Rozdział VII

Miary w ciałach Boole’a

§ 1. Treść rozdziału

W rozdziale 3 księgi pierwszej (str. 114-115) określiliśmy pojęcie funkcji addytywnej i funkcji przeliczalnie addytywnej w ciele Boole’a. Podaliśmy również kilka własności takich funkcji. Widzimy też, że są one interesujące choćby z tego powodu, że prawdopodobieństwo jest właśnie taką funkcją. Istnieją jednak inne względy, które skłonily matematyków do zajmowania się takimi funkcjami; do takich właśnie funkcji prowadzą uogólnienia pojęcia długości, powierzchni, objętości itd. Dlatego takie funkcje nazywamy ogólnie miarami; co prawda nie wszystkie. Dokładną definicję tego pojęcia podamy w paragrafie 2. W paragrafie 3 podamy pokrótce teorię tak zwanych miar zewnętrznych Carathéodory’ego i pewne ich własności, które znajdują zastosowanie przy dowodzie zasadniczego w teorii miary twierdzenia Frécheta-Nikodyma o domiarowym rozszerzaniu funkcji przeliczalnie addytywnych, stanowiącego jedyną niemożliwą metodę konstruowania miar (§ 5).

Treść paragrafu 4 stanowią własności miar zewnętrznych w przestrzeniach metrycznych, które podajemy jako uzupełnienie wiadomości zawartych w paragrafie 3.

§ 2. Określenie miary

Począwszy od tego paragrafu będziemy mówili o ciałach Boole’a zwykłych (to znaczy niezeretywizowanych) i o funkcjach rzeczywistych nieujemnych określonych w takich ciałach, przy czym za funkcje rzeczywiste nieujemne (por. księga pierwsza, rozdział III, § 2. Określenie miary, str. 114) uważamy również takie funkcje, które prócz wartości rzeczywistych ≥0 przyjmować mogą również wartość ∞. Uogólnienie podanych tu wyników na ciała zrelatywizowane i funkcje spełniające warunek równoważności (por. księga pierwsza, rozdział III, str. 117) nie przedstawia żadnych trudności.

Określenie 1. Funkcję g niewielką i przeliczalnie addytywną nazywamy miarą w ciele przeliczalnie addytywnym U, jeżeli:

(2.1) funkcja g jest określona na pewnym przeliczalnie addytywnym podciele V ciała U;

(2.2) zbiór tych elementów w V, dla których $g(v)=0$, jest idealem właściwym ciała U.

Określenie 2. Miarę g w ciele U nazywamy skończoną, jeżeli $g(1)<+∞$; w szczególności gdy $g(1)=1$, to miarę g nazywamy unormowaną.

Jak wiemy (por. rozdział III, § 2. Określenie miary, str. 135), zbiór, o którym mowa w warunku (2.2), jest przeliczalnie addytywnym idealem ciała V; nie musi on jednak być idealem ciała U. Z własności idealów wynika łatwo, że

(2.3) Jeśli każdy element $u \in U$ zawarty w pewnym, elementem $v \in V$ miary 0 (to znaczy takim, że $g(v)=0$) należy do V, to warunek (2.2) jest spełniony.

Zachodzi również następujące twierdzenie, którego łatwy dowód pozostawiamy czytelnikowi:

Twierdzenie 1. Jeśli g jest miarą określonną w podciele V ciała U, to

(2.4) zbiór V_1 elementów w kształcie

$$w = v + u,$$

gdzie $u \in U$, $v \in V$, element u zaś jest zawarty w pewnym elemencie miary 0 ciała V, jest przeliczalnie addytywnym podciałem ciała U, zawierającym V;

(2.5) istnieje jedno i tylko jedno rozszerzenie funkcji g do miary w ciele V; jest nim funkcja $h(w) = g(v),

gdzie v jest pierwszym składnikiem jakiegokolwiek przedstawienia elementu w w postaci (2.4). Funkcja h jest miarą w ciele U.

