An example of a generalized completely continuous representation of a locally compact group

by

DETL EV POGUNT KE (Bielefeld)

Abstract. There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation π of G such that the image $\pi(C^*(G))$ of the group C^*-algebra contains the algebra of compact operators, while the image $\pi(L^1(G))$ of the L^1-group algebra does not contain any nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a "generalized Heisenberg group".

In [6] the following theorem was proved. Let π be an irreducible continuous unitary representation of a connected Lie group G such that $\pi(C^*(G))$ contains the algebra of compact operators, i.e., π is a generalized completely continuous representation in our terminology (apparently this notion is used in different ways in the literature). Then the image of $L^1(G)$ under π contains orthogonal projections of rank one. After the efforts at proving this result it is hard to imagine that a corresponding theorem is true for general locally compact groups G. There is even no evidence why in general $\pi(L^1(G))$ should contain nonzero compact operators if $\pi(C^*(G))$ does. However, to my best knowledge there is no example in the literature where such a pathology occurs. It is the purpose of this note to provide such an example. Clearly, such groups cannot be connected, but still they will be compactly generated and separable. In [3], Guichardet constructed an example of a discrete group and a generalized completely continuous representation π of this group such that the image of the finitely supported functions under π does not contain nonzero compact operators. In some sense, my example is an extension of his.

The basis of the construction is a discrete group S acting automorphically on a locally compact abelian group H: there is given an homomorphism $\varphi : S \rightarrow \text{Aut}(H)$. Moreover, it is assumed that H contains compact open subgroups. Fix one of them and call it K. Later S, H and K will be specified. The duality between the Pontryagin dual \hat{H} and H is denoted by

1991 Mathematics Subject Classification: 22D20, 22D10, 22D25.
\((\chi, h) = \chi(h) \) for \(h \in H \), \(\chi \in \hat{H} \). The group \(S \) acts on \(\hat{H} \) as well, \(\langle s \chi, h \rangle = (\chi, \varphi(s)^{-1}(h)) \). Using the duality one may form the "generalized Heisenberg group" \(N = H \times \hat{H} \times \mathbb{T} \) with multiplication law
\[
(h, \chi, t)(h', \chi', t') = (h + h', \chi \chi', t' \chi, \varphi(s)(h')^{-1}).
\]
Observe that the abelian group \(H \) is written additively, while the groups \(\hat{H} \) and \(\mathbb{T} \) are written multiplicatively. Associated with \(\varphi \) there is an homomorphism \(\psi : S \to \text{Aut}(N) \) given by
\[
\psi(s)(h, \chi, t) = (\varphi(s)(h), s \chi, st).
\]
Then one may form the semidirect product \(G \) of \(S \) and \(N \), i.e., as a topological space \(G \) is the direct product \(S \times H \times \hat{H} \times \mathbb{T} \), and the multiplication is defined as
\[
(1) \quad (s, h, \chi, t)(s', h', \chi', t') = (ss', \varphi(s)^{-1}(h) + h', ss^{-1} \chi \chi', t' \chi - s(\varphi(s)(h'))^{-1}).
\]
Later we shall consider representations of \(G \) which coincide on the central subgroup \(T \) with the identity map. Hence we define \(\gamma : T \to \mathbb{T} \) by \(\gamma(t) = t \), and we denote by \(L^1(G)_{\gamma} \) the involutive convolution algebra of all \(L^1 \)-functions \(f \) on \(G \) satisfying \(f(x) = \overline{\gamma(t)}f(x) \) for all \(x \in G \) and \(t \in T \) where, of course, \(T \) is identified with \(\{e\} \times \{0\} \times \{1\} \times \mathbb{T} \). The algebra \(L^1(N)_{\gamma} \) is defined similarly; it acts by convolution on \(L^1(G)_{\gamma} \). Moreover, \(S \) acts on \(L^1(N)_{\gamma} \) by \(f'(x) = f(\varphi(s)(x)) \) for \(s \in S \), \(x \in N \) and \(f \in L^1(N)_{\gamma} \).

In [5] it was shown that \(L^1(N)_{\gamma} \) is a simple Banach algebra (this will be discussed in more detail later on) and that it contains "orthogonal projections of rank one". Using the chosen compact open subgroup \(K \) we are going to construct a particular projection \(p \) in \(L^1(N)_{\gamma} \) and to determine the algebra \(p * L^1(G)_{\gamma} \).

Associated with \(K \) there is a compact open subgroup of \(\hat{H} \), namely \((H/K)^{\gamma} \), the annihilator of \(K \). The Haar measures of \(H \) and \(\hat{H} \) are normalized so that \(K \) and \((H/K)^{\gamma} \) have measure one. The function \(p : N \to \mathbb{C} \) is defined by
\[
(2) \quad p(h, \chi, t) = \begin{cases} 1 & \text{if } h \in K \text{ and } \chi \in (H/K)^{\gamma}, \\ 0 & \text{otherwise}. \end{cases}
\]

To describe \(p * L^1(G)_{\gamma} \) we need a certain family \(q_s, s \in S \), of functions in \(L^1(N)_{\gamma} \). Let \(\delta : S \to \mathbb{R}_+^{\times} \) be the modular function of the action of \(S \) on \(H \), which is given by
\[
\int_H \delta_\chi(h) \ d\chi = \int_H f(y) \ dy
\]
for all, say, compactly supported continuous functions \(f \) on \(H \). Choosing \(f \)

to be the characteristic function of \(K \), one sees that
\[
\delta_\chi(h) = |\varphi(s)^{-1}(K)|^{-1} \cdots |\varphi(s)^{-1}(K)|
\]
where \(|X| \) denotes the Haar measure of a measurable subset \(X \) of \(H \). The same notation is used for measurable subsets of \(\hat{H} \). From this description of \(\delta \) one easily derives that
\[
(3) \quad \delta_\chi(h) = \#(\varphi(s)^{-1}(K)/\varphi(s)^{-1}(K) \cap K) \cdot \#(K/\varphi(s)^{-1}(K) \cap K)^{-1}
\]
\[
= \#(K/\varphi(s)(K) \cap K) \cdot \#(K/\varphi(s)^{-1}(K) \cap K)^{-1}
\]
\[
= |\varphi(s)^{-1}(K) \cap K| \cdot |\varphi(s)(K) \cap K|^{-1}
\]
for \(s \in S \).

