Sur l'équation de Laplace dans un milieu stratifié

par

V. A. Kostitzin

La résolution de l'équation de Laplace et d'autres équations du même type devient très laborieuse et même pratiquement impossible dès qu'il s'agit d'un milieu stratifié. Or, ce genre de problèmes se rencontre à chaque pas en astronomie et en physique du globe. Je me propose d'exposer dans le présent mémoire une méthode qui permet dans certains cas de simplifier considérablement la résolution effective des problèmes de cette nature. J'étudie spécialement le cas des surfaces de discontinuité planes parallèles, mais la méthode employée peut servir dans des cas plus généraux.

1. Équations — Conditions limites — Transformations.

1. Equation différentielle — Il s'agit de l'équation différentielle

\[
\begin{align*}
\sigma(z) \frac{\partial^2 \varphi}{\partial z^2} - \tau(z) \frac{\partial^2 \varphi}{\partial x^2} + \tau'(z) \frac{\partial \varphi}{\partial x} &= 0.
\end{align*}
\]

Je suppose que les fonctions \(\sigma(z) \) et \(\tau(z) \) continues en général ont un certain nombre fini de points de discontinuité

\(z_1, z_2, \ldots, z_n \).

Dans certains cas on peut se débarrasser de l'hypothèse de \(n \) fini.

On cherche une solution vérifiant dans le demi-espace \(\{z > 0\} \) les conditions suivantes:

Sur l'équation de Laplace dans un milieu stratifié

3. Une hypothèse complémentaire — Admettons que la stratification d'un milieu en modifie les propriétés physiques de telle façon que dans chaque couche le produit $\sigma(z) \nu(z)$ reste constant

$$\sigma(z) \nu(z) = s_z^2 \quad (s_{z-1} < z < s_z).$$

Cette hypothèse peut être justifiée par des considérations sur l'état naturel d'un milieu etc., dont nous ne nous occuperons pas ici. L'équation (1) devient

$$s_z^2 \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right) + \sigma \frac{\partial}{\partial z} \left(\frac{\partial \varphi}{\partial z} \right) = 0.$$

L'équation (7) donne

$$\sigma \frac{\partial}{\partial z} (\sigma Z) - s_z^2 \lambda^2 Z = 0.$$

Remplaçons la variable z par une nouvelle variable η telle que

$$u = s_1 \int_{\xi_1} d\xi_1 + s_2 \int_{\xi_1} d\xi_2 + \ldots + s_{k-1} \int_{\xi_{k-1}} d\xi_k + s_k \int_{\xi_{k-1}} d\xi_k$$

(2) $$u = s_1 \int_{\xi_1} d\xi_1 + s_2 \int_{\xi_1} d\xi_2 + \ldots + s_{k-1} \int_{\xi_{k-1}} d\xi_k + s_k \int_{\xi_{k-1}} d\xi_k$$

(3) $$s_{k-1} < z < s_k.$$

Posons

$$f(x, y, u) = \varphi(x, y, z), \quad U(u) = Z(z).$$

Ces fonctions vérifient respectivement les équations différentielles suivantes

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial u^2} = 0,$$

$$\frac{d^2 U}{d u^2} - \lambda^2 U = 0.$$

La condition II reste sans changement:

$$f(x, y, u_k - 0) = f(x, y, u_k + 0).$$

La condition III prend la forme

$$s_b \left| \frac{\partial f}{\partial u} \right| = s_{b+1} \left| \frac{\partial f}{\partial u} \right|.$$
Les équations (4) et (5) ne varient pas

\[f(x, y, 0) = \Phi(x, y) \quad \text{(Condition de Dirichlet)} \]

\[\frac{\partial f}{\partial n} = F(x, y) \quad \text{(Condition de Neumann)} \]

Donc, le problème se réduit à la résolution de l'équation de Laplace en présence d'une condition supplémentaire (15).

En ce qui concerne la condition I, elle reste inchangée si l'on suppose que

\[\lim_{z \to \infty} \frac{u}{z} = \text{const.} \neq 0. \]

L'équation (13) a comme solution générale

\[U = e^{i\lambda x} + \Omega(x, y, \lambda). \]

Nous allons chercher la solution de l'équation de Laplace (12) sous forme de l'intégrale de Hankel

\[f(x, y, \mu) = \sum_{n=1}^{\infty} S_n(x, y, \lambda) \left[\Phi_n(\lambda) e^{-i\lambda u} + \varphi_n(\lambda) e^{i\lambda u} \right] d\lambda. \]

\[(u_1 < u < u_2) \]

\[S_n(x, y, \lambda) \] étant une solution particulière de l'équation (6) dont nous nous occuperons plus tard. Nous verrons que les conditions I—IV suffisent pour la détermination complète des fonctions \(\Phi_n \) et \(\varphi_n \).

