Über den verallgemeinerten Fluss-Divergenz Satz

von

Witold Wilkosz

Kraków.

§ 1. Allgemeine Definition des Flusses.

Es sei \(D \) eine offene beschränkte Menge des \(n \)-dimensionalen euklidischen Raumes und \(a(P) \) eine in den Punkten \(P \) des Randes \(F \) von \(D \) definierte Vektorfunktion.

Greifen wir einen beliebigem Einheitsvektor \(m \) des Raumes heraus und bezeichnen mit \(a_m(P) \) die Komponente von \(a(P) \) in der Richtung \(m \), so gilt:

\[a_m(P) = a(P) \times m \]

Nun betrachten wir eine \((n-1)\)-dimensionale Ebene \(II \), die zu \(m \) orthogonal ist, sonst aber willkürlich gewählt werden kann und definieren die Funktion \(\Phi_m(Q) \) — genauer \(\Phi_m(Q, a(P)) \) — auf folgende Weise.

Durch jeden Punkt \(Q \) von \(II \) führen wir die zu \(m \) parallele Gerade \(l_Q \). Diese durchsetzt \(D \) längs einer linearen, offenen und beschränkten Menge \(\Omega_Q \), die in höchstens abzählbar unendlich viele offene Segmente \(P^I P^II \) zerfällt; \(P^I \) bedeute den Anfang, \(P^II \) das Ende — in der Richtung \(m \) — eines jeden von ihnen. Ist nun die Menge \(\Omega_Q \) leer, dann sei \(\Phi_m(Q) = 0 \). Besteht die Menge \(\Omega_Q \) aus endlich oder abzählbar unendlich vielen Segmenten \(P^I P^II \), dann setzen wir:

\[\Phi_m(Q) = \sum (a_m(P^I') - a_m(P^II')) \]

\(^{1)} \times \) bedeutet die skalare Multiplikation.

109
für den Fall einer unendlichen Anzahl von Segmenten setzen wir absolute Konvergenz der auf der rechten Seite der Definitionsgleichung stehenden Reihe voraus. [Der Grenzwert ist also von der willkürlichen Anordnung der Glieder unabhängig].

Wenn die Funktion \(\Phi_m(Q) \) fast-überall definiert und summierbar ist, bilden wir das Integral:

\[
A(m) = \int \frac{\Phi_m(Q)}{Q} \, dQ.
\]

Ist nun für jede Richtung \(m \) des Raumes definiert (endlich), dann nennen wir \(M \) den Wert des Flusses des Vektors \(a(P) \) aus \(D \) durch den Rand \(F \).

Bemerkung I. Dem Wortlaut der vorstehenden Definition nach, ist der Fluss ein von \(a(P) \) und \(D \) abhängiges Funktional. Die klassische Definition dagegen erklärt den Fluss als Funktion des Vektors \(a(P) \) und des Randes \(F \) von \(D \).

Diese Definition liefert aber eine eindeutige Funktion nur in dem einfachen Fall, wo z.B. der Rand \(F \) aus einer endlichen Anzahl regulärer, geschlossener Flächen besteht und die Richtung der Normalen ein hinreichend scharfes Kriterium darstellt zur Unterscheidung der offenen Menge \(D \) von deren Komplementärmenge. Die modernen Topologie verfügt indessen über Beispiele von abgeschlossenen Mengen \(F \), die den vollständigen Rand von null oder gar unendlich vielen Gebieten bilden. Kein Lärm ist also die Einschränkung betreffs der Randstruktur fallen, tritt eine Unzulänglichkeit der klassischen Erklärung deutlich zu Tage; wir müssen die Abhängigkeit des Flusses von der Wahl des Gebietes nachträglich Ausdruck geben.

Bemerkung II. Definitionsgemäß ist der Wert des Flusses von der besonderen Wahl des rechtwinkligen Koordinatenrechssystems unabhängig. Die Existenz des Flusses stellt also eine innere (intrinsic) Eigenschaft der Menge \(D \) und der Funktion \(a(P) \) dar.

Bemerkung III. Herr Cino Poli bezeichnet in seiner aus dem Jahre 1913 stammenden Arbeit „Sugli integrati estesi al contorno di un campo qualunque“ (Atti della R. Accademia. Torino) mit einem Ausdruck, der etwa unserem \(A(m) \) entspricht, wo \(m \) den Einheitsvektor der \(x \)- oder \(y \)-Achse in der Ebene bedeutet, den Wert des Integrals

\[
\int a_m(x,y) \, dx \quad \text{oder} \quad \int a_m(x,y) \, dy.
\]

Diese Ausdrücke stellen aber keine innere, geometrische oder physikalische Begriffe dar; sie haben vielleicht nur die Anwendung des bekannten Satzes von Fubini zu erleichtern.

§ 2. Die \(\partial \)-Eigenschaft offener Mengen.

Wir behalten alle Begriffe und Bezeichnungen des vorigen Paragraphen und nehmen die offene beschränkte Menge \(D \) in Betracht. Nun erklären wir eine von dem Einheitsvektor \(m \) abhängige Funktion \(\tau_m(Q) \) folgendermassen:

\[
\tau_m(Q) = \text{Anzahl der durch } l \text{ bestimmten, offenen Strecken } P_jP_j'' \quad (\tau_m(Q) \text{ kann also gegebenenfalls positiv unendlich werden}).
\]

Definition I. Ist die Funktion \(\tau_m(Q) \) fast überall endlich und summierbar, dann sagen wir von der Menge \(D \), sie besitzt in der Richtung \(m \) die Eigenschaft \((\partial) \).