Observe in passing that \(S \) acts via \(\psi \) on \(N \) in a measure-preserving way.
In particular, one has \(||f^*||_1 = ||f||_1 \) for \(f \in L^1(N)_{\gamma} \), and \(S \) belongs to \(L^1(N)_{\gamma} \). By
\[
(4) \quad \chi_s(l + k) = \chi_l(k) \quad \text{if } l \in \varphi(s)^{-1}(K) \text{ and } k \in K.
\]
Then define \(q_s \in L^1(N)_{\gamma} \) by
\[
(5) \quad q_s(h, \chi, t) = \begin{cases} t^{-1} \chi_s(t^{-1/2}|K \cap \varphi(s)^{-1}(K)|) & \text{if } h \in \varphi(s)^{-1}(K) + K \text{ and } \chi \in (H/K \cap \varphi(s)^{-1}(K))^{\gamma}, \\ 0 & \text{otherwise}. \end{cases}
\]

For each \(s \in S \) the equality
\[
(6) \quad q_s = (q_{s^{-1}})^\ast
\]
holds true for the following reasons: By definition of the involution and the action, one has
\[
(q_{s^{-1}})(h, \chi, t) = q_{s^{-1}}(\varphi(s)(h), \varphi(s)(h), t^{-1}(\chi, h)^{-1}).
\]
This is zero unless \(\varphi(s)(h) \in K + \varphi(s)(K) \), which is equivalent to \(h \in \varphi(s)^{-1}(K) + K \), and \((\chi, h)^{-1} \in (H/K \cap \varphi(s)(K))^{\gamma} \), which is equivalent to \(\chi \in H/K \cap \varphi(s)^{-1}(K) \). If the latter conditions are not satisfied, both functions \((q_{s^{-1}}) \) and \(q_s \) vanish at \((h, \chi, t) \). Suppose that the conditions are satisfied. Write \(h = l + k \) with \(l \in \varphi(s)^{-1}(K) \) and \(k \in K \). Then
\[
q_{s^{-1}}(\varphi(s)(h), \varphi(s)(h), t^{-1}(\chi, h)^{-1})
\]
\[
= t^{-1} \chi_s(l + k) \cdot (\varphi(s)(h), \varphi(s)(h)) |K \cap \varphi(s)(K)|^{-1}
\]
\[
= t^{-1} \chi_s(l + k) \cdot (\varphi(s)^{-1}(K))^{\gamma} \cdot (\varphi(s)(h), \varphi(s)(h)) |K \cap \varphi(s)(K)|^{-1}
\]
\[
= t^{-1} \chi_s(l + k) \cdot (\varphi(s)^{-1}(K))^{\gamma} \cdot |\varphi(s)(K) \cap K|^{-1}
\]
\[
= \delta_\chi(h)
\]
Since \(\varphi(s)(-l-k) = \varphi(s)(-l) + \varphi(s)(-k) \) with \(\varphi(s)(-l) \in K \) and \(\varphi(s)(-k) \in \varphi(s)(K) \) the middle term gives
\[
(s(x^{-1}))(l-k) = (s(x^{-1})), \varphi(s)(-l)) = (x^{-1}, -l).
\]

Hence
\[
(q_{s-1})^{*}(h, x, l = t^{-1}(x, l + k)^{-1}(x, l) |(s(x^{-1}))| |(s(x^{-1}))|^{-1} \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}|.
\]

which gives (5) in view of (3). Since \(q_{s} = p \) one has in particular
\[
p^{*} = p.
\]

The \(L^{1} \)-norm of \(q_{s} \) is easily computed:
\[
||q_{s}|| = \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}| |(s(x^{-1}))|^{-1} \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}|.
\]

From the exact sequence
\[
(H/K)^{\wedge} \rightarrow (H/K \cap \varphi(s)^{-1}(K))^{\wedge} \rightarrow (K/K \cap \varphi(s)^{-1}(K))^{\wedge}
\]

one reads off that
\[
|(H/K \cap \varphi(s)^{-1}(K))^{\wedge}| = |(K/K \cap \varphi(s)^{-1}(K))|^{-1},
\]

hence
\[
||q_{s}|| = \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}|^{-1}.
\]

Since \(\varphi(s)^{-1}(K) = K \) is isomorphic to \(\varphi(s)^{-1}(K)/K \cap \varphi(s)^{-1}(K) \) the number of \(\varphi(s)^{-1}(K) \) in \(K \) equals
\[
|\varphi(s)^{-1}(K)/K \cap \varphi(s)^{-1}(K)| = |\varphi(s)^{-1}(K)| - 1
\]

hence
\[
||q_{s}|| = \delta(s)^{-1/2} |\{K/K \cap \varphi(s)^{-1}(K)\}|^{1/2} = \delta(s)^{-1/2} |\{K/K \cap \varphi(s)^{-1}(K)\}|^{1/2}.
\]

(15) If \(u \) denotes the characteristic function of \(K \) then
\[
\widehat{q}_{u}(h, x) = \delta(s)^{-1/2} u(h, x) u(h, x),
\]

in particular, \(\widehat{p}(h, x) = \hat{q}_{u}(h, x) = u(u h, x) \), for \(h, x \in H \).