Commençons par les équations (14) et (15) (conditions II et III). Elles donnent, en omettant l'indice \(\mu \n\)

\[\left\{ \begin{array}{l}
\tau_0 e^{-i\lambda x} + \Phi_0 e^{i\lambda y} = \tau_{n+1} e^{-i\lambda x} + \Phi_{n+1} e^{i\lambda y} \\
\Phi_0 (-e^{-i\lambda x} + \Phi_0 e^{i\lambda y}) = \Phi_{n+1} (-e^{-i\lambda x} + \Phi_{n+1} e^{i\lambda y}).
\end{array} \right. \quad [k = 1, 2, \ldots, n]. \]

D'autre part, dans le cas de \(u \) fini la condition I donne évidemment

\[\varphi_1(\lambda) = 0. \]

Les équations (19) et (20) permettent de calculer toutes les fonctions \(\tau_0 \) et \(\Phi_0 \) lorsque les deux premières fonctions \(\tau_1 \) et \(\Phi_1 \) sont connues. L'équation (21) donne une relation linéaire entre \(\tau_1 \) et \(\Phi_1 \). Ce calcul nécessite l'introduction d'un système de fonctions très intéressant et très utile dans la théorie du potentiel lorsqu'il s'agit d'un milieu stratifié.

Enfin, la condition limite permet de déterminer \(\tau_1 \) et de résoudre complètement le problème.

II Fonctions auxiliaires

4. Définitions — Soient

\[-1 \leq \mu_1, \mu_2, \ldots, \mu_n \leq 1 \]
\[0 < u_1 < u_2 < \ldots < u_n \]

deux suites de nombres. Soient d'autre part \(P_{\mu h}, Q_{\mu h} \) des fonctions définies par les relations suivantes

\[\begin{aligned}
P_{\mu h}(\lambda) &= 1 \\
Q_{\mu h}(\lambda) &= e^{-\lambda u_h} \\
\end{aligned} \]

\[\begin{aligned}
P_{\mu h, \mu h+1}(\lambda) &= P_{\mu h}(\lambda) + \mu_{h+1} e^{-\lambda u} Q_{\mu h, \mu h+1}(\lambda) \\
Q_{\mu h, \mu h+1}(\lambda) &= Q_{\mu h}(\lambda) + \mu_{h+1} e^{-\lambda u} P_{\mu h, \mu h+1}(\lambda).
\end{aligned} \]

On voit facilement que de façon plus générale

\[\begin{aligned}
P_{\mu h, \mu h+1}(\lambda) &= P_{\mu h}(\lambda) P_{\mu h+1, \mu h+1}(\lambda) + Q_{\mu h}(\lambda) Q_{\mu h+1, \mu h+1}(\lambda) \\
Q_{\mu h, \mu h+1}(\lambda) &= Q_{\mu h}(\lambda) P_{\mu h+1, \mu h+1}(\lambda) + P_{\mu h}(\lambda) Q_{\mu h+1, \mu h+1}(\lambda).
\end{aligned} \]

On trouve inversement

\[\begin{aligned}
(1 - \mu_{h+1}^2) P_{\mu h}(\lambda) &= P_{\mu h, \mu h}(\lambda) - Q_{\mu h+1}(\lambda) Q_{\mu h+1, \mu h}(\lambda) \\
(1 - \mu_{h+1}^2) Q_{\mu h}(\lambda) &= Q_{\mu h, \mu h}(\lambda) - P_{\mu h+1}(\lambda) Q_{\mu h+1, \mu h}(\lambda)
\end{aligned} \]

de la façon plus générale

\[\begin{aligned}
P_{\mu h, \mu h+1}(\lambda) &= P_{\mu h, \mu h}(\lambda) P_{\mu h+1, \mu h+1}(\lambda) - Q_{\mu h, \mu h+1}(\lambda) Q_{\mu h+1, \mu h}(\lambda) \left(1 - \mu_{h+1}^2\right) \cdots \left(1 - \mu_{h+1}^2\right)
\end{aligned} \]

\[\begin{aligned}
Q_{\mu h, \mu h+1}(\lambda) &= Q_{\mu h, \mu h}(\lambda) P_{\mu h+1, \mu h+1}(\lambda) - P_{\mu h, \mu h+1}(\lambda) Q_{\mu h+1, \mu h}(\lambda) \left(1 - \mu_{h+1}^2\right) \cdots \left(1 - \mu_{h+1}^2\right)
\end{aligned} \]
On en tire une relation importante

\[P_{n+1, k+1} (\lambda) P_{n+1, k+1} (-\lambda) = Q_{n+1, k+1} (-\lambda) Q_{n+1, k+1} (\lambda) = (1 - \mu^2_{k+1}) \ldots (1 - \mu^2_{n+1}). \]

On obtient de la même façon en variant le premier indice

\[P_{n, k} (\lambda) = P_{n+k, n} (\lambda) P_{n, n+k} (-\lambda) + Q_{n, k} (\lambda) Q_{n, n+k} (-\lambda) \]
\[Q_{n, k} (\lambda) = Q_{n+k, n} (\lambda) P_{n, n+k} (-\lambda) + P_{n+k, n} (\lambda) Q_{n, n+k} (-\lambda) \]

\[P_{n+k, n} (\lambda) = Q_{n+k, n} (\lambda) P_{n, n+k} (-\lambda) - Q_{n, k} (\lambda) Q_{n+k, n} (-\lambda) \]
\[Q_{n+k, n} (\lambda) = Q_{n, k} (\lambda) P_{n+k, n} (-\lambda) - P_{n, k} (\lambda) Q_{n+k, n} (-\lambda) \]

\[P_{n+k, n} (\lambda) = Q_{n+k, n} (\lambda) P_{n, n+k} (-\lambda) - P_{n, k} (\lambda) Q_{n+k, n} (-\lambda) \]
\[Q_{n+k, n} (\lambda) = Q_{n, k} (\lambda) P_{n+k, n} (-\lambda) - P_{n+k, n} (\lambda) Q_{n, k} (-\lambda) \]

On remarque immédiatement que ces fonctions et ces opérations présentent en quelque sorte une généralisation de la suite des nombres naturels et des opérations arithmétiques fondamentales.