Bemerkung. Die Abhängigkeit \(\tau_m(Q) \) von der \((n-1)-\)dimensionale Ebene \(\Pi \) ist nur scheinbar. Die Bedingungen der Endlichkeit und der Summierbarkeit bleiben bestehen, wenn man \(\Pi \) durch eine andere, ebenfalls zu \(m \) orthogonalen \((n-1)-\)dimensionale Ebene ersetzt. Ebenso hängt das Integral

\[
B(m) = \int \tau_m(Q) \, dQ
\]

nur scheinbar von \(\Pi \) ab.

Definition II. Besitzt die Menge \(D \) die Eigenschaft \((\partial) \) in jeder Richtung \(m \) des Raumes, dann sagen wir kurz, \(D \) besitzt die Eigenschaft \((\partial) \) oder \(D \) sei eine „Greensche“ offene beschränkte Menge.

Satz. Für jede offene beschränkte Menge \(D \) und für jede Richtung \(m \) des Raumes ist die dazugehörige Funktion \(\tau_m(Q) \) im Borelschen oder auch Lebesgueschen Sinne messbar.
Beweis. Einfachheitshalber betrachten wir nur den zweidimensionalen Fall einer in der Ebene \(E \) gelegenen Menge \(D \). Natürlich wird diese Einschränkung ohne Einfluss auf die Allgemeingültigkeit der Methode der Beweisführung bleiben.

Es sei \(\Pi \) eine zu \(\omega \) orthogonalen Gerade der Ebene \(E \); wir wählen \(\Pi \) zur \(x \)-Achse eines orthogonalen Rechtssystems \((x, y)\). Betrachten wir ferner die Gerade \(l_{a, t} \), der Ebene, deren Gleichungen:

\[
\begin{align*}
[l_{a, t}] & \quad y = \frac{t}{2^r}, \quad t = 0, 1, 2, \ldots; \\
n &= 0, 1, 2, \ldots;
\end{align*}
\]

lauten.

Für \(s = \text{const.} \) bilden die Geraden \(l_{a, t} \), die Schar \(T_s \). Diese teilt die Ebene in Streifen von konstanter Breite \(\frac{1}{2^r} \). Den zwischen den Geraden \(l_{a, t} \) und \(l_{a, t+1} \) gelegenen Streifen bezeichnen wir \(B_{a, r} \); \(l_{a, t} \) und \(l_{a, t+1} \) teilen wir dem Streifen zu.

Wir bilden nun ein Funktionssystem \(\varphi_{a, r}(x) \) auf folgende Weise. Die Gerade \(x = x_0 \) schneide den Streifen \(B_{a, r+1} \) längs der Strecke \(P_1P_2 \) (die Endpunkte mitbegriffen).

(1) Wenn \(P_1P_2 \) aus lauter Punkten von \(D \) besteht, dann setzen wir

\[
\varphi_{a, r}(x_0) = 0.
\]

(2) Besteht \(P_1P_2 \) aus lauter gegen \(D \) äußeren Punkten (keine Randpunkte), dann sei auch

\[
\varphi_{a, r}(x_0) = 0.
\]

(3) Gehören alle Punkte von \(P_1P_2 \) zu \(D \) mit alleiner Ausnahme eines Punktes, der zwischen \(P_1 \) und \(P_2 \) liegt, somit ein Randpunkt von \(D \) ist, dann definieren wir:

\[
\varphi_{a, r}(x_0) = 1.
\]

(4) In allen anderen Fällen sei:

\[
\varphi_{a, r}(x_0) = \frac{1}{2}.
\]

Wir behaupten, dass für jedes \(r = 0, 1, 2, \ldots \) und jedes \(s = 0, 1, 2, \ldots \), die Funktionen \(\varphi_{a, r}(x) \) \((\varphi)\) — und \((\varphi)\) — messbar sind. Bezeichnen wir mit \(E_1, E_2, E_3, E_4 \) die Gesamtheiten aller \(x \), die für

\[
\begin{align*}
\varphi_{a, r}(x) &= \sum_{s=0}^{\infty} \varphi_{a, r}(x) \quad s = 0, 1, 2, \ldots, \\
\lim_{s \to \infty} \varphi_{a, r}(x)
\end{align*}
\]

so entstehen wiederum \((\varphi)\) — messbare Funktionen. Wir behaupten, dass

\[
\varphi_{a, r}(x) = \lim_{s \to \infty} \varphi_{a, r}(x).
\]

Wenn nämlich die Gerade \(x = x_0 \) die Menge \(D \) längs einer endli-
chen Anzahl von Strecken schneidet, so besteht von einem hinreichend
grossen s aufwärts, die Gleichheit

$$
\varphi_s(x_0) = \varphi_{s_0}(x_0).
$$

Schneidet dagegen $x = x_0$ die Menge D längs unendlich vieler
Strecken, dann wächst $\varphi_s(x_0)$ offenbar ohne Grenze, wenn wir s
$+\infty$ streben lassen.

Die Funktion $\varphi_{s_0}(x)$ stellt sich somit als Grenze einer Folge von
(B)-messbaren Funktionen auch selbst (B)-und (\mathcal{L})-messbar heraus.

§ 3. Vektorfunktionen von Punkten.

Wir erhalten eine nützliche Definition von Vektorfunktionen eines
Punktes P im n-dimensionalen Raume,

$$
y = F(P),
$$

(1) indem wir die bekannte Riemannsche allgemeine Definition der Funktion
auf den Fall der Abhängigkeit eines Vektors von einem Punkt zweck-
mäßig erweitern.

Wir werden im Folgenden die kartesischen orthogonalen Koordinaten-
rechtsysteme im Raume mit $(S), (S'), (S''), \ldots$ bezeichnen.