If \(h \notin \varphi(s)^{-1}(K) + K \) then \(\widehat{q}_{u}(h, x) = 0 \). Suppose now that \(h = l + k \) with \(l \in \varphi(s)^{-1}(K) \) and \(k \in K \). Then
\[
\widehat{q}_{u}(l + k, x) = \int_{(H/K \cap \varphi(s)^{-1}(K))^{\wedge}} d\chi \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}|^{-1} \delta(s)^{-1/2} \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}^{\wedge} = \delta(s)^{-1/2}.
\]

This integral is zero unless \(k + x \in K \cap \varphi(s)^{-1}(K) \). In that case one obtains
\[
\widehat{q}_{u}(l + k, x) = \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}|^{-1} \delta(s)^{-1/2} |\{H/K \cap \varphi(s)^{-1}(K)\}^{\wedge} = \delta(s)^{-1/2}.
\]
But for a given pair \((h,x)\) in \(H \times H\) the conditions: \(h \in \varphi(s)^{-1}(K) + K\)
and for some (any) decomposition \(h = l + k\) with \(l \in \varphi(s)^{-1}(K)\) and \(k \in K\)
the sum \(k + x\) lies in \(K \cap \varphi(s)^{-1}(K)\), are equivalent to: \(x \in K\) and \(k + x \in \varphi(s)^{-1}(K)\). Therefore, \(\tilde{q}_h\) is of the form as claimed in (15).

To prove \(q^*_h \ast q_x = p\) of (9) one first observes that since, by (13), one has
\[
(q^*_h)^\wedge(h,x) = (\tilde{q}_h)^\wedge(h,x) = \tilde{q}_h(-h,x+h)^{-1}, \text{ it follows that } (q^*_h)^\wedge(h,x) = \\
\left(\delta(s)^{-1/2}u(x+h)u(\varphi(s)(x))\right) \text{ by (15). Using (13) one obtains }
\]
\[
(q^*_h \ast q_x)^\wedge(h,k) = \int_H (q^*_h)^\wedge(h+x,k-x)\tilde{q}_x(-x,k)\,dk
\]
\[
= \int_H \delta(s)^{-1}u(h+k)u(\varphi(s)(k-x))u(k)u(\varphi(s)(k-x))\,dk
\]
\[
= u(h+k)\int_H \delta(s)^{-1}u(\varphi(s)(x))^2\,dx
\]
\[
= \tilde{p}(h,k) \int_H u(x)^2\,dx = \tilde{p}(h,k).
\]

The proof for \(q_x \ast q^*_h = p\) is similar and omitted. To show \(p^* \ast q_x = q_x\) one first uses (14) to obtain
\[
p^\wedge(h,k) = \delta(s)^{-1}\tilde{p}(\varphi(s)(h),\varphi(s)(k))
\]
\[
= \delta(s)^{-1}u(\varphi(s)(k+h))u(\varphi(s)(h+k)).
\]

Hence by (13),
\[
(p^* \ast q_x)^\wedge(h,k) = \int_H p^\wedge(h+x,k-x)\tilde{q}_x(-x,k)\,dx
\]
\[
= \int_H \delta(s)^{-1}u(\varphi(s)(k-x))u(\varphi(s)(h+k))
\]
\[
\times \delta(s)^{-1/2}u(k)u(\varphi(s)(k-x))\,dk
\]
\[
= \delta(s)^{-1/2}u(k)u(\varphi(s)(h+k))\int_H \delta(s)^{-1}u(\varphi(s)(x))^2\,dx
\]
\[
= \tilde{q}_x(h,k).
\]

Also the proof of \(q_x \ast q^*_h \ast p\) is omitted as well as the proof of (11); they are straightforward calculations of the same type.

To show (10) one has to compute \(p^* \wedge * \tilde{f} * \tilde{p}\) for any \(\tilde{f} \in L^1(H, A(H))\).
First one observes that for \(\tilde{f} = \tilde{q}_h\) one has \(p^* \wedge * \tilde{q}_h \ast \tilde{p} = q^*_h\) by (9), hence
\[
p^* \ast L^1(N)_\gamma \ast p \ni Cq_x. \text{ Now let } \tilde{f} \text{ be arbitrary. By (13), }
\]
\[
(\tilde{f} \ast \tilde{p})(h,k) = \int_H \tilde{f}(h+x,k-x)u(k)u(k-x)\,dx,
\]
and by (16) and (13),
\[
(p^\wedge \ast \tilde{f} \ast \tilde{p})(h,k) = \int_H p^\wedge(h+y,k-y)(\tilde{f} \ast \tilde{p})(y-k)\,dy
\]
\[
= \delta(s)^{-1/2}u(\varphi(s)(h+k))u(k)\delta(s)^{-1/2}
\times \int_H \int_H u(\varphi(s)(k-y))u(k-x)\tilde{f}(x-y,k-x)\,dx\,dy.
\]
Substituting \(y' = k-y\) and \(x' = k-x\) yields
\[
(p^\wedge \ast \tilde{f} \ast \tilde{p})(h,k) = \delta(s)^{-1/2}u(\varphi(s)(h+k))u(k)\delta(s)^{-1/2}
\times \int_H \int_H u(\varphi(s)(y))u(x)\tilde{f}(y-x,k-x)\,dx\,dy,
\]
which is \(q^*_h(h,k)\) times a scalar independent of \(h\) and \(k\).

The map \(w : S \to \mathbb{R}\) defined by
\[
w(s) = \|q_s\|_1 = \#(K/K \cap \varphi(s)(K))^{1/2} : \#(K/K \cap \varphi(s)^{-1}(K))^{1/2}
\]
(cf. (8)) is clearly submultiplicative and greater than or equal to one, i.e.,
\[
\text{it is a weight function. For this notion see [7]. Therefore, }
\]
\[
\ell^1(S,w) = \left\{ f : S \to \mathbb{C} \mid \sum_{s \in S} |f(s)|w(s) < \infty \right\}
\]
is a subalgebra of the convolution algebra \(\ell^1(S)\). Moreover, \(w(s^{-1}) = w(s)\), hence \(\ell^1(S,w)\) is an involutive subalgebra of \(\ell^1(S)\).

Using the foregoing notations and formulas one can show the following proposition.