5. Fonctions D et N — Formons maintenant les fonctions

\[D_{na} (\lambda) = P_{na} (\lambda) + Q_{na} (\lambda) \]
\[N_{na} (\lambda) = P_{na} (\lambda) - Q_{na} (\lambda) \]

On peut établir entre elles les relations suivantes:

\[D_{n, k+1} (\lambda) = D_{n+1, k} (\lambda) P_{n+1, k+1} (\lambda) + D_{n, k+1} (-\lambda) Q_{n+1, k+1} (\lambda) \]
\[N_{n, k+1} (\lambda) = N_{n+1, k} (\lambda) P_{n+1, k+1} (\lambda) - N_{n, k+1} (\lambda) Q_{n+1, k+1} (-\lambda) \]

\[D_{n+1, k} (\lambda) = D_{n, k} (\lambda) P_{n, k+1} (\lambda) + D_{n, k} (-\lambda) Q_{n, k+1} (\lambda) \]
\[N_{n+1, k} (\lambda) = N_{n, k} (\lambda) P_{n, k+1} (\lambda) - N_{n, k} (\lambda) Q_{n, k+1} (-\lambda) \]

\[D_{n, k+1} (\lambda) = P_{n, k+1} (\lambda) D_{n+1, k} (\lambda) + Q_{n, k+1} (\lambda) L_{n+1, k} (\lambda) \]
\[N_{n+1, k} (\lambda) = N_{n+1, k} (\lambda) L_{n, k+1} (\lambda) - N_{n+1, k} (\lambda) L_{n+1, k} (-\lambda) \]

6. Le signe et les zéros de P, Q, D, N — Ou peut tirer des équations (22) les relations suivantes:

\[P_{n, k+1} (\lambda) + e^{-2\pi i k+1} Q_{n, k+1} (\lambda) = (1 + \mu_{k+1}) [P_{n, k} (\lambda) + e^{-2\pi i k} Q_{n, k} (\lambda)] \]
\[P_{n, k+1} (\lambda) - e^{-2\pi i k} Q_{n, k+1} (\lambda) = (1 + \mu_{k+1}) [P_{n, k} (\lambda) - e^{-2\pi i k} Q_{n, k} (\lambda)] \]

Admettons, quel que soit \(\lambda \) positif

\[P_{na} (\lambda) > e^{-2\pi i \lambda} |Q_{na} (\lambda)| \]

Les équations (35) donnent dans ces conditions

\[P_{n, k+1} (\lambda) > e^{-2\pi i \lambda} |Q_{n, k+1} (\lambda)| \]

Or, il est évident que

\[1 = P_{na} (\lambda) > |\mu_n| = e^{-2\pi i \lambda} |Q_{na} (\lambda)| \]

Donc, l'inégalité (36) est démontrée.
De même, on peut tirer des équations (30)
\[
D_{m, k+1}(\lambda) + e^{2\lambda x_k} D_{m, k+1}(-\lambda) = \quad (l > 0)
\]
\[
D_{m, k+1}(\lambda) - e^{2\lambda x_k} D_{m, k+1}(-\lambda) = \quad (l < 0)
\]
En admettant
\[
D_{m}(\lambda) > e^{2\lambda x_k} |D_{m}(-\lambda)|, \quad (l > 0)
\]
on a fortiori
\[
D_{m}(\lambda) > e^{2\lambda x_k} |D_{m}(-\lambda)|.
\]
Dans ces conditions les équations (37) montrent que
\[
D_{m, k+1}(\lambda) > e^{2\lambda x_k} |D_{m, k+1}(-\lambda)|.
\]
Or, il est évident que dans nos hypothèses
\[
D_{m}(\lambda) = 1 + n \cdot e^{2\lambda x_k} > e^{2\lambda x_k} |D_{m}(-\lambda)|.
\]
L'inégalité (38) est ainsi démontrée. On a également
\[
N_{m}(\lambda) > e^{2\lambda x_k} |N_{m}(-\lambda)|.
\]
L'inégalité (38) montre que l'équation
\[
D_{m}(\lambda) = 0
\]
n'a pas de racines réelles positives. En effet, si l'équation (40) est vérifiée, l'équation
\[
D_{m}(-\lambda) = 0
\]
l'est aussi. Or, l'équation (32) montre que dans ces conditions les fonctions \(D_{m}(\lambda), D_{m}(-\lambda)\) s'annulent aussi, quel que soit \(m \leq h\), ce qui est absurde. De même, la fonction \(N_{m}(\lambda)\) n'a pas de zéros réels positifs. On peut démontrer de la même façon que les fonctions \(D_{m}(\lambda), N_{m}(\lambda)\) ne peuvent pas s'annuler simultanément. Remarquons enfin que la fonction \(P_{m}(\lambda)\) est positive dans les mêmes conditions que les fonctions \(D_{m}(\lambda), N_{m}(\lambda)\).
9. Nombre infini de couches — Dans ce cas les fonctions P, Q, D, N deviennent des séries dont il s'agit d'étudier la convergence. Il est facile de voir que

$$D_{m, k+1} \leq D_{m, k} [1 + |p_{m+1}| e^{-2i(k+1)}]$$

ou bien à cause de l'inégalité (38)

$$D_{m, k+1} \leq D_{m, k} [1 + |p_{m+1}| e^{-2i(k+1)}]$$

ou bien

$$D_{m, k+1} \leq D_{m, k} [1 + |p_{m+1}| e^{-2i(k+1)}]$$

On en tire

$$D_{m, k} < (1 + |p_m|)(1 + |p_m| + \ldots)$$

Dans certains cas cette limite supérieure est effectivement atteinte.

