} * N^0_{y} (y)| \leq c \lambda \int w(x) \nu(2^s x) \, dx \| B_{2, i - s} \|_1.
\]
First we prove (4.1). Since \(|x| \leq 2^{i+4} \) if \(x \in \text{supp}(B_{2, i - s}) \), we have
\[
|B^2_{2, i - s} * (\tilde{K}^0_{y} w^0_{y} * K^1_{y} (y))| = \int B_{2, i - s} (x) \int |y| - |x| \leq c 2^{i}
\times w(x - y) \mu(2^s (x - y)) K^1_{y} (y - x) \, dx \, dz \leq c 2^{-i} \int |B_{2, i - s} (x)| \, dx \int w(x) \mu(2^s x) \, dx.
\]
Thus by Minkowski's inequality we have
\[
|B_{2, i - s} * M^0_{y} (y)| \leq c 2^{-i} \int w(x) \mu(2^s x) \, dx \| B_{2, i - s} \|_1 \leq c \lambda \int w(x) \mu(2^s x) \, dx,
\]
where we have used
\[
\| B_{2, i - s} \|_1 \leq c \lambda \int |Q| \leq c \lambda 2^{ni},
\]
which holds since in the last summation \(Q \) ranges over a family of nonoverlapping dyadic cubes contained in \(\{ 2^{i-4} \leq |x| \leq 2^{i+4} \} \). Thus
\[
\sum_{i \leq -10} |B_{2, i - s} * M^0_{y} (y)| \leq c \lambda \sum_{i \leq -10} \int w(x) \mu(2^s x) \, dx \leq c \lambda \sum_{i \leq -10} \int |x| \mu(2^s x) \, dx \leq \lambda \sum_{2^{i-4} \leq |x| \leq 2^{i+4}} \int |x| \mu(2^s x) \, dx \leq c \lambda \int \nu(2^s x) \sum_{2^{i-4} \leq |x| \leq 2^{i+4}} 2^{s} \delta \nu(2^{s} 2^{i+4}) \leq c \lambda 2^{-s} \lambda 2^{s(n+\beta)},
\]
which proves (4.1).

Next we prove (4.2). Let
\[
J^\nu (x) = (\tilde{K}^0_{y} (x) w(x - y) \nu(2^s (x - y))) = (r^{-n} \sigma^\nu_r (x, \theta) \eta_r (\theta)),
\]
where $\sigma_k^2(r, \theta) = \overline{p_k}(r, -\theta) - r^\beta |y - r\theta|^{\beta_0} |2^{s_\theta} |y - r\theta| |\zeta(r), \nu_0(|x|) = \nu(x)$ and ζ is as in (3). Then $N_{00}^\psi(z) = J_0^\psi K_1^\psi(z)$. In order to apply Lemma 5 we use the following obvious estimates.

Sublemma 3. Let $y \in \text{supp}(B_{2,-s})$. Then
(a) $\sup_{k, r, \theta} \sigma_k^2 (r, \theta) \leq c \delta^{s_\theta},$
(b) $\sup_{k, r, \theta} \{\vartheta \sigma_k^2 (r, \theta) \leq c \delta^{s_\theta - \beta + 1} \delta^s.$

By Lemma 5 and Sublemma 3 we have the following.

Sublemma 4. Let $y \in \text{supp}(B_{2,-s}), x \in \mathbb{R}^n \setminus \{0\}$ and $|h| < |x|/2$. Then
(a) $|N_{00}^\psi(z + h) - N_{00}^\psi(x)|_\infty \leq c \delta^{1/2 s_\theta - \beta + 1} \delta^s$ \quad \left(\begin{array}{ll} (i) \leq 10, \end{array} \right.$
(b) $|N_{00}^\psi(x + h) - N_{00}^\psi(x)|_\infty \leq c |h|^{1/2} |x|^{-3/2} \delta^{s_\theta - \beta + 1} \delta^s.$

We first see that
\[
\sum_{i \leq -10} |B_{2,-s} * N_{00}^\psi(y)|_2 \leq \sum_{i} \sum_{|q - y| < d(Q)} \int b_Q(x) N_{00}^\psi(y - z) \, dz \bigg|_2 \\
+ \sum_{i} \sum_{|q - y| \geq d(Q)} \int b_Q(x) N_{00}^\psi(y - z) \, dz \bigg|_2 \\
= I + II, \quad \text{say}.
\]