In einem von diesen, sei es (S), nimmt die Beziehung (1) die Formen

$$
u_1 = f_1(x_1, \ldots, x_n),
$$

$$
u_2 = f_2(x_1, \ldots, x_n),
$$

$$
\vdots
$$

$$
u_n = f_n(x_1, \ldots, x_n),
$$

(2) wo u_1, u_2, \ldots, u_n die Komponenten des Vektors u, x_1, x_2, \ldots, x_n die
Koordinaten des Punktes P darstellen. Wir nennen f_1, \ldots, f_n Kompo-

tenen der Funktion $F(P)$.

Nun wollen wir gewisse innere (intrinsique) Eigenschaften der
Vektorfunktionen untersuchen.

Definition I. Die Vektorfunktion $u = F(P)$

(1) strebt im Punkt $P = P_0$ gegen die Greuze u^0,

(2) ist im Punkt P_0 stetig.

(3) ist beschränkt,

(4) ist integrierbar oder summierbar

(5) ist ein Polynom des Punktes P, wenn in jedem System (S')

(1) $$
\lim_{x \to x_0} f_k(x_1, x_2, \ldots, x_n) = u^k_k,
$$

$k = 1, 2, \ldots, n$

(2) $f_k(x_1, \ldots, x_n)$ im Punkt (x_1^0, \ldots, x_n^0) für $k = 1, 2, \ldots, n$
ist,

(3) f_1, f_2, \ldots, f_n beschränkt,

(4) f_1, f_2, \ldots, f_n integrierbar oder summierbar,

(5) f_1, f_2, \ldots, f_n Polynome der Veränderlichen x_1, \ldots, x_n

sind.

Alle diese Definitionen gehören dem Typus an, den wir als Typ ∞
bezeichnen; er ist von der Art, dass wenn die Bedingungen einer De-
inition in einem der Systeme (S) gelten, so sind sie in allen diesen
Systemen erfüllt; mit anderen Worten, kommt die definierte Eigenschaft
der Funktion in einem der (S) — Systeme zu, so bleibt sie in allen
diesen Systemen bestehen.

Wir wollen die Definitionen (1) — (3) eine innere, von der Wahl
des (S) — Systems unabhängige Form geben.

Zunächst führen wir folgende innere Begriffe und Bezeichnungen ein:

(1) $\text{mod } a =$ Modul des Vektors a

(2) $B - A =$ Vektor des Punktepaars (A, B)

(3) $A + a =$ Summe des Punktes A und des Vektors $a = B$

 Die Begriffe der Summe von Vektoren, des Produktes eines Vek-
tors mit einer reellen Zahl, des skalaren sowie vektoriellen Produktes
zweier Vektoren nehmen wir als bereits bekannt an.

Wir formulieren unsere Definitionen um:

(1) $$
\lim_{P \to P_0} F(P) = u^0
$$

(2) $B - A =$ Vektor des Punktepaars (A, B)

(3) $A + a =$ Summe des Punktes A und des Vektors $a = B$

(4) f_1, f_2, \ldots, f_n beschränkt,

(5) f_1, f_2, \ldots, f_n integrierbar oder summierbar,

(6) f_1, f_2, \ldots, f_n Polynome der Veränderlichen x_1, \ldots, x_n

sind.
bedeutet:

(a) P_0 ist ein Häufungspunkt des Definitionsbereiches M der Funktion $F(P)$.

(b) für jedes $\varepsilon > 0$ gibt es ein $\delta > 0$ von der Art, dass die Ungleichheit
\[\text{mod} \ (P - P_0) < \delta \]
für jedes P aus M
\[\text{mod} \ (F(P) - u) < \varepsilon \]
folgt.

(1) Die Stetigkeit von $F(P)$ im Punkt $P = P_0$ bedeutet
\[\lim_{P \to P_0} F(P) = F(P_0). \]

(3) Die Beschränktheit von $F(P)$ bedeutet:

es gibt eine Schranke $K > 0$, dass
\[\text{mod} \ F(P) < K. \]

im ganzen M bleibt.

Die Definitionen (4) und (5) ist es zweckmäßiger in der früheren Gestalt ungeändert zu lassen.

Wir stellen noch einige allgemein bekannte Begriffe und Tatsachen aus der Theorie der linearen Vektortransformationen zusammen.

Eine Operation α heisst lineare Vektoroperation oder vektorielle Homographie, wenn sie

(1) Vektoren in Vektoren transformiert,
(2) den Regeln:
\[\alpha a + \alpha b = \alpha(a + b), \]
\[\alpha(m \ a) = m \ \alpha(a), \]
(a, b beliebige Vektoren, m = willkürliche reelle Zahl, αu = durch die Transformation α erzeugter Vektor)

gehört.

In einem (S)—Koordinatensystem, dessen Achsenversorien i_1, i_2, ..., i_n sind, repräsentiert die Homographie α die Matrix
\[
\begin{bmatrix}
\alpha_{i_1, i_1} & \cdots & \alpha_{i_1, i_n} \\
\vdots & \ddots & \vdots \\
\alpha_{i_n, i_1} & \cdots & \alpha_{i_n, i_n}
\end{bmatrix}
\]

über den verallgemeinerten Fluss-Divergern-Satz.

der Elemente
\[\alpha_{i_k} = \alpha i_i \times i_k, \quad i, k = 1, 2, \ldots, n. \]

Es gilt, wenn α_1, ..., α_n, α_1, ..., α_n die Komponenten der Vektoren u und v darstellen und
\[v = \sum_{i} \alpha_{i_i} u_i, \]

ist
\[v_i = \sum_{i} \alpha_{i_i} u_i, \quad i = 1, 2, \ldots, n. \]

Nach diesen vorbereitenden Bemerkungen kehren wir zur Betrachtung der Vektorfunktionen zurück. (Den für die vektoriellen Homographien näher interessierten Leser verweisen wir auf das Buch von C. Burati-Forti und R. Marcolongo „Analisi vettoriale generale, t. I. Bologna 1929").