Supposons le nombre de couches n infini. La convergence de la série limite

$$D_n \bar{=} \lim_{k \to \infty} D_{n, k}$$

dépend de la convergence du produit infini

$$M = \prod_{k=1}^{\infty} (1 + |p_k|).$$

Or, celle-ci est assurée lorsque la série positive $\sum |p_k|$ est convergente. Nous verrons par la suite l'interprétation physique à donner à cette condition. La supposons remplie et posons

$$D_n \bar{=} \lim_{k \to \infty} D_{n, k}, \quad N_n \bar{=} \lim_{k \to \infty} N_{n, k}, \quad P_n \bar{=} \lim_{k \to \infty} P_{n, k}, \quad Q_n \bar{=} \lim_{k \to \infty} Q_{n, k}.$$

Ces fonctions sont liées entre elles par les relations suivantes

$$P_{n, k+1} \bar{=} \frac{P_n \cdot P_{n, k+1}(1 - \lambda) - Q_n \cdot Q_{n, k+1}(1 - \lambda)}{(1 - p^2_n)(1 - p^2_{n+1}) \ldots (1 - p^2_{n+k+1})}$$

$$Q_{n, k+1} \bar{=} \frac{Q_n \cdot P_{n, k+1}(1 - \lambda) - P_n \cdot Q_{n, k+1}(1 - \lambda)}{(1 - p^2_n)(1 - p^2_{n+1}) \ldots (1 - p^2_{n+k+1})}$$

On peut tirer de ces équations une relation récurrente entre trois fonctions successives

$$P_{n-1}(\lambda), \quad P_n(\lambda), \quad P_{n+1}(\lambda).$$

On a en effet

$$P_{n+1}(\lambda) = \frac{P_n(\lambda) - Q_n(\lambda) Q_{n, m}(1 - \lambda)}{1 - p^2_n} + P_{n-1}(\lambda) Q_{n, m}(1 - \lambda).$$

En éliminant $Q_n(\lambda)$ de ces deux équations on trouve

$$1 - p^2_n P_{n+1}(\lambda) Q_{n, m-1}(1 - \lambda) - P_n(\lambda) Q_{n, m}(1 - \lambda) + P_{n-1}(\lambda) Q_{n, m}(1 - \lambda) = 0$$

On a de même

$$1 - p^2_n Q_{n, m+1}(\lambda) Q_{n, m-1}(1 - \lambda) - Q_n(\lambda) Q_{n, m}(1 - \lambda) + Q_{n-1}(\lambda) Q_{n, m}(1 - \lambda) = 0$$

En résolvant le système (19—21) on trouve

$$\phi_k \bar{=} \frac{\delta_{k+1} - \delta_k}{\delta_{k+1} + \delta_k}.$$

On peut résoudre les équations (19—20) par rapport aux fonctions ϕ_k, ϕ_{k+1}, ce qui donne

$$\phi_{k+1} Q_{k+1}(1 - \lambda) = \phi_{k+1} - (1 - p_k) \delta_k$$

On en tire une relation récurrente liant les trois fonctions successives

$$\phi_k Q_{k-1}(1 - \lambda) = (1 + p_k) \phi_{k-1} - \phi_{k-1}$$

$$\phi_k \phi_{k-1} \phi_{k-2} \ldots$$
Sur l'équation de Laplace dans un milieu stratifié

13. Nombre infini de couches — Dans le cas de \(n \) infini on doit admettre la convergence du produit infini

\[
M = (1 + |p_1|)(1 + |p_2|) \ldots (1 + |p_k|) \ldots
\]

Nous avons vu que dans ces conditions les limites \(P_k(l) \) et \(Q_k(l) \) existent. Les équations (58) et (59) deviennent

\[
\begin{align*}
\tau_k(l) &= \tau_l(l) \frac{P_k(l)}{P_l(l)} (1 - p_k)(1 - p_l) \ldots (1 - p_{k-1}) \\
\psi_k(l) &= -\tau_l(l) \frac{Q_k(l)}{P_l(l)} (1 - p_k)(1 - p_l) \ldots (1 - p_{k-1})
\end{align*}
\]

Du point de vue physique la convergence du produit \(M \) signifie que la différence relative entre les deux couches consécutives tend rapidement vers zéro pour \(n \) croissant indéfiniment.

Le problème se réduit ainsi à une seule fonction \(\tau_l \).