By Sublemma 3(a) we have $\sup_{x} |N_{00}^\psi(x)|_\infty \leq c \delta^{s_\theta - \beta}. \quad \text{Thus by Minkowski's inequality and (2.3) we see that}$
\[
I \leq c \delta^{s_\theta - \beta} \sum_{i} \sum_{|q - y| < d(Q)} \int |b_Q(x)|_2 \, dz \\
\leq c \lambda \delta^{s_\theta - \beta} \sum_{i} \sum_{|q - y| < d(Q)} |Q| \\
\leq c \lambda \delta^{s_\theta - \beta} \sum_{i} 2^{n(1-s_\theta)} \leq c \lambda \delta^{s_\theta - \beta} 2^{-n s_\theta}.
\]

Next, using Sublemma 4(a), (2.3) and Minkowski's inequality, we have
\[
II \leq \sum_{i} \sum_{|q - y| \geq d(Q)} \int b_Q(x) (N_{00}^\psi(y - z) - N_{00}^\psi(y - c_Q)) \, dz \bigg|_2 \\
\leq c \sum_{i} \sum_{Q} \int |b_Q(x)|_2 |x - c_Q|^{1/2} \delta^{s_\theta - \beta + 1} \delta^s \, dz \\
\leq c \lambda \delta^{s_\theta - \beta} 2^{s_\theta - \beta + 1} \delta^s \sum_{i} |Q| \leq c \lambda \delta^{s_\theta - \beta} 2^{s_\theta - \beta + 1} \delta^s,
\]
where the last inequality follows as in the proof of Lemma 1. Combining the estimates for I, II and taking δ small enough, we obtain (4.2).

5. Proof of Lemma 3. Let $y \in B_{2,-s}$. Then
\[
|B_{2,-s} * L_{00}^\psi(y)|_2 \leq \sum_{|c - y| < d(Q)} \left| \int b_Q(x) L_{00}^\psi(y - z) \, dz \right|_2 \\
+ \sum_{|c - y| \geq d(Q)} \int b_Q(x) L_{00}^\psi(y - z) \, dz \\
= I + II, \quad \text{say}.
\]

By Sublemma 1(a) we have $\sup_{x} |L_{00}^\psi(x)|_\infty \leq cw(y). \quad \text{Thus by Minkowski's inequality we see that}$
\[
I \leq cw(y) \sum_{|c - y| < d(Q)} \|b_Q\|_2 \leq c \lambda \omega(y) \sum_{Q} \|Q| \leq c \lambda \omega(y) 2^{-s n}.
\]

Next by Sublemma 2(b), (2.3) and Minkowski's inequality, we have
\[
II \leq \sum_{|c - y| \geq d(Q)} \int b_Q(x) (L_{00}^\psi(y - z) - L_{00}^\psi(y - c_Q)) \, dz \bigg|_2 \\
\leq c \sum_{Q} \int \left| b_Q(x) \right||\omega(y)|z - c_Q|^{1/2} |c_Q - y|^{-3/2} \, dz \\
\leq c \lambda \omega(y) 2^{-s n} \sum_{Q} |Q| |c_Q - y|^{-3/2}.
\]

If $|c_Q - y| \geq d(Q)$, we have $|c_Q - y| = |x - y|$ for $x \in Q$. Thus
\[
II \leq c \lambda \omega(y) 2^{-s n} \sum_{Q} \int |x - y|^{-3/2} \, dx \leq c \lambda \omega(y) 2^{-s n} \int_{B} \left| x \right|^{-3/2} \, dx,
\]

where B is a fixed bounded set. Combining the estimates for I and II, we obtain the conclusion of Lemma 3.

6. Proof of Lemma 4. Let M_{00}^ψ and N_{00}^ψ be as in (4.1). Then to obtain Lemma 4, it is sufficient to prove the following estimates for $y \in B_{2,-s}$:

(6.1) $|B_{2,-s} * M_{00}^\psi(y)|_2 \leq c \lambda 2^{-s}$,

(6.2) $|B_{2,-s} * N_{00}^\psi(y)|_2 \leq c \lambda 2^{-s}$.