Definition II. Die Funktion $F(P) = u$ heisst im Punkt P_0 differenzierbar, wenn eine Homographie α und eine Vektorfunktion $m(h)$ des Vektors h existieren von der Art, dass
\[F(P_0 + h) - F(P_0) = \alpha h + m(h), \]

in der Umgebung von P_0 und
\[\lim_{m h \to 0} \text{mod} m(h) = 0 \]

ist.

Satz. Es gibt höchstens eine Zerlegung der Differenz $F(P_0 + h) - F(P_0)$ von der Form (3) der Definition II.

Beweis. Nehmen wir an, dass noch
\[F(P_0 + h) - F(P_0) = \delta h + n(h) \]

mit
\[\lim_{m h \to 0} \text{mod} n(h) = 0 \]

ist. Es würde dann in jedem (S)—System der Vektoren i_1, i_2, ..., i_n die Gleichheiten
\[\alpha (l, i) + m (l, i) = \delta (l, i) + n(l, i), \]

ist. Es würde dann in jedem (S)—System der Vektoren i_1, i_2, ..., i_n die Gleichheiten
\[\alpha (l, i) + m (l, i) = \delta (l, i) + n(l, i), \]

ist.
für alle \(0 < \lambda < \lambda_0\) und ein entsprechend gewähltes \(\lambda_0 > 0\) gelten. Daraus folgt
\[
\lambda [\alpha_i - \beta_i] = n [\lambda_0 i] - m [\lambda_0 i]
\]
or
\[
\alpha_i - \beta_i = \frac{n [\lambda_0 i]}{\lambda} - \frac{m [\lambda_0 i]}{\lambda}.
\]
Wegen mod \(\lambda_0 = \lambda\), erhalten wir durch Grenzübergang
\[
\alpha_i = \beta_i, \quad s = 1, 1, \ldots, n,
\]
und daher für beliebiges \(u\):
\[
\alpha u = \alpha [u, i_1 + \ldots + u_n i_n]
\]
\[
= u_1 \alpha i_1 + \ldots + u_n \alpha i_n
\]
\[
= u_1 \beta i_1 + \ldots + u_n \beta i_n
\]
\[
= \beta u.
\]
somit
\[
\alpha = \beta.
\]
also auch
\[
m (h) = n (h).
\]

Definition III. Ist die Funktion \(u = F (P)\) im Punkte \(P = P_0\) differenzierbar, dann nennen wir die durch die Zerlegung (3) bestimmte Homographie \(\alpha\) Ableitung von \(F (P)\) nach \(P\) im Punkte \(P = P_0\) und bezeichnen sie
\[
\frac{d F (P)}{d P} \quad \text{für} \quad P = P_0.
\]

Satz. Ist \(u = F (P)\) im Punkte \(P = P_0\) differenzierbar, so sind in jedem \((S)\) — System die Komponenten \(f_s (x_1, \ldots, x_n) \quad (s = 1, 2, \ldots, n)\) im Punkte \(x_0 = x_0^s \quad (i = 1, 2, \ldots, n)\) im Stolzaschen Sinne total differenzierbar und umgekehrt. Die Definition III gehört zum Typ \(u\).

Wir überlassen dem Leser den einfachen Beweis dieses Satzes, indem wir ihn nur aufmerksam machen, dass
(1) die Zerlegung (3) der Definition II in einem \((S)\) — System den Zerlegungen

\[
\frac{d u}{d P} = \left| \begin{array}{c}
\frac{\partial f_1}{\partial x_1} \\
\vdots \\
\frac{\partial f_n}{\partial x_n}
\end{array} \right|
\]

Bemerkung. (1) Unsere Definition II stimmt mit der von Bura l i - F o r t i und M a r c o l o n g o in dem oben genannten Buche vorge- schlagenen nicht überein.

(2) Wir betonen ausdrücklich, dass die Existenz der abgeleiteten \(d f_s (i, k = 1, 2, \ldots, n)\) im Punkte \(P = P_0\) sogar für alle \((S)\) — Systeme der Differenzierbarkeit von \(F (P)\) im Punkte \(P = P_0\) nicht hinreichend ist. Notwendige und hinreichende Bedingungen für die Existenz von \(d F\) kann man durch eine evidente Modifikation der von mir in der Arbeit „Sul differenziale estatto“ (Fundamenta Mathematicae, t. II) aufgestellten Bedingungen erhalten.

Jede vektorielle Homographie \(\alpha\) besitzt \(n\) Hauptinvarianten \(I_{i, s}, s = 1, 2, \ldots, n\). In jedem \((S)\) — System hat die erste Hauptinvariante der Homographie

\[
\sigma = \begin{pmatrix}
\sigma_{11} & \cdots & \sigma_{1n} \\
\sigma_{21} & \cdots & \sigma_{2n} \\
\vdots & \ddots & \vdots \\
\sigma_{n1} & \cdots & \sigma_{nn}
\end{pmatrix}
\]

\(^{1}\) B u r a l i - F o r t i und M a r c o l o n g o, op. cit.
die Gestalt
\[l, \sigma = \sigma_1 + \sigma_2 + \ldots + \sigma_m. \]

Definition IV. Wenn die Funktion \(u = F(P) \) in Punkte \(P = P_0 \) differenzierbar ist, nennen wir die *erste Hauptwurzel* von \(\frac{dF}{dP} \) im Punkte \(P_0 \) die *Divergenz* von \(F(P) \) für \(P = P_0 \).