IV Recherche des fonctions \(\sigma_n(l) \)

14. Retour au problème général — Nous avons donné à la solution de l'équation (12) la forme

\[
f(x, y, u) = \sum_{\lambda} \int_{\lambda_{1,\lambda}} S_\lambda(x, y, \alpha)[\sigma_\lambda(l) e^{-\alpha u} + \phi_\lambda(l) e^{\alpha u}] d\alpha,
\]

\(\{\lambda_{1,\lambda} < u < \lambda_\lambda \} \)

\(S_\lambda(x, y, \alpha) \) étant une solution particulière de l'équation (6). Les équations (60) et (61) nous donnent toutes les fonctions \(\tau_n \) et \(\phi_n \) expressées au moyen de \(\sigma_n \):

\[
\begin{align*}
\tau_n(l) &= \tau_n(l) \cdot \frac{P_n(l)}{P_l(l)} (1 - p_n)(1 - p_l) \ldots (1 - p_{n-1}) \\
\phi_n(l) &= -\tau_l(l) \cdot \frac{Q_n(l)}{P_l(l)} (1 - p_n)(1 - p_l) \ldots (1 - p_{n-1})
\end{align*}
\]

Donc la formule (18) devient pour \(\lambda_{k-1} < u < \lambda_k \)

\[
f(x, y, u) = (1 - p_k) \ldots (1 - p_{k-1}) \times \left(\sum_{\lambda} \int_{\lambda_{1,\lambda}} S_\lambda(x, y, \alpha)[\sigma_\lambda(l) e^{-\alpha u} - \phi_\lambda(l) e^{\alpha u}] d\alpha \right)
\]

réduisant tout le problème à la recherche d'une seule fonction \(\tau_l \).
On a en particulier dans la première couche pour $0 < h < \mu_1$

\begin{equation}
(63)
\quad f(x, y, z) = \int_0^{\infty} \frac{P_n(\lambda)}{P_{n-1}(\lambda)} e^{-\lambda z} - Q_{n-1}(\lambda) e^{\lambda z} d\lambda \sum_{m} S_m(x, y, \lambda) \zeta_m(\lambda).
\end{equation}

Les fonctions P_n et Q_n sont connues. Il s’agit de déterminer les fonctions $\zeta_m(\lambda)$ en se servant des conditions limites.

15. Transformation des coordonnées (x, y, z) — Remplaçons les coordonnées (x, y) par $x = r \cos \theta$, $y = r \sin \theta$. L’équation (6) devient

\begin{equation}
(64)
\quad \frac{\partial^2 S}{\partial r^2} + \frac{1}{r} \frac{\partial S}{\partial r} + \frac{1}{r^2} \frac{\partial^2 S}{\partial \theta^2} + \lambda^2 S = 0.
\end{equation}

Posons

\[S = R(r) \Theta(\theta). \]

Les fonctions R et Θ vérifient les équations suivantes

\begin{equation}
(65)
\quad R'' + \frac{1}{r} R' + R \left(\frac{\lambda^2 - m^2}{r^2} \right) = 0
\end{equation}

\begin{equation}
(66)
\quad \Theta'' + m^2 \Theta = 0.
\end{equation}

On peut donc écrire

\begin{equation}
(67)
\quad R = J_n(r \lambda),
\end{equation}

\begin{equation}
(68)
\quad \Theta = a_n(\lambda) \cos m \theta + b_n(\lambda) \sin m \theta,
\end{equation}

en désignant par $a_n(\lambda)$ et $b_n(\lambda)$ les fonctions désignées précédemment par $\zeta_m(\lambda)$. La formule (63) prend la forme

\begin{equation}
(69)
\quad f(x, y, z) = \sum_{m} \cos m \theta \int_0^{\infty} J_n(r \lambda) a_n(\lambda) \frac{P_n(\lambda)}{P_{n-1}(\lambda)} e^{-\lambda z} - Q_{n-1}(\lambda) e^{\lambda z} d\lambda.
\end{equation}

\begin{equation}
+ \sum_{m} \sin m \theta \int_0^{\infty} J_n(r \lambda) b_n(\lambda) \frac{P_n(\lambda)}{P_{n-1}(\lambda)} e^{-\lambda z} - Q_{n-1}(\lambda) e^{\lambda z} d\lambda
\end{equation}

$0 < \mu_1 < \mu_2$.}

16. Fonctions cylindriques — Nous allons nous servir par la suite de quelques formules de la théorie des fonctions cylindriques qu’il est utile de rappeler ici.

On a tout d’abord l’équation intégrale analogue à celle de Fourier

\begin{equation}
(70)
\quad f(x) = \int_0^{\infty} J_n(k x) \frac{d k}{k} \int_0^{\infty} J_n(k s) s f(s) d s,
\end{equation}

et l’équation plus générale

\begin{equation}
(71)
\quad f(x) = \int_0^{\infty} J_n(k x) \frac{d k}{k} \int_0^{\infty} J_n(k s) s f(s) d s.
\end{equation}

On a ensuite un groupe de formules établissant la multiplication intégrale des fonctions cylindriques par les fonctions trigonométriques

\begin{equation}
(72)
\quad \int_0^{\infty} J_n(r \lambda) \sin \lambda u d \lambda = \begin{cases} \frac{1}{\sqrt{r^2 - \mu^2}} & r < \mu \\ 0 & r > \mu \end{cases}
\end{equation}

\begin{equation}
(73)
\quad \int_0^{\infty} J_n(r \lambda) \cos \lambda u d \lambda = \begin{cases} 0 & r < \mu \\ \frac{1}{\sqrt{r^2 - \mu^2}} & r > \mu \end{cases}
\end{equation}

\begin{equation}
(74)
\quad \int_0^{\infty} J_n(r \lambda) \sin \frac{\lambda u}{\lambda} d \lambda = \begin{cases} 0 & r < \mu \\ 2 \frac{\sin \mu}{\mu} & r > \mu \end{cases}
\end{equation}

et la formule inverse

\begin{equation}
(75)
\quad \int_0^{\infty} J_n(r \lambda) \frac{d \lambda}{\sqrt{r^2 - \mu^2}} = \frac{\sin \frac{\lambda z}{\lambda}}{
\end{equation}