We first prove (6.1). As in the proof of (4.1) we see that
\[
|B_{2,-s} * M_{00}^\psi(y)|_2 \leq c \int \left| w(x) \mu (2^{s_\theta}) \, dx \right| / |B_{2,-s}|_1 \\
\leq c \lambda 2^{-s_\theta (n + \beta)} \sum |Q| \leq c \lambda 2^{-s_\theta (n + \beta)},
\]
since in the last summation Q ranges over a family of cubes contained in a fixed bounded set. This proves (6.1).
Next we prove (6.2). First we have
\[
|B_{2,-2} \ast N_{00}(y)|_{2} \leq \left| \sum_{|c_{0}-y|<d(Q)} \int b_{Q}(z)N_{00}(y-z)\,dz \right|_{2} + \left| \sum_{|c_{0}-y|\geq d(Q)} \int b_{Q}(z)N_{00}(y-z)\,dz \right|_{2} = I + II, \quad \text{say.}
\]
Since \(\sup_{x} |N_{00}(x)|_{\infty} \leq c_{2}^{-s/2} \) by Sublemma 3(a), using Minkowski’s inequality and (2.3), we see that
\[
I \leq c_{2}^{-s/2} \sum_{|c_{0}-y|<d(Q)} \|b_{Q}\|_{1} \leq c_{2}^{-s/2} \sum_{|c_{0}-y|<d(Q)} |Q| \leq c_{2}^{-s/2} 2^{-s}. \]

Next by Sublemma 4(b), (2.3) and Minkowski’s inequality, arguing as in §5 we have
\[
II = \left| \sum_{|c_{0}-y|\geq d(Q)} \int b_{Q}(z)(N_{00}(y-z) - N_{00}(y-c_{0}))\,dz \right|_{2} \\
\leq c_{2} \sum_{|Q|\geq d(Q)} \int |b_{Q}(z)| \left| z - c_{0} \right|^{1/2} |y - c_{0}|^{-3/2} 2^{(\theta-1)\delta} \,dz \\
\leq c_{2} 2^{-s/2} 2^{(\theta-1)\delta} \sum_{|Q|\geq d(Q)} |Q| |y - c_{0}|^{-3/2} \leq c_{2} 2^{-s/2} 2^{(\theta-1)\delta}.
\]
Combining the estimates for \(I \) and \(II \) and taking \(\delta \) small enough, we obtain (6.2).

7. Sketch of proof of Lemma 5. We fix \(k \) and write \(E = E^{k}, F_{1} = F_{1}^{k}, \Phi = \Phi^{k}, \Psi = \Psi^{k} \). Then
\[
(7.1) \quad E \ast F_{1}(z) = c \int_{0}^{\infty} \int_{0}^{\infty} (\Phi_{s} \ast \sigma_{s})(x)_{\eta_{0}}(r)_{\eta_{0}}(2^{-s})_{r} \,dr \,ds, \]
where \(\Phi_{s}(\theta) = \Phi(\theta, \theta), \Psi_{s}(\theta) = \Psi(s, \theta) \) and \(\sigma_{r} \) denotes the uniform surface probability measure of the sphere \(\{ x : |x| = r \} \). By (2.6) and (2.7) we have the following result of [3] (see [3, Lemma 6.2]).

Sublemma 5. Let \(r \geq s \) and \(r \in [1/4, 4] \). Then \((\Phi_{s} \ast \sigma_{s})(x) = 0 \) if \(|x| \leq r - s \) or \(|x| > r + s \), and if \(r - s < |x| < r + s \) we have
\[
|\Phi_{s} \ast \sigma_{s}(x)| \leq c(|x|(r + s - |x|)(|x| - r + s))^{-1/2}, \quad \nabla |\Phi_{s} \ast \sigma_{s}(x)| \leq c(|x|(r + s - |x|)(|x| - r + s))^{-3/2}. \]

When \(r \geq s \), by a straightforward computation we see that \(\sigma_{r} \ast \sigma_{s}(x) = c_{2} r^{-s-2} \sum_{s-n+2}^{\infty} |x|^{-n+2} ((r + s)^{2} - |x|^{2})^{2} ((x^{2} - (r - s)^{2})^{n-3/2} \text{ if } r - s < |x| < r + s, \text{ and } \sigma_{r} \ast \sigma_{s}(x) = 0 \text{ otherwise.}\) From this, Sublemma 5 follows when \(\Phi_{r} = \Phi_{s} = 1. \) The proof of the general case is similar. We omit the details.