Proposition. The map \(\ell^1(S,w) \to L^1(G)_\gamma, \phi \mapsto \tilde{\phi}\), given by \(\tilde{\phi}(s,h,\lambda,t) = \phi(s)q_h(\lambda,\cdot,t)\) is an isometric \(\ast\)-isomorphism from \(\ell^1(S,w)\) onto \(p \ast L^1(G)_\gamma \ast p\). If \(\pi\) is a continuous unitary representation of \(G\) in \(\mathcal{F}\) with \(\pi(t) = \tau(t)\) for \(t \in T\) then \(\pi\) yields involutive representations of \(L^1(G)_\gamma\) and of \(L^1(N)_\gamma\), also denoted by \(\pi\). The operator \(\pi(p)\) is a nonzero orthogonal projection onto \(\mathcal{F}\). The map \(\ell^1(S,w) \ni \phi \mapsto \pi(\phi(\tau)^{\wedge})\mathcal{F}\) is an involutive representation of \(\ell^1(S,w)\). It is obtained by integrating the unitary representation \(\pi^{\wedge}\) of \(G\) given by \(\pi^{\wedge}(s) = \pi(s)\pi(q_s)^{\wedge}\mathcal{F}\). The representation \(\pi\) is irreducible if \(\pi^{\wedge}\) is.

In case that \(\pi\) is irreducible the following equivalences hold true.
The algebra \(\pi(C^*(G)) \) contains the algebra of compact operators on \(\mathfrak{h} \) iff \(\pi^p(C^*(S)) \) contains the algebra of compact operators on \(\mathfrak{h}^p \). The algebra \(\pi(L^1(G)) \) contains a nonzero compact operator iff \(\pi^p(L^1(S_w)) \) does.

Proof. The equality \(\|\Phi\|_{L^1(G)} = \|\Phi\|_{L^1(S_w)} \) is an immediate consequence of the definitions. To prove the multiplicativity of \(\Phi \mapsto \Phi' \) let \(\Phi, \Psi \in L^1(S, w) \). Then
\[
(\Phi \ast \Psi'(r x) = (\Phi \ast \Psi)(r) q_\gamma(x) \quad \text{for } r \in S, \ x \in N,
\]
and
\[
(\Phi' \ast \Psi') (r x) = \sum_{s \in S} \int_{N} d y \Phi(r x s y) \Psi'((s y)^{-1})
\]
\[
= \sum_{s \in S} \int_{N} d y \Phi'(r s^{-1} x s y) \Psi'(s^{-1} s y^{-1} s^{-1})
\]
\[
= \sum_{s \in S} \int_{N} d y \Phi(r s) q_\gamma(s^{-1} s y) \Psi(s^{-1}) q_\gamma^{-1}(y^{-1})
\]
\[
= \sum_{s \in S} \Phi(r s) \Psi(s^{-1}) (q_\gamma r + q_\gamma^{-1}) (s^{-1} x s).
\]
But \((q_\gamma r + q_\gamma^{-1}) (s^{-1} x s) = (q_\gamma r + q_\gamma^{-1})^* (s^{-1} x s) = (q_\gamma^{-1} r + q_\gamma^{-1}) (s^{-1} x s) = q_\gamma(x) \) by (11). Therefore,
\[
(\Phi' \ast \Psi')(r x) = \sum_{s \in S} \Phi(r s) \Psi(s^{-1}) q_\gamma(x) = (\Phi \ast \Psi)(r) q_\gamma(x)
\]
as desired.

The equality \((\Phi')' = (\Phi')^* \) for \(\Phi \in L^1(S, w) \) is a sufficient consequence of (6), we omit the details. Hence \(\Phi \mapsto \Phi' \) is an isometric \(*\)-isomorphism from \(L^1(S, w) \) into \(L^1(G)_\gamma \).

To show that each \(\Phi' \) is contained in \(p \ast L^1(G)_\gamma \ast p \) it suffices to prove that \(p \ast \Phi' = \Phi' \) and \(\Phi' \ast p = \Phi' \) because \(p \ast p = p \) by (9). But
\[
(p \ast \Phi')(r x) = \int_{N} d y p(y) \Phi'(y^{-1} r x)
\]
\[
= \int_{N} d y p(y) \Phi'(r r^{-1} y^{-1} r x)
\]
\[
= \Phi(r) \int_{N} d y p(y) q_\gamma(r^{-1} y^{-1} r x)
\]
\[
= \Phi(r) \int_{N} d y p(y) q_\gamma(r^{-1}) q_\gamma^{-1}(y^{-1} r x r^{-1}) = \Phi(r) (p \ast q_\gamma^{-1}) (r x r^{-1})
\]
\[
= \Phi(r) (p \ast q_\gamma)(x) = \Phi(r) q_\gamma(x) \quad \text{by (9)}.
\]
Now suppose that \(\pi(C^*(G)) = \pi(L^1(G)) \) contains \(\mathcal{K}(\mathfrak{g}) \) where the closure is taken in the operator norm. In particular, for each \(T \in \mathcal{K}(\mathfrak{g}) \) (the latter space being considered in the most obvious way as a subset of \(\mathcal{K}(\mathfrak{g}) \)) there exists a sequence \(\{\gamma_n\} \) in \(L^1(G) \) such that \(\pi(\gamma_n) \) converges to \(T \). Then \(\pi(p \ast \gamma_n \ast p) \) converges to \(T \). If \(\gamma_n \in \mathcal{L}(S, \mathfrak{g}) \) is determined by \(\mathfrak{g}^n = p \ast \gamma_n \ast p \) then \(\pi(\mathfrak{g}^n) \) converges to \(T \).

Finally, suppose that \(\pi(C^*(S)) \) contains \(\mathcal{K}(\mathfrak{g}) \). Since \(\pi(\mathfrak{g}^n) = \pi(\mathfrak{g}^n) \), for each \(T \in \mathcal{K}(\mathfrak{g}) \) there exists a sequence \(\{\mathfrak{g}^n\} \) in \(\mathcal{L}(S, \mathfrak{g}) \) such that \(\pi(\mathfrak{g}^n) \) converges to \(T \). Then \((\pi(\mathfrak{g}^n)) \) converges to \(T \), hence \(\pi(C^*(S)) \) contains \(\mathcal{K}(\mathfrak{g}) \). By the irreducibility of \(\pi \) it contains all of \(\mathcal{K}(\mathfrak{g}) \).