Il nous faut encore calculer les intégrales plus générales

\begin{equation}
(76)
\quad C_n(r, u) = \int_0^{\infty} J_n(r \lambda) \sin \lambda u d \lambda, \quad D_n(r, u) = \int_0^{\infty} J_n(r \lambda) \cos \lambda u d \lambda.
\end{equation}

Ces fonctions vérifient les relations récurrentes suivantes

\[C_{n+1} = C_{n-1} + \frac{2 n}{r} D_n, \quad D_{n+1} = D_{n-1} - \frac{2 n}{r} C_n \quad (m \geq 1). \]
D'autre part

\[C_\lambda = \frac{n}{r} D_{\lambda n}, \quad D_\lambda = \frac{1}{r} C_\lambda. \]

Ces relations et les formules (72), (73) suffisent pour calculer effectivement les fonctions \(C \) et \(D \). Supposons d'abord

\[\frac{\mu}{r} = \sin \varphi < 1. \]

Alors

(77)

\[C_\lambda = \frac{\sin h \varphi}{r \cos \varphi}, \quad D_\lambda = \frac{\cos h \varphi}{r \cos \varphi} \]

Supposons ensuite que

\[\frac{\nu}{r} = \sin \varphi > 1; \]

dans ce cas

(78)

\[\begin{cases} C_{2\lambda} = \frac{(-1)^\lambda e^{-\lambda \varphi}}{r \cos \varphi}, & C_{2\lambda - 1} = 0 \\ D_{2\lambda} = 0, & D_{2\lambda - 1} = \frac{(-1)^\lambda e^{-\lambda \varphi}}{r \cos \varphi} \end{cases} \]

17. Problème de Dirichlet — Supposons que la fonction \(f \) vérifie la condition (16) et que la fonction \(\Phi(x, y) = \Phi(r \cos \theta, r \sin \theta) \) est développable en série de Fourier

\[\Phi(r \cos \theta, r \sin \theta) = \sum_{m=-\infty}^{\infty} A_m(r) \cos m \theta + \sum_{m=-\infty}^{\infty} B_m(r) \sin m \theta. \]

D'autre part, pour \(\mu = 0 \) la formule (69) donne

\[f(r \cos \theta, r \sin \theta, 0) = \sum_{n=0}^{\infty} \cos m \theta \int_0^\infty J_n(\lambda r) a_n(\lambda) \frac{N_{\lambda n}(\lambda)}{P_{\lambda n}(\lambda)} d\lambda. \]

Dans ces conditions l'équation (16) donne lieu à un système d'équations intégrales

\[A_n(r) = \int_0^\infty J_n(\lambda r) a_n(\lambda) \frac{N_{\lambda n}(\lambda)}{P_{\lambda n}(\lambda)} d\lambda \]

\[B_n(r) = \int_0^\infty J_n(\lambda r) b_n(\lambda) \frac{N_{\lambda n}(\lambda)}{P_{\lambda n}(\lambda)} d\lambda \]

L'inversion de ces intégrales est immédiate:

(80)

\[a_n(\lambda) = \frac{\lambda P_{\lambda n}(\lambda)}{N_{\lambda n}(\lambda)} \int_0^\infty A_n(r) J_n(\lambda r) r \, dr \]

\[b_n(\lambda) = \frac{\lambda P_{\lambda n}(\lambda)}{N_{\lambda n}(\lambda)} \int_0^\infty B_n(r) J_n(\lambda r) r \, dr. \]

Ou a d'autre part

\[A_n(r) = \frac{1}{2\pi} \int_0^{2\pi} \Phi(r \cos \theta, r \sin \theta) \cos m \theta \, d\theta \]

\[B_n(r) = \frac{1}{2\pi} \int_0^{2\pi} \Phi(r \cos \theta, r \sin \theta) \sin m \theta \, d\theta. \]

Donc

\[a_n(\lambda) = \frac{\lambda P_{\lambda n}(\lambda)}{\pi N_{\lambda n}(\lambda)} \int_0^{2\pi} \cos m \theta \, d\theta \int_0^\infty J_n(\lambda r) b_n(\lambda) \frac{N_{\lambda n}(\lambda)}{P_{\lambda n}(\lambda)} r \, dr \]

\[b_n(\lambda) = \frac{\lambda P_{\lambda n}(\lambda)}{\pi N_{\lambda n}(\lambda)} \int_0^{2\pi} \sin m \theta \, d\theta \int_0^\infty J_n(\lambda r) a_n(\lambda) \frac{N_{\lambda n}(\lambda)}{P_{\lambda n}(\lambda)} r \, dr \]