Es ist also in jedem \((S) \) System:
\[
\text{div}_P F(P) = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \ldots + \frac{\partial u_n}{\partial x_n}.
\]

Aus dem gesagtem folgt unmittelbar der

Satz. Sind in einem \((S) \) System die Komponenten \(f_1, f_2, \ldots, f_n \) des Vektors \(F(P) \) für \(P = P(x_1, \ldots, x_n) \) im Stolzen Sinne total differenzierbar, dann existiert \(F(P) \) in \(P \) die Divergenz
\[
\text{div}_P F(P) = \frac{\partial f_1}{\partial x_1} + \ldots + \frac{\partial f_n}{\partial x_n}.
\]

Bemerkung. Die blossen Existenz von \(\frac{\partial f_s}{\partial x_i} \) \((s = 1, 2, \ldots, n) \) im Punkte \(P \) reicht für die Existenz der \(\frac{d\text{div}_P F(P)}{dP} \) nicht aus; die Existenz und Stetigkeit von \(\frac{\partial f_s}{\partial x_i} \) \((s = 1, 2, \ldots, n) \) sind schon hinreichend.

§ 4. Einige Eigenschaften des Flusses.

Die klassische Definition bezeichnet bekanntlich als Fluss des Vektors \(a(P) \) durch den Rand \((S) \) des Gebietes \(G \) den Wert:
\[
\int_S a(P) \times n(P) \, dS.
\]

Es bedeutet in dieser Formel: \(n \) oder genauer \(n(P) \) den Einheitsvektor der Aussennormalen von \(S \) im Punkte \(P, dS \) das infinitesimale Oberflächenelement, das in der Formel nur symbolische Bedeutung besitzt. Um die bequeme Symbolik der klassischen Analysis wo möglich nachzuahmen, werden wir im Folgenden den Fluss mit:
\[
\int_D a(P) \times n(P) \, dF(D)
\]
onbemärken.

Satz 1. Existieren
\[
\int_D a(P) \times n \, dF \quad \text{und} \quad \int_D b(P) \times n \, dF,
\]
so existiert auch
\[
\int_D [a(P) + b(B)] \times n \, dF
\]
und zwar ist
\[
\int_D [a + b] \times n \, dF = \int_D a \times n \, dF + \int_D b \times n \, dF.
\]

Beweis. Wir erinnern an die Bezeichnungen der §§ 1 und 2 und bemerken, dass
\[
(1) \quad \Phi_m(Q; a(P)) \quad \text{und} \quad \Phi_m(Q; b(P))
\]
für *jede* Punkte \(Q \) der Ebene \(\lll \). Grenzwerte der *absolut* konvergenten Reihen
\[
\sum_m (a_m(P') \times a_m(P')) \text{ und } \sum_m (b_m(P') \times b_m(P'))
\]
sind, (2) also auch
\[
\Phi_m(Q; a(P) + b(P)) = \Phi_m(Q; a(P)) + \Phi_m(Q; b(P))
\]
sonst
\[
A(m; a(P) + b(P)) = A(m; a(P)) + A(m; b(P))
\]
oder kürzer mit
\[
\int_D a(P) \times n \, dF
\]
bezeichnet.

In diesen Formeln hat nicht nur \(dF \), sondern auch der Vektor \(n \) ausschließlich symbolische Bedeutung; es wurde aus algorithmischen Gründen behalten.

Wir beweisen jetzt folgende einfache Sätze.

Satz 1. Existieren
\[
\int_D a(P) \times n \, dF \quad \text{und} \quad \int_D b(P) \times n \, dF,
\]
so existiert auch
\[
\int_D [a(P) + b(B)] \times n \, dF
\]
und zwar ist
\[
\int_D [a + b] \times n \, dF = \int_D a \times n \, dF + \int_D b \times n \, dF.
\]

Beweis. Wir erinnern an die Bezeichnungen der §§ 1 und 2 und bemerken, dass
\[
(1) \quad \Phi_m(Q; a(P)) \quad \text{und} \quad \Phi_m(Q; b(P))
\]
für *jede* Punkte \(Q \) der Ebene \(\lll \). Grenzwerte der *absolut* konvergenten Reihen
\[
\sum_m (a_m(P') \times a_m(P')) \text{ und } \sum_m (b_m(P') \times b_m(P'))
\]
sind, (2) also auch
\[
\Phi_m(Q; a(P) + b(P)) = \Phi_m(Q; a(P)) + \Phi_m(Q; b(P))
\]
sonst
\[
A(m; a(P) + b(P)) = A(m; a(P)) + A(m; b(P))
\]
gilt:

\[\sum A (m; a (P); b (P)) = \sum A (m; a (P)) + \sum A (m; b (P)) ; \]

die Summen auf der rechten Seite sind von der Wahl des \((S)\) - Systems unabhängig.

Daraus folgt auch unmittelbar der

Satz II. Existiert

\[\int a (P) \times n \, d F \]

und ist \(k \) eine beliebige reelle Zahl, dann existiert auch

\[\int k a (P) \times n \, d F \]

und zwar ist

\[\int \int a (P) \times n \, d F = k \int a (P) \times n \, d F . \]

Bemerkung. Die Sätze I und II besagen, dass der Fluss, als Funktional des Argumentes \(a (P) \) eine lineare Operation darstellt. Die weitgehenden Konsequenzen dieser Tatsache wollen wir an dieser Stelle nicht verfolgen.

Satz III. Es sei

1. \(D \) eine Greensche offene, beschränkte Menge;
2. \(a^{(k)} (P) \) eine am Rande \(F \) von \(D \) gegen \(a \) gleichmäßig konvergierende Vektorfunktionsfolge, für deren Elemente die Integrale

\[\int a^{(k)} \times n \, d F \quad K=1, 2, \ldots \]

existieren.