Remark. By a theorem of Green [2], the \(C^* \) hull \(C^*(G) \) of \(L^1(G) \) is isomorphic to the \(C^* \) tensor product of \(C^*(S) \) and \(\mathcal{K}(L^2(H)) \). This explains why irreducible or reducible generalized completely continuous representations of \(G \) correspond to those of \(\mathcal{K}(\mathfrak{g}) \) as long as the latter are equal to \(\gamma \) on \(T \).

To obtain the desired example the groups \(H, K, S \) and the homomorphism \(\phi : S \to \text{Aut}(H) \) are now specified. Let \(p \) be any prime number, denote by \(Q_p \) the field of \(p \)-adic numbers and by \(Z_p \) the ring of \(p \)-adic integers with its usual topology. We will mainly view \(Q_p \) and \(Z_p \) as locally compact abelian groups under addition; their multiplicative structure is used to define automorphisms.

Let \(H \) be the restricted direct product of copies of \(Q_p \) over the integers with respect to the compact open subgroup \(Z_p \), i.e.,

\[
H = \{ h : Z \to Q_p \mid h(j) \in Z_p \text{ for almost all } j \in Z \}.
\]

The subgroup \(K \) of \(H \) consisting of all maps \(h : Z \to Z_p \), which is isomorphic to \(Z_p^\infty \), is declared to be open in \(H \), and \(K \) is endowed with the product topology. This way \(H \) is a locally compact abelian group.

The group \(S \) is the semidirect product of \(A = \mathbb{Z} \) and \(B = \mathbb{Z}^{(\infty)} \), the direct sum over \(\mathbb{Z} \) of copies of \(\mathbb{Z} \). The multiplication in \(S = A \times B \) is given by

\[
(a, b)(a', b') = (a + a', b''),
\]

where the \(j \)th component of \(b'' \in \mathbb{Z}^{(\infty)} \) is defined by \(b'' = b_{j+1} + b_j \).

Finally, the homomorphism \(\varphi : S \to \text{Aut}(H) \) is defined by

\[
\varphi(a, b)(h)(j) = p^{b_{j+1}}h(j - a).
\]

Altogether, on \(G = A \times B \times H \times T \) endowed with the product topology, the general formula (1) gives a group multiplication

\[
(a, b, h, x, t)(a', b', h', x', t') = (a'' + b''', b''', h''', x''', t''').
\]

where \(a'' = a + a', b'' = b_{j+1} + b_j, h'' = \varphi(a', b)'^{-1}(h) + h', (x', x) = (x, \varphi(a', b)(x))x'(x) \) for \(x \in H \), and \(b'' = t'(x, \varphi(a', b)(x)) - h'(x) \).

Lemma 1. The locally compact group \(G \) is compactly generated and separable, i.e., it has a countable basis of the topology. The weight function \(w \) and the modular function \(\delta \) of the action of \(S = A \times B \) on \(H \) (compare (8) and (3)) are given by

\[
w(a, b) = p^{-\min\{\mathbb{Z}^{(\infty)}|b_j|\}}, \quad \delta(a, b) = p^{-\min\{\mathbb{Z}^{(\infty)}|b_j|\}} \text{ if } b = (b_j) \in B = \mathbb{Z}^{(\infty)}.
\]

Proof. Let \(b_j \in B \) be defined by \(b_0 = 1 \) and \(b_j = 0 \) for \(j \neq 0 \). It is evident that \(S \) is generated by \((1, 0)\) and \((0, b_0)\). Hence the subgroup \(L \) of \(G \) generated by the compact set \(K \times (K/H)^{\infty} \times T \cup \{(1, 0), (0, b_0)\} \) contains \(K \times (K/H)^{\infty} \times T \). Conjugating \(K \times (K/H)^{\infty} \times T \) by elements in \(B \) produces the whole of \(H \times T \). Hence \(L = G \).

The question of separability reduces at once to \(H \) and \(\tilde{H} \). But \(H \) is a countable extension of the compact metrizable group \(K = Z_p^\infty \), hence is separable. Moreover, the group \(H \) is a field. This can be seen as follows. The quotient \(Q_p/Z_p \) is isomorphic to \(\mathbb{Z}[1/p]/\mathbb{Z} \). The latter group can be identified with a subgroup of \(Q/\mathbb{Z} \) or of \(\mathbb{R}/\mathbb{Z} \) which is isomorphic to \(T \) in the usual manner. This way we find a canonical \(\kappa \in Q_p^\times \) with \(\kappa \in Z_p \). Then define \(H \times T \to B \) by

\[
((q_j), (r_j)) \rightarrow \prod_{j=-\infty}^{\infty} \kappa(q_j, r_j).
\]

It is easy to see that this pairing establishes an isomorphism from \(H \) onto \(\tilde{H} \).

The formulas for \(w \) and \(\delta \) follow at once from the fact that for \(n \in \mathbb{Z} \) the cardinality of \(p^nZ_p \cap Z_p \) is one for \(n \leq 0 \) and \(p^n \) for \(n \geq 0 \).

The Pontryagin dual \(\tilde{B} \) is isomorphic to \(\mathbb{T}^\mathbb{Z} \). Each \(z = (z_j) \in \mathbb{T}^\mathbb{Z} \) defines a character \(\eta_z \in \tilde{B} \) by

\[
\eta_z(b) = \prod_{j=-\infty}^{\infty} z_j^{b_j}.
\]

The character \(\eta_z \) extends to a character \(\eta_z \) of the subgroup \(\{0\} \times B \times \{0\} \times \tilde{H} \times T \) of \(G \) by \(\eta_z(0, b, 0, x, t) = t \eta_z(b) \). This character is induced to obtain a representation, say \(\pi_z \), of \(G \). The representation \(\pi_z \) can be realized in \(L^2(A \times H) \) where \(A \times H \) carries the product measure of the Haar measures on \(A = \mathbb{Z} \) and \(H \). One finds that

\[
\pi_z(a, b, h, x, t)z(a', h') = \delta(a, b)^{1/2}t(x, h_\varphi(a', b, h') - \varphi(a - a', 0)(h)) \times \xi(a', \varphi(0, b)(h') - \varphi(0, b')(h)) \times \delta(a, b)^{-1/2}t(x, h_\varphi(a', b, h') - \varphi(a - a', 0)(h))
\]

where \(\beta \in B \) is given by \(\beta_j = -b_{j+1} + a_j - a \).
With \(\pi_x \) there is associated (see the Proposition) a representation \(\pi^p_x \) of \(S = A \times B \) in \(\mathfrak{g}^p \). The space \(\mathfrak{g}^p = \pi^p_x(p)(L^2(A \times H)) \) is easily identified. More generally, we shall compute the operator \(\pi_x(q_a), s \in S \); for the definition of \(q_a \), see (5) and (15).