Remplaçons \(a_n(\lambda) \) et \(b_n(\lambda) \) par ces expressions dans la formule (69):

\[f(x, y, \mu) = \frac{1}{2\pi} \int_0^{2\pi} \frac{P_{\lambda n}(\lambda)}{N_{\lambda n}(\lambda)} e^{i\lambda \mu} \int_0^\infty J_n(\lambda r) \frac{N_{\lambda n}(\lambda)}{P_{\lambda n}(\lambda)} r \, dr \]

\[\Phi(\xi \cos \theta, \xi \sin \theta) \, d\xi. \]

\[\begin{align*}
J_n(\lambda r) J_n(\lambda s) + & 2 \sum_{n=1}^{\infty} \cos m (\theta - \varphi) J_n(\lambda r) J_n(\lambda s) \\
& - \left[J_n(\lambda r) J_n(\lambda s) + 2 \sum_{n=1}^{\infty} \cos m (\theta - \varphi) J_n(\lambda r) J_n(\lambda s) \right]
\end{align*} \]
Or, on a d'après la formule d'addition des fonctions cylindriques

\[J_n(l, r) \equiv \sum_{m=0}^{\infty} \frac{(l-r)^m}{m!} J_n(l, r) = J_{n+1}(l, r) - \frac{2r}{\pi} \cos \theta J_n(l, r) \]

On obtient donc la solution cherchée sous la forme suivante:

\[f(x, y, z) = \frac{1}{2\pi} \int_0^\infty \int_{-\infty}^{\infty} P_\nu(l, \gamma) e^{-\gamma z} J_\nu(l, \gamma) \frac{e^{i\lambda}}{N_\nu(l)} d\lambda \times \]

\[\times \int_0^{\infty} \int_{-\infty}^{\infty} \Phi(l, \gamma) J_\nu(l, \gamma) e^{i\lambda z} \frac{e^{i\lambda \gamma}}{N_\nu(l)} d\lambda \times \]

On trouve de même la fonction \(f(x, y, z) \) dans la \(\kappa \)e couche

\[f(x, y, z) = \frac{1}{2\pi} \int_0^\infty \int_{-\infty}^{\infty} P_\nu(l, \gamma) e^{-\gamma z} Q_\nu(l, \gamma) e^{i\lambda z} \frac{e^{i\lambda \gamma}}{N_\nu(l)} d\lambda \times \]

\[\times \int_0^{\infty} \int_{-\infty}^{\infty} \Phi(l, \gamma) J_\nu(l, \gamma) e^{i\lambda z} \frac{e^{i\lambda \gamma}}{N_\nu(l)} d\lambda \]

Le problème de Dirichlet se trouve ainsi entièrement résolu.

Problème de Neumann — Supposons que la fonction \(f \) vérifie la condition (17) et que la fonction \(F(x, y) = F(r \cos \theta, r \sin \theta) \) est développable en série de Fourier

\[F(r \cos \theta, r \sin \theta) = \sum_{m=0}^{\infty} \frac{G_m(r) \cos m \theta + H_m(r) \sin m \theta}{\sum_{m=0}^{\infty} \frac{G_m(r) \cos m \theta + H_m(r) \sin m \theta}{\sum_{m=0}^{\infty} \frac{G_m(r) \cos m \theta + H_m(r) \sin m \theta}}. \]

D'autre part, pour \(u = 0 \) les formules (17) et (69) donnent

\[f(x, y, z) = \int_0^\infty \int_\frac{r}{2}^\infty \frac{Q_\nu(l, \gamma) e^{i\lambda z} \frac{e^{i\lambda \gamma}}{N_\nu(l)}}{D_\nu(l)} d\lambda \times \]

\[\times \int_0^{\infty} \int_{-\infty}^{\infty} F(l, \gamma) J_\nu(l, \gamma) e^{i\lambda z} \frac{e^{i\lambda \gamma}}{N_\nu(l)} d\lambda \times \]

\[\times \int_0^{\infty} \int_{-\infty}^{\infty} \Phi(l, \gamma) J_\nu(l, \gamma) e^{i\lambda z} \frac{e^{i\lambda \gamma}}{N_\nu(l)} d\lambda \]

Remarquons qu'en établissant les formules (82 — 83), (86 — 87) nous nous sommes mis sur un terrain purement formel sans nous soucier de la légitimité de nos opérations et transformations. Nous espérons combler cette lacune dans une publication ultérieure.
V. Un cas particulier du problème mixte.

19. Nous allons donner ici la solution générale d'un problème géophysique dont les cas particuliers de \(n = 3 \) et de \(n = 4 \) ont été résolus par MM. Schlumberger et Stefanesco *). Il s'agit de trouver le potentiel électrique dans un sol stratifié. L'atmosphère est considérée comme isolant. Une électrode ponctuelle située à la surface du sol débite un courant d'intensité \(I \). Le potentiel vérifie l'équation (6) ou après l'introduction de la variable \(\lambda \) l'équation de Laplace (12). En tenant compte de la symétrie axiale on peut remplacer (12) par l'équation

\[
\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial z^2} = 0.
\]

Les conditions I, II, III ne sont pas modifiées. Quant aux conditions limites, la dérivée normale du potentiel s'annule à la surface

\[
\left. \frac{\partial f}{\partial n} \right|_{n = 0} = 0.
\]

et le potentiel pour \(R = r^2 + z^2 + \lambda^2 \to 0 \) devient infini comme \(\frac{1}{2 \pi n} \).

Dans ces conditions on peut exprimer \(f \) sous forme suivante

\[
f(r, \omega) = \frac{1}{2 \pi n} \left[\sum_{k} \tau_k(\lambda) J_0(\lambda r) e^{-\lambda z} d\lambda - \sum_{k} \phi_k(\lambda) J_0(\lambda r) e^{\lambda z} d\lambda \right],
\]

\((n_{k-1} < n < n_k) \).