Dann existiert auch

\[\int a (P) \times n \, d F \]

und zwar ist

\[\int a \times n \, d F = \lim \int a^{(k)} \times n \, d F . \]

Beweis. (1) Für fast alle \(Q \) sind die \(\Phi_m (Q; a^{(k)} (P)) \) Summen absolut konvergenter Reihen

\[\sum \left| a^{(k)}_m (P) - a_m (P) \right| \]

(2) Aus

\[\mod \left[a^{(k)}_m (P) - a_m (P) \right] < \varepsilon \]

folgt

\[\left| a^{(k)}_m (P) - a_m (P) \right| < \varepsilon . \]

Wir haben also, bei gegebenem \(\varepsilon > 0 \), von einem \(N \) aufwärts

\[\left| a^{(k)}_m (P) - a_m (P) \right| < \varepsilon \quad \text{für} \quad K > N \]

auf dem ganzen Rande \(F \) von \(D \).

Für fast alle \(Q \) gilt daher

\[\left| \Phi_m (Q; a (P)) \right| \leq \left| \Phi_m (Q^{(k)}; a (P)) \right| + \varepsilon \gamma_m (Q) \]

und

\[\left| \Phi_m (Q; a (P)) - \Phi_m (Q; a^{(k)} (P)) \right| < 2 \varepsilon \gamma_m (Q) \]

Die Funktionen \(\gamma_m (Q) \) und \(\Phi_m (Q; a^{(k)} (P)) \) sind aber summierbar

also

\[A (m; a (P)) = \lim_{K \to \infty} A (m; a^{(k)} (P)) \]

Daraus folgt auch die Unabhängigkeit der Summe

\[\sum a (m; a (P)) \]

Satz IV. Ist \(D \) eine Greensche offene beschränkte Menge und \(a (P) \) eine Vektorfunktion mit den Eigenschaften

1. \(\mod a (P) < M \) am Rande \(F \) von \(D \),
2. \(\int a (P) \times n \, d F \) ist sinnvoll,

so gilt die Abschätzung

123

\[\left| \int_{\mathcal{D}} a(P) \times n \, dF \right| \leq M \cdot \lambda_0. \]

wo \(\lambda_0 \) eine nur von \(D \) abhängige Konstante bedeutet.

Beweis. Zur Beweisführung legen wir ein übrigens beliebig gewähltes \((S) \) — System der Vektoren \(m_1, m_2, \ldots, m_k \). Dann ist:

\[\int_{\mathcal{D}} a(P) \times n \, dF = A(m_1) + \ldots + A(m_k). \]

Es gilt aber, was unmittelbar zu sehen ist,

\[|A(m_0)| \leq 2 MB(m_0). \]

Setzen wir

\[\lambda_0 = 2 \max \{ B(m_1), \ldots, B(m_k) \}, \]

so ergibt sich die Ungleichung

\[\left| \int_{\mathcal{D}} a(P) \times n \, dF \right| \leq M \cdot \lambda_0. \]

Bemerkung. Der Fluss \(\int_{\mathcal{D}} a(P) \times n \, dF \) aus einer \((G)\) — Menge ist somit ein stetiges, beschränktes Funktional des Argumentes \(a(P) \).

§ 5. Über die Existenz des Flusses.

Zunächst beweisen wir das vektorielle Analogon des bekannten Satzes von Weierstrass.

Satz I. Eine im abgeschlossenen \(\alpha \) — dimensionalen Würfel \(K \) stetige Vektorfunktion \(a(P) \) lässt sich gleichmäßig in \(K \) durch eine Folge von Vektorpolynomen approximieren.

Beweis. Es sei \(i_1, i_2, \ldots, i_n \) ein \((S)\) — System; mit \(f_s(x_1, \ldots, x_n) \) bezeichne wir die Komponenten von \(a(P) \) in diesem System.

Es gibt \(n \) Polynomenfolgen

\[f^{(s)}_K(x_1, \ldots, x_n) \quad K = 1, 2, \ldots, n, \quad s = 1, 2, \ldots, m_i. \]

die gleichmäßig in \(K \) die Komponenten \(f_s(x_1, \ldots, x_n) \) approximieren. Die Vektorfunktionen

\[a^{(s)}_K(P) = f^{(s)}_K(i_1) + f^{(s)}_K(i_2) + \ldots + f^{(s)}_K(i_n), \quad K = 1, 2, \ldots, \]

approximieren \(a(P) \) gleichmäßig in \(K, \) da

\[\left| a(P) - a^{(s)}_K(P) \right| \leq \sum_k \left| f_s(x_1, \ldots, x_n) - f^{(s)}_K(x_1, \ldots, x_n) \right| \]

im ganzen \(K \) samt dem Rande ist; \(a(P) \) sind aber Vektorenpolynome (§ 3) weil die Definition eines Vektorenpolynoms zum Typ \(\alpha \) gehört.

Satz II. (Hauptsatz von der Existenz des Flusses). Der Fluss

\[\int_{\mathcal{D}} a(P) \times n \, dF \]

existiert immer, wenn

(1) \(D \) eine Greensche, offene, beschränkte Menge und

(2) \(a(P) \) eine am Rande \(F \) von \(D \) stetige Vektorfunktion ist.

Beweis. (1) Zunächst erweitern wir \(a(P) \) zu einer, im Würfel \(K \) der die Menge \(D \) in seinem Inneren enthält, stetigen Vektorfunktion \(b(P) \). Diese Erweiterung ist immer auf Grund des bekannten Bohrscben Satzes (s. z. B. Carathéodory „Vorlesungen über reelle Funktionen“) möglich.