For \(\xi \in L^2(A \times H) \),

\[
\{ \pi_x(q_a)\xi \}(a', h') = \int dh \int d\xi \int dt \tilde{q}_s(h, \chi, t) \times \tilde{\xi}(h, h') = \int dh \tilde{q}_s(h, \varphi(a', 0)h')(h') \xi(a', h') - \varphi(-a', 0)(h)
\]

Substituting \(h'' = h' - \varphi(-a', 0)(h) \) yields

\[
\{ \pi_x(q_a)\xi \}(a', h') = \delta(s)^{-1/2} \varphi(a', 0)(h') \int d\xi u(\varphi(a', 0)(h')) \xi(a', h).
\]

In particular,

\[
\{ \pi_x(p)\xi \}(a', h') = u(\varphi(a', 0)(h')) \int d\xi u(\varphi(a', 0)(h')) \xi(a', h).
\]

One verifies easily that

(21) The map \(V: L^2(A) \to \mathfrak{g}^p \) defined by

\[
(V\cdot\xi)(a', h') = u(\varphi(a', 0)(h')) \xi(a')
\]

is unitary.

Transferring via \(V \) the representation \(\pi^p_x \) of \(S \) in \(\mathfrak{g}^p \) into the space \(L^2(A) \) one gets a representation \(\varrho_x \) of \(S \) in \(L^2(A) \) given by

(22) \[
\{ \varrho_x(a, b)\xi \}(a') = \eta_x((b_{j+1} - a_j)a)\xi(a - a) = \sum_{j=-\infty}^{\infty} b_{j+1} - a_j \xi(a' - a).
\]

This formula follows from the definitions of \(V \) and \(\pi^p_x, \pi^p_x(s) = \pi^p_x(s)\pi^p_x(q_a) \), and from the above determined structure of \(\pi^p_x(q_a) \). The easy computation is omitted. Of course, \(\varrho_x \) is nothing but \(\text{ind}_{\mathfrak{g}^p} \eta_x \) realized in \(L^2(A) \).

Lemma 2. The representation \(\pi_x \) of \(G, x \in \mathbb{T}^3 \), is irreducible if and only if the sequence \(x \) is not periodic, i.e., there is no positive integer \(m \) such that \(x_{j+m} = x_j \) for all \(j \in \mathbb{Z} \). If this condition is satisfied then \(\pi_x \) is a generalized completely continuous representation if and only if the \(A \)-orbit \(\Omega_x = \{ x_{j+a} \mid a \in A \} \) is locally closed in \(\mathbb{T}^2 \).

Remark. In order to establish the relation to the results in [3] we observe that the condition \(\mathfrak{a} \Omega_x \) is locally closed in \(\mathbb{T}^{2n} \) is equivalent to \(\mathfrak{a} \Omega_x \) is a discrete subset of \(\mathbb{T}^{2n} \) for the following reasons. Clearly, any discrete subspace is locally closed. If the \(A \)-orbit \(\Omega_x \) is locally closed then under the map \(a \mapsto x_a = (x_{j+1})_j \) the subspace \(\Omega_x \) is homeomorphic to \(A \) as the stabilizer group is trivial. Hence \(\Omega_x \) is discrete.

Proof of Lemma 2. By the Proposition the questions of whether \(\pi_x \) is irreducible or whether \(\pi_x \) is a generalized completely continuous representation, can be reduced to the corresponding questions for the representation \(\varrho_x \) of \(S \). In the latter case the answers are known (see [3]). We shall repeat here the essential arguments. This gives the opportunity to introduce some notations which will be needed later anyway.

If \(z \) is periodic, say \(z_{j+m} = z_j \) for all \(j \), then the operator \(M : \ell^2(A) \to \ell^2(A), (M\cdot\xi)(a') = \zeta(a' + m) \) commutes with \(\varrho_x(S) \), hence \(\varrho_x \) is not irreducible.

Now suppose that \(z \) is not periodic, and let \(U : \ell^2(A) \to \ell^2(A) \) be any intertwiner operator for \(\varrho_x \). Let \(\mathfrak{e}_0 \) be the “Dirac delta” in \(\ell^2(A) \), and let \(\varepsilon : = U\mathfrak{e}_0 \in \ell^2(A) \). From \(U\varphi(0, b) = \varphi(0, b)U \) it follows that \(\varrho(0, b) = \eta_b \varepsilon \) for all \(b \in B \). As \(z \) is not periodic the latter identity implies that \(\varepsilon \) is a scalar multiple of \(\mathfrak{e}_0 \), say \(\varepsilon = \lambda \mathfrak{e}_0 \). Since \(U \) commutes with the translates \(\varrho(a, 0) \), and since the translates of \(\mathfrak{e}_0 \) span \(\ell^2(A) \), one concludes that \(U = \lambda \mathfrak{1}_d \).