Il est facile de voir que les fonctions \(\tau_k \) et \(\phi_k \) vérifient les équations (19), (20) et (21) et qu'en outre

\[
\tau_k = \phi_k + 1.
\]

Les équations (57) et (91) permettent de déterminer immédiatement \(\tau_k \) et \(\phi_k \):

\[
\tau_k = \frac{Q_{n_k}(\lambda)}{D_{n_k}(\lambda)}, \quad \phi_k = -\frac{Q_{n_k}(\lambda)}{D_{n_k}(\lambda)}.
\]

75

Sur l'équation de Laplace dans un milieu stratifié

ainsi que toutes les fonctions \(\tau_k \) et \(\phi_k \):

\[
(93) \quad \tau_k(\lambda) = \frac{(1 - \eta_1) \ldots (1 - \eta_{n_k}) P_{n_k}(\lambda)}{D_{n_k}(\lambda)},
\]

\[
(94) \quad \phi_k(\lambda) = -\frac{(1 - \eta_1) \ldots (1 - \eta_{n_k-1}) Q_{n_k}(\lambda)}{D_{n_k}(\lambda)}, \quad (k = 1, 2, \ldots, n)
\]

L'équation (54) donne d'autre part

\[
\tau_{n-1}(\lambda) = \frac{(1 - \eta_1) \ldots (1 - \eta_{n-2}) P_{n-1}(\lambda)}{D_{n-1}(\lambda)}, \quad \phi_{n-1}(\lambda) = -\frac{(1 - \eta_1) \ldots (1 - \eta_{n-3}) Q_{n-1}(\lambda)}{D_{n-1}(\lambda)}.
\]

Le problème de \(n \) couches se trouve par conséquent entièrement résolu.

Les fonctions \(\tau_k \) et \(\phi_k \) possèdent une curieuse particularité. Supposons que \(\eta_k = \pm 1 \), c'est-à-dire que la \(k \) \(+1 \)ème couche est un isolant ou un conducteur parfait. Or, précisément nous avons vu que dans ces conditions pour \(m \leq k \) les fonctions \(\tau_m \) et \(\phi_m \) deviennent

\[
(95) \quad \tau_m(\lambda) = \frac{(1 - \eta_1) \ldots (1 - \eta_{m-1}) P_m(\lambda)}{D_m(\lambda)}, \quad \phi_m(\lambda) = -\frac{(1 - \eta_1) \ldots (1 - \eta_{m-1}) Q_m(\lambda)}{D_m(\lambda)}.
\]

Elles ne dépendent donc pas de l'état électrique des couches situées au-dessus d'une couche isolante ou conductrice parfaite. Par conséquent, les mesures électriques faites au-dessus d'une telle couche ne peuvent donner aucune idée de l'état électrique des couches situées au-dessous du niveau \(n_k \). On peut en conclure que les couches à conductibilité trop grande ou trop petite forment un écran pratiquement infranchissable pour la prospection électrique.

20. Problèmes inverses — Il est nécessaire d'éclaircir un autre point important. On pose souvent le problème inverse, autrement dit on cherche une distribution de la matière qui expliquerait le potentiel observé à la surface. On oublie volontiers que dans la plupart des cas c'est un problème indéterminé, et ainsi de temps en temps les vieilles erreurs sont remises en circulation. On a vu recemment cette contro-
verse ressuscitée à propos de mesures magnétiques, on la voit actuellement en pleine action à propos de mesures électriques. Est-il possible de déterminer sans ambiguïté la conductibilité d’un sol stratifié en se basant sur les mesures extérieures de potentiel et de courant tangential? Le présent mémoire donne à cette question une réponse négative. En effet, dans le cas particulier de conductibilités liées par la relation (8) le potentiel extérieur, ainsi que le courant tangential ne dépendent pas de la fonction $\sigma(x)$, mais exclusivement des constantes δ. Cet exemple est bien suffisant pour notre but.

Über die asymptotische Verteilung von fast-periodischen Funktionen mit linear unabhängigen Exponenten.

Von

Aurel Wintner in Baltimore.

Vor einigen Jahren habe ich gezeigt 1), dass jede reelle fastperiodische Funktion $f(t)$ eine asymptotische Verteilungsfunktion $\sigma(x)$ besitzt. Letztere ist eine für alle reellen x erklärte monote nicht abnehmende Funktion derart, dass an jeder Stetigkeitsstelle von $\sigma(x)$ die Grenzwertgleichung

$$
\sigma_T(x) = \sigma(x)
$$

(T $\to \infty$)

gilt, wobei $\sigma_T(x)$ den durch $2T$ dividierten Inhalt der Menge derjenigen Punkte t des Intervalls $-T \leq t \leq T$ bezeichnet, für welche $f(t) \leq x$ ausfällt. In Verallgemeinerung des Bolzano-Weierstrassschen Zwischenwertsatzes über stetige (periodische) Funktionen gilt der Satz 2), dass die Funktion $\sigma(x)$ in der Umgebung der Stelle $x = x_0$ nicht konstant sein kann, wenn x_0 zu dem Wertevorrat der fastperiodischen Funktion $f(t)$ gehört. Endlich gilt 3)

$$
\int_{x_0}^{x_\infty} x^n \sigma(x) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} (f(t))^n \, dt
$$

$(n = 0, 1, 2, \ldots)$.

2) _ibid._, S. 315—316.
3) _ibid._, S. 316.