(2) Hernach approximieren wir \(b(P) \) in \(K \) gleichmäßig durch eine Vektorpolynomenfolge

\[b^{(s)}[P], b^{(s)}[P], \ldots. \]

Jedes der Polynome \(b^{(s)}[P] \) besitzt im \(K \) die stetige Divergenz

\[\text{div} \, b^{(s)}[P] \]

(3) Wir legen ein \((S)\) — System \(m_1, m_2, \ldots, m_k \), fest und betrachten das Integral

\[\int_{\mathcal{D}} \text{div} \, b^{(s)}[P] \, dP = \int_{\mathcal{D}} \int_0^1 \ldots \int_0^1 \left(\sum_{i=1}^n \frac{\partial f^{(s)}_k}{\partial x_i} \right) \, dx_1 \ldots \, dx_n. \]

Nach dem bekannten Satz von Fubini ist

\[\int \cdots \int \frac{\partial \mathbf{F}(P)}{\partial x_i} \, d x_1 \cdots d x_n = \]
\[= \int_{\Omega} \cdots \int d x_1 \cdots d x_{n-1} \, d x_n \int_{M_n}^{M_1(Q)} \frac{\partial \mathbf{F}(P)}{\partial x_n} \, d x_n \]

wenn \(\Omega \) eine \((n-1)\)-dimensionale zu \(\mathbf{m} \) orthogonale Ebene und \(M_n(Q) := D \times I_0 \) für jeden Punkt \(Q \) von \(\Omega \) ist, \(I_0 \) bedeutet die durch \(Q \) zu \(\mathbf{m} \) parallele Gerade.

Die Ableitungen \(\frac{\partial \mathbf{F}(P)}{\partial x_i} \), \(i = 1, \ldots, n \); \(K = 1, 2, \ldots \), sind stetig, daher
\[\int_{M_n(Q)} \frac{\partial \mathbf{F}(P)}{\partial x_n} \, d x_n = \Phi_n(Q; \mathbf{b}^{(0)}(P)) \]
und
\[\int_{\Omega} \text{div}_\mathbf{b}^{(0)}(P) \, d P = \sum_{\gamma} A(\mathbf{m}_\gamma \mathbf{b}^{(0)}(P)) \]

Die Unabhängigkeit der rechten Seite von der Wahl des \((S) - \) Systems ist nunmehr bewiesen, folglich
\[\int_{\Omega} \mathbf{b}^{(0)}(P) \times \mathbf{n} \, d F = \int_{\Omega} \text{div}_\mathbf{b}^{(0)}(P) \, d P \]

(4) Die Menge \(D \) besitzt die Eigenschaft \((G)\) und es gilt
\[\lim_{K \to \infty} \mathbf{b}^{(0)}(P) = \mathbf{a}(P) \]
gleichmäßig auf dem Rande \(F \) von \(D \).

(5) Die Existenz von
\[\int_{\Omega} \mathbf{a}(P) \times \mathbf{n} \, d F \]
ergibt sich somit aus Satz III des § 4.

Bemerkung 1. Die Bedingung \((G)\) ist für die Existenz des Flusses einer auf dem Rande \(F \) der Menge \(D \) stetigen Vektorfunktion \(\mathbf{a}(P) \) zwar hinreichend, doch nicht notwendig.

Ein Beispiel, von Herrn Adam Bielccki konstruiert, beweist dass diese Bedingung nicht einmal dann notwendig ist, wenn wir die Existenz des Flusses
\[\int_{\Omega} \mathbf{a}(P) \times \mathbf{n} \, d F \]

für jede stetige Belegung \(\mathbf{a}(P) \) des Randes \(F \) von \(D \) verlangen.

Wir betrachten auf der Ebene die offene, beschränkte Menge \(D \), die aus dem offenen Quadrat \(K \)
\[0 < x < 1 \]
\[0 < y < 1 \]
mit Ausschluss aller Punkte der Strecken
\[\lambda_n : \begin{cases}
0 < x < \frac{1}{n} \\
0 < y < \frac{1}{n}
\end{cases} \]
n = 1, 2, 3,

besteht. \(D \) ist ein einfach — zusammenhängendes Gebiet, doch **ohne Eigenschaft \((G)\)**.

Es sei nun \(\mathbf{a}(P) \) eine beliebige stetige Vektor-Belegung des Randes \(F \) von \(D \). Da jede Gerade der Ebene die Menge \(D \) nur längs einer endlichen Anzahl koinzidierender Segmente schneidet und daher
\[\Phi_n(Q) = \sum_{P_n} | a_m(P_n) - a_n(P_n) | n, \begin{cases} \Phi_n(P) - a_n(P), \end{cases} \]

ist, können wir bei der Belegung von \(A(\mathbf{m}) \) von den Strecken \(\lambda_n \) absehen und \(A(\mathbf{m}) \) lediglich unter Berücksichtigung der Berandung des Quadrates \(K \) bestimmen. Für \(K \) und jedes \(\mathbf{a}(P) \) ist offenbar der Fluss
\[\int_{\Omega} \mathbf{a}(P) \times \mathbf{n} \, d F \]
vorhanden.

Obgleich nur hinreichend ist die Eigenschaft \((G)\) im Zusammenhang mit der Existenz des Flusses sehr wichtig.

In einer Reihe von Arbeiten, die demnächst zur Veröffentlichung gelangen, werde ich allein oder mit Herrn Bielccki die topologisch-metrische Natur der Greenschen Mengen genau untersuchen und die
Theorie der sogenannten „Integralsätze der mathematischen Physik“
entwickeln.

Bemerkung II. Nach einer Bemerkung der Herrn Ważewski könnte man unsere Bedingungen für die Existenz des Flusses durch folgende ersetzen:

1. Die Vektorfunktion \(\mathbf{a}(P) \) ist in Umgebung von \(F \) von \(D \) samt ihren ersten Ableitungen stetig.
2. Die Menge \(D \) ist offen und beschränkt.

Die \((G)\) - Eigenschaft wird weggelassen.