The \(L^1 \)-group algebra of the semidirect product \(S = A \ltimes B \) may be considered in the usual way as the \(L^1 \)-covariance algebra \(\ell^1(A, \ell^2(B)) \) (see [4]). Via Fourier transform the \(C^* \)-hull of \(\ell^2(B) \) is nothing but \(C^*(B) \), and \(C^*(S) \) is the \(C^* \)-covariance algebra \(C^*(A, C(B)) \). The \(L^1 \)-covariance algebra \(\ell^1(A, C(B)) \) lies halfway between \(\ell^1(S) \) and \(C^*(S) \); there are (normal-decreasing) embeddings

\[
\ell^1(A, \ell^2(B)) \to \ell^1(A, C(B)) \to C^*(A, C(B)).
\]

The representation \(\varrho_x \) yields representations of \(\ell^1(A, C(B)) \) and of \(C^*(A, C(B)) \), also denoted by \(\varrho_x \). The image \(\varrho_x(C^*(S)) \) contains nonzero compact operators if and only if there exist continuous functions \(\varphi \) on \(B = \mathbb{T}^2 \) such that \(\varphi \) is not identically zero on \(\mathfrak{a} \), but \(\varphi \) is zero on \(\mathfrak{a}_2 \setminus \Omega_x \), where \(\mathfrak{a}_2 \) denotes the closure of \(\mathfrak{a} \). Such functions exist precisely when \(\Omega_x \) is locally closed. In this case for \(g \in \ell^1(A, C(B)) \) the operator \(\varrho_x(g) \) is compact if and only if for all \(a \in A \) the function \(g(a) \in C(B) \) vanishes on \(\mathfrak{a}_2 \setminus \Omega_x \).

The proof of Lemma 2 is finished. It has also shown what we have to do further. We have to specify a locally closed \(A \)-orbit \(\Omega_x \) such that the above
condition on \(g \) is not satisfied for functions in the image of \(\ell^1(S, w) \) under the map \(\ell^1(A, \ell^1(B)) \rightarrow \ell^1(A, C(B)) \), unless \(\rho_2(g) = 0 \) (compare Proposition). To this end we need a little lemma on a particular decomposition of the integers.

Lemma 3. Let \(D \) be a countable set. There exists a decomposition \(Z = \bigcup_{d \in D} C_d \) of the set of integers with the following property: If \(n \) is any positive integer and if \(d_{-n}, \ldots, d_{-1}, d_0, \ldots, d_n \) are any elements in \(D \) then the intersection

\[
\bigcap_{j=-n}^n (C_{d_j} - j)
\]

is not empty (and hence infinite). In particular, all the sets \(C_d \) are infinite.

Proof. Let \((D_n)_{n \in \mathbb{N}} \) be an increasing sequence of finite subsets of \(D \) with \(\bigcup_{n \in \mathbb{N}} D_n = D \). First we claim that for each \(n \in \mathbb{N} \) there exists a collection \((C_d^{(n)})_{d \in D_n} \) of disjoint finite subsets of \(Z \) with the following properties:

\[
\begin{align*}
 & (i) \quad \left\{ \bigcup_{d \in D_n} C_d^{(n)} \right\} \cap \left\{ \bigcup_{d \in D_n} C_d^{(n)} \right\} = \emptyset, \\
 & (ii) \quad \text{if } d_{-n}, \ldots, d_0, \ldots, d_n \text{ are any elements in } D_n \text{ then } \bigcap_{j=-n}^n (C_{d_j}^{(n)} - j)
\end{align*}
\]

is not empty. It is easy to see that such collections exist because in (ii) there are only finitely many conditions to be fulfilled; and clearly for a given \(n \) the sets \(C_d^{(n)} \), \(d \in D_n \), can be chosen in the complement of the previously constructed finitely many finite sets.

Then for each \(d \in D \) choose an \(m \in \mathbb{N} \) with \(d \in D_m \) and put \(C_d' = \bigcup_{n \geq m} C_d^{(n)} \). The sets \(C_d' \), \(d \in D \), are pairwise disjoint. Finally, choose any family \(C_d, d \in D \), with \(C_d' \subseteq C_d \) for each \(d \) and \(Z = \bigcup_{d \in D} C_d \) (for instance \(C_d = C_d' \) for all \(d \in D \) except for a distinguished point \(d_0 \)). Such a family has the claimed property.

To see that for any given \(n \) and any given sequence \(d_{-n}, d_0, \ldots, d_n \) in \(D \) the intersection \(\bigcap_{j=-n}^n (C_{d_j} - j) \) is automatically an infinite set, let \(t \) be any positive integer, let \(m = n + t(2n+1) \), and define the sequence \(d_{-m}, \ldots, d_m \) in \(D \) by \(d'_k = d_k \) if \(k \equiv j \mod (2n+1) \) and \(|j| \leq n \). As \(\bigcap_{j=-n}^n (C_{d_j} - j) \neq \emptyset \), we may take a number \(y \) in this intersection. It is easily verified that then the numbers \(y + a(2n+1), e \in Z, \ |e| \leq t \), are contained in \(\bigcap_{j=-n}^n (C_{d_j} - j) \), hence the latter intersection contains at least \(2t + 1 \) elements.

In particular, let \(D \) be a countable subset of \(T \) such that \(1 \notin D \) and that the closure \(\overline{D} \) equals \(D \cup \{1\} \). For each \(d \in D \) choose \(r_d > 0 \) such that

\[
\{ z \in \mathbb{C} \mid |z - d| \leq 2r_d \} \cap \overline{D} = \{d\}.
\]

Let \(Z = \bigcup_{d \in D} C_d \) be a decomposition according to Lemma 3. Choose \(z = (z_j) \in T^Z \) with the following properties:

(24) The map \(Z \ni j \mapsto z_j \in T \) is injective.

(25) If \(j \in C_d \) then \(0 < |z_j - d| < r_d \).

(26) For each \(d \in D \) and each \(r > 0 \) the set \(\{ j \in C_d \mid |z_j - d| \geq r \} \) is finite.

These conditions imply that \(d \) is the only cluster point of \(\{ z_j \mid j \in C_d \} \), that \(\overline{D} \) and \(\{ z_j \mid j \in Z \} \) are disjoint, and that \(\overline{D} \cup \{ z_j \mid j \in Z \} \) is a closed subset of \(T \).

Lemma 4. Let \(z \in T^Z \) be as above and let \(\Omega = \Omega_z \) be its orbit under the “shift group”, i.e., \(\Omega = \{ (z_{j+k}) \mid a \in Z \} \). Then \(\Omega \) is locally closed in \(T^Z \) and the closure \(\overline{\Omega} \) equals \(\Omega \cup \overline{D} \), which is a disjoint union since \(\overline{D} \) and \(\{ z_j \mid j \in Z \} \) are disjoint subsets of \(T \).