We can prove (a) and (b) of Lemma 5 similarly by using Sublemma 5. Here we only give the proof of (b). First we may assume that \(|x| < 100 \) and \(|\theta| < 10^{-10} |x| \) since \(E \ast F_{0} \) is bounded and supported in \(\{|x| \leq 10\} \). Put \(G(r, s, x, h) = (\Phi_{s} \ast \sigma_{s})(x + h) - (\Phi_{r} \ast \sigma_{r})(x) \). Then let
\[
\int_{r}^{\infty} \int_{s}^{\infty} G(r, s, x, h)_{\eta_{0}}(r)_{\eta_{0}}(s)_{\nu_{0}}(s) \,dr \,ds = \int_{r}^{\infty} \int_{s}^{\infty} G(r, s, x, h)_{\eta_{0}}(r)_{\eta_{0}}(s)_{\nu_{0}}(s) \,dr \,ds
\]
and put
\[
J_{1}(s) = \int_{r}^{\infty} \int_{s}^{\infty} G(r, s, x, h)_{\eta_{0}}(r) \,dr, \quad J_{2}(s) = \int_{r}^{\infty} \int_{s}^{\infty} G(r, s, x, h)_{\eta_{0}}(r) \,dr.
\]
Then since \(\text{supp}(\Phi_{s} \ast \sigma_{s}) \subset \{|x| - r - s \leq |x| \leq |r + s| \} \geq s \), we have \(I_{1} = \int_{1/4}^{4} (J_{1}(s) + J_{2}(s))_{\eta_{0}}(s) \,ds \). By Sublemma 5, for \(s \in [1/4, 4] \) we see that \(J_{1}(s) \) is dominated by
\[
c_{2} \int_{1/4}^{4} \left(\left| x + h \right| - |r + s - |x| + h| \right) \left(|x + h| - r + s \right)^{-1/2} \right. \left. + \left(|x| - |r + s - |x| | \right) \left(|x| - r + s \right)^{-1/2} \,dr. \!
\]
By a direct computation, this is bounded by
\[
c_{2} |x|^{-1/2} \int_{|r| < 5|s|} \frac{|r|^{-1/2} \,dr}{|r| < 5|s|} \leq c |x|^{-1/2} |h|^{1/2}. \]
Next by Sublemma 5 and the mean value theorem, via a direct computation, for \(s \in [1/4, 4] \) we see that \(J_{2}(s) \) is bounded by
\[
c_{2} |h| \int_{s-2}^{s+2} \int_{|r| < 5|s|} \frac{|r|^{-1/2} \,dr}{|r| < 5|s|} \leq c |h|^{1/2} |x|^{-3/2}. \]
Collecting the results we have \(I_{1} \leq c |h|^{1/2} |x|^{-3/2} \). We obtain the same estimate for \(I_{2} \). Since these estimates are uniform in \(k \), by (7.1) we obtain Lemma 5(b).
Acknowledgements. I would like to thank the referee for the comment and information, from which I have learned, in particular, that some related results have been obtained in X. Shi and Q. Sun [11], F. Soria and G. Weiss [12] and Ana Vargas [15].

References

DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION
KANAZAWA UNIVERSITY
KANAZAWA, 920-11, JAPAN

Received March 2, 1993
Revised version August 25, 1999

STUDIA MATHEMATICA 109 (2) (1994)

The converse of the Hőlder inequality and its generalizations
by
JANUSZ MATKOWSKI (Bielsko-Biała)

Abstract. Let (Ω, Σ, μ) be a measure space with two sets A, B ∈ Σ such that 0 < μ(A) < 1 < μ(B) < ∞ and suppose that ϕ and ψ are arbitrary bijections of [0,∞) such that ϕ(0) = ψ(0) = 0. The main result says that if
\[\int \phi(x) \, d\mu \leq \phi^{-1} \left(\int \phi \circ x \, d\mu \right) \psi^{-1} \left(\int \psi \circ x \, d\mu \right) \]

for all μ-integrable nonnegative step functions x, y then ϕ and ψ must be conjugate power functions.

If the measure space (Ω, Σ, μ) has one of the following properties:
(a) μ(A) ≤ 1 for every A ∈ Σ of finite measure;
(b) μ(A) ≥ 1 for every A ∈ Σ of positive measure,
then there exist some broad classes of nonpower bijections ϕ and ψ such that the above inequality holds true.

A general inequality which contains integral Hőlder and Minkowski inequalities as very special cases is also given.

Introduction. Let (Ω, Σ, μ) be a measure space. Denote by S = S(Ω, Σ, μ) the linear space of all μ-integrable step functions x : Ω → R and by S_+ the set of all x ∈ S such that x : Ω → R_+ where R_+ = [0,∞). One can easily verify that for every bijective function ϕ : R_+ → R_+ such that ϕ(0) = 0 the functional p_ϕ : S_+ → R_+ given by the formula
\[p_ϕ(x) = \phi^{-1} \left(\int \phi \circ x \, d\mu \right) \quad (x \in S_+) \]

is well defined. In a recent paper [8] the author proved the following converse of Minkowski's inequality.

1991 Mathematics Subject Classification: Primary 46E30, 26D15, 26A51, 39C05.
Key words and phrases: measure space, integrable step functions, conjugate functions, a converse of Hőlder inequality, subadditive function, convex function, generalized Hölder–Minkowski inequality.

Supported by KBN (Poland) grant 2 P301 053 03.