Der Beweis füsst auf einem Satz des Herrn Bielecki aus welchem die Existenz einer Erweiterung von \(\mathbf{a}(P) \) d. h. einer in dem ganzen Raum mit dem ersten Ableitungen stetigen Vektorfunktion \(\mathbf{b}(P) \) folgt, auf \(F \) mit \(\mathbf{a}(P) \) zusammenfällt. Wir wenden nun den Satz von Fubini direkt auf das Integral

\[
\int_D \operatorname{div} \mathbf{b}(P) \, dP
\]

an und erhalten daraus, ohne Voraussetzung der \((G)\) - Eigenschaft, das wir keinen Grenzübergang unternehmen, die Behauptung.

Definition. Es sei

1. \(u = F(P) \) in einer Umgebung von \(P = P_0 \) definiert;
2. \(w \mid P_0, \rho \) obere Grenze von \(\frac{\operatorname{mod} [F(P_0 + h) - F(P_0)]}{\operatorname{mod} h} \)

für \(0 < \operatorname{mod} h < \rho, \rho > 0 \); \(\frac{\operatorname{mod} [F(P_0 + h) - F(P_0)]}{\operatorname{mod} h} \)

Wir nennen \(L(P_0) \) die Lipschitzsche Zahl für die Funktion \(u = F(P) \) im Punkte \(P = P_0 \).

Die Endlichkeit von \(L(P_0) \) ist eine innere Eigenschaft der Funktion \(u = F(P) \) im Punkte \(P = P_0 \); die Definition gehört zum Typ \(u \).

Es sei \(D \) eine offene beschränkte Menge und für die Funktion \(u = F(P) \)

1. \(L(P) \) in fast allen Punkten von \(D \) endlich und in \(D \) summierbar;
2. in allen Punkten von \(D \), wo \(1 \) nicht zutrifft, die Funktion \(F(P) \) stetig.

Dann gelten — auf Grund der Ergebnisse der genannten Arbeit vonRademacher und der Erwähnungen des § 3 — die Sätze:

1. \(u = F(P) \) ist in allen Punkten von \(D \) stetig;
2. in jedem \((S) \) - System sind die partiellen Derivierten (Dinische Zahlen) aller Komponenten auf \(D \) summierbar; \(\frac{\operatorname{mod} [F(P_0 + h) - F(P_0)]}{\operatorname{mod} h} \)

3. \(u = F(P) \) ist in fast allen Punkten von \(D \) differenzierbar;
4. Fast überall existieren \(\frac{dF}{dP} \) und sind auf \(D \) summierbar.

§ 7. Der Fluss-Divergenz Satz.

Die Lusinsche Bedingung \((N)\) für eine reelle Funktion \(f(x) \) einer reellen Veränderlichen \(x \) besagt bekanntlich, dass \(f(x) \) jede Nullmenge in eine Nullmenge überführt.

Herr S. A. K. hat in einer, in B. VII der Fundamenta Mathematicae, veröffentlichten Arbeit bewiesen, dass die Stetigkeit von \(y = f(x) \) in \([a, b]\), die Summierbarkeit einer ihrer Derivierten und die Bedingung \((N)\) zusammen hinreichend und notwendig sind für die Totalstetigkeit von \(f(x) \) in \([a, b]\).

Wir wollen diesen Satz für unsere Zwecke verwenden.

Definition. Die Vektorfunktion \(u = F(P) \) genügt in \(D \) der (verallgemeinerten) \((N)\) - Bedingung, wenn für jede Richtung \(m \) des Raumes die Komponente \(u_m(P) = u(P) \times m \) die \((N)\) - Bedingung auf fast allen zu \(m \) parallelen Geraden erfüllt.

2) In allen Punkten endlich, wo \(L(P) \) endlich ist.

3) Prace Matematycz. Pol. Tom 42.
Wir können nun dem Hauptsatz unserer Arbeit folgende Gestalt geben.

Fluss-Divergenz Satz. Es sei
(1) D eine offene beschränkte (G)-Menge;
(2) $a(P)$ in $D + F$ definiert und $L(P)$ in fast allen Punkten von D endlich und auf D summierbar;
(3) in allen anderen Punkten von $D + F$ (also in allen von F) $a(P)$ in Bezug auf den Raum stetig.
(4) $a(P)$ genüge auf D der verallgemeinerten Lusinschen Bedingung N_1

dann gilt:
\[
\int_D a(P) \cdot \mathbf{n} \, d\mathbf{F} = \int_D \text{div} \, a(P) \, d\mathbf{P}.
\]

Beweis. Aus den Auseinandersetzungen der §§ 5 und 6 folgt:
(1) Der Fluss existiert;
(2) $\text{div} \, a(P)$ ist in D summierbar;
(3) In jedem (S)-System m_1, \ldots, m_n

\[
\int_D \text{div} \, a(P) \, d\mathbf{P} = \int_D \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} \, d\mathbf{x} =
\]

\[
= \int_D \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} \, d\mathbf{x}_1, \ldots, d\mathbf{x}_n =
\]

\[
= \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} \, d\mathbf{x}_1, \ldots, d\mathbf{x}_{i-1}, d\mathbf{x}_{i+1}, \ldots, d\mathbf{x}_n.
\]

Auf Grund der (N)-Bedingung und des Sachschen Satzes folgt ferner
\[
\int_{\mathbb{R}^n} \frac{\partial f_i}{\partial x_i} \, d\mathbf{x} = \Phi_m (Q; a(P)) = \sum_{P \in Q} |a_m (P_f) - a_m (P_i)|
\]

$(f_i(x_1, \ldots, x_n) = a(P) \cdot \mathbf{n} + 1)$. Somit ist
\[
\int_D \text{div} \, a(P) \, d\mathbf{P} = \sum_{P \in \mathcal{Q}} A(m) = \int_D a(P) \cdot \mathbf{n} \, d\mathbf{F},
\]

also der Beweis des Fluss-Divergenz Satzes erbracht.