Proof. To prove that \(\overline{\Omega} \) is contained in \(\overline{D} \) it is clearly sufficient to verify that any \(z = (z_j) \in \overline{D} \) is contained in \(\overline{D} \). To this end, let any \(n \in \mathbb{N} \) and \(\varepsilon > 0 \) be given. We have to show that there exists an \(a = A = Z \) such that

\[
|x_j + a - z_j| < \varepsilon \quad \text{for } |j| \leq n.
\]

By Lemma 3 the set \(A' = \{ a \in A \mid j + a \in C_a \text{ for } |j| \leq n \} \) is finite. By (26), for almost all \(a \in A' \) the inequalities (27) are true.

To prove conversely that \(\overline{\Omega} \) is contained in \(\overline{D} \cup \overline{D} \), let \(x \) be a given point in \(\overline{\Omega} \). Since \(\overline{D} \cup \{ z_j \mid j \in Z \} \) is closed in \(T \), each \(x_k \) is contained in this set. If each \(x_k \) is contained even in \(\overline{D} \) we are done. So, assume that there is a \(k_0 \in Z \) with \(x_{k_0} = x_{j_0} \) for some \(j_0 \). We have to show that then \(x \in \Omega \). By applying a suitable element in the shift group we may suppose that \(x_{j_0} = x_{j_0} \) for some \(j_0 \), and our claim reduces to \(z = x \). Given \(j_0 \) from the properties (24)–(26) of \(z \) it follows that there exists an \(\varepsilon_0 > 0 \) such that

\[
|x_j - x_{j_0}| < \varepsilon_0 \quad \text{implies} \quad j = j_0.
\]

Then take any \(j \in Z \) and any \(\varepsilon, 0 < \varepsilon < \varepsilon_0 \). Since \(x \in \overline{\Omega} \) there is an \(a = a(j, \varepsilon) \in A \) such that

\[
|x_j + a - z_j| < \varepsilon \quad \text{and} \quad |x_{j_0 + a} - x_{j_0}| < \varepsilon.
\]

As \(x_{j_0} = x_{j_0} \) from (28) we deduce that \(a = 0 \), hence \(|z_j - x_j| < \varepsilon \). Since \(x \) and \(j \) were arbitrary, we conclude that \(z = x \).

The known structure of \(\overline{\Omega} \) yields \(\overline{\Omega} \setminus \Omega = \overline{D}^Z \), which is a closed subset of \(T^Z \). Therefore, \(\Omega \) is locally closed.

Theorem. Let \(G = A \times B \times H \times \hat{H} \times T \) be the group as constructed above (see in particular (17) and (18)), and let \(z \in T^Z \) be a point as above.
Then the continuous unitary representation \(\pi_a \) of \(G \) (see (20), (17) and Lemma 1) is irreducible and \(\pi_a(C^*(G)) \) contains the algebra of compact operators, while \(\pi_a(L^1(G)) \) contains no compact operator except for zero.

Proof. By Lemma 2, since clearly \(z \) is not periodic and since the \(A \)-orbit \(\Omega_z \) of \(z \) is locally closed by Lemma 4, \(\pi_a \) is an irreducible generalized completely continuous representation. To prove that \(\pi_a(L^1(G)) \) contains no nonzero compact operator, by the Proposition it is sufficient to show the corresponding property for \(\varphi_a(\ell(S,w)) \). By what we have seen in the proof of Lemma 2, the operator \(\varphi_a(f), f \in \ell(S,w) \subset \ell(S) \), is compact if and only if for all \(a \in A \) the function \(g_a \in C(T^2) \) defined by

\[
g_a(x) = \sum_{b \in B} f(ab) \eta_a(b)^{-1} = \sum_{b \in B} f(ab) \prod_{j=-\infty}^{\infty} x_j^{-b_j}
\]

vanishes on \(\Omega_z \). Hence we have to show that if \(f \) satisfies this condition, then \(\varphi_a(f) = 0 \). We claim that even better: \(f \) is then necessarily identically zero.

From the structure of \(w \), \(w(ab) = p \sum_{j=-\infty}^{\infty} |k_j| \) (compare Lemma 1); it follows easily that the series \(\sum_{b \in B} f(ab) \prod_{j=-\infty}^{\infty} x_j^{-b_j} \) converges not only for \(x \in T^2 \), but also for \(x \in Y \), where \(Y \) denotes the annulus \(\{ y \in C \mid p^{-1/2} \leq |y| \leq p^{1/2} \} \). Define \(g_a(x), x \in Y \), to be the sum of this series. For \(n \in \mathbb{N} \) let \(i^{(n)}(y, y_0, \ldots, y_n) \) be the canonical embedding from \(Y^{2n+1} = \{(y, y_0, \ldots, y_n) \mid y_k \in Y \text{ for } |k| \leq n \} \) into \(Y^2 \), i.e.,

\[
i^{(n)}(y, y_0, \ldots, y_n)_j = \begin{cases} y_j & \text{if } |j| \leq n, \\ 1 & \text{if } |j| > n. \end{cases}
\]

The function \(g_a \circ i^{(n)} \) is continuous on \(Y^{2n+1} \) and analytic in the interior \(Y^{2n+1} \). Since \(g_a \) vanishes on \(\Omega_z \setminus \Omega \), \(D \) (see Lemma 4) we conclude that \(g_a \circ i^{(n)} \) vanishes on the subset \(D^{2n+1} \) of \(Y^{2n+1} \). As \(g_a \circ i^{(n)} \) is analytic this yields that \(g_a \circ i^{(n)} \) is identically zero. In particular, \(g_a \) vanishes on \(i^{(n)}(T^{2n+1}) \). Since \(\bigcup_{n \in \mathbb{N}} i^{(n)}(T^{2n+1}) \) is dense in \(T^2 \), it follows that \(g_a \) is identically zero. Hence for each \(a \in A \) the function \(b \mapsto f(ab) \) is identically zero and, therefore, \(f \) is identically zero.

References