Twierdzenie 1 podaje metodę rozszerzania miar określonych w podciałach do miary w całym ciele.
Element \(u \in U \), dla którego określona jest miara \(g \) w ciele \(U \), nazywamy mierzalnym według miary \(g \) lub, jeśli nie grozi to nieporozumienie, krótko: mierzalnym; liczbę \(g(u) \) nazywamy miarą elementu \(u \); zbiór elementów mieralnych tworzy przeliczalnie addytywne podciałe ciała \(U \) – ciało elementów mieralnych.

Łatwo widzieć, że miara skończona \(g \) w ciele \(U \) nie znika na elemencie 1 ciała \(U \); w takim przypadku bowiem warunek (2.2) nie byłby spełniony. Miara elementu 1 jest więc liczbą dodatnią skończoną i możemy przyjąć dla mierzalnych elementów \(u \in U \)

\[
h(u) = \frac{g(u)}{g(1)}.
\]

(2.6)

Tak określona funkcja \(h \) jest miarą w ciele \(U \) określoną na tym samym ciele elementów mieralnych co miara \(g \), ale miarą unormowaną. W ten sposób rozważanie mier skończonych można zawsze sprowadzić do rozważania miar unormowanych. W przypadku miar nieskończenych takie przejście oczyszczy nie jest możliwe. Jeżeli jednak ograniczymy rozważanie do elementów zawartych w ustalonym elemencie \(u_0 \) miary skończonej dodatniej, to i w tym przypadku możemy przejść do miary skończonej, a więc też do miary unormowanej. Możemy bowiem w takim przypadku przyjąć

\[
h(u) = g(u u_0).
\]

(2.7)

Funkcja \(h \), po rozszerzeniu jej metodą podaną w twierdzeniu 1, będzie miarą skończoną, gdyż oczywiście \(h(1) = g(u_0) \). Czytelnik sprawdzi, że idealem elementów miary \(h \) zera będzie ideał \(I \) w \(J(u_0) \), gdzie \(J \) jest idealem elementów miary \(g \) zera. Miara w ciele wszystkich podzbiorów danego zbioru (przestrzeni) \(R \) nazywamy po prostu miarą w zbiorze (przestrzeni) \(R \). Zgodnie z tym mówimy o miarach na prostej (w przestrzeni \(R_1 \), o miarach na płaszczyźnie (w przestrzeni \(R_2 \) itd.

§ 3. Miary zewnętrzne Carathéodory'ego

Określenie 3. Funkcję \(h \) określoną w ciele przeliczalnie addytywnym \(U \) nazywamy miarą zewnętrzną (Carathéodory'ego), jeśli:

(3.1) jest niemalejąca, to znaczy warunek \(u \rightarrow v \) pociąga za sobą warunek \(h(u) \leq h(v) \) dla \(u, v \in U \);

(3.3) jest subaddytywna, to znaczy, że \(h(\sum_{i=1}^{n} u_i) \leq \sum_{i=1}^{n} h(u_i) \) dla \(u_1, u_2, \ldots, u_n \in U \).

Określenie 4. Jeżeli \(h \) jest miarą zewnętrzną w ciele \(U \), to element \(u \in U \) nazywamy mierzalnym względem \(h \), jeśli dla każdego \(v \in U \) takiego, że \(h(r) = +\infty \), zachodzi identyczność

\[
h(v) = h(v u) + h(v u')
\]

(3.4)

Zbiór wszystkich elementów ciała \(U \) mieralnych względem \(h \) oznaczmy przez \(U_h \).

Miara zewnętrzna jest pewnym uogólnieniem pojęcia miary w sensie określenia 1. W przypadku gdy \(h \) jest miarą określoną w całym ciele \(U \), to \(h \) jest również miarą zewnętrzną \(U = U_h \).

Wprost z określeń 3 i 4 wynikają następujące własności miary zewnętrznej:

\[
h(\sum_{i=1}^{n} u_i) \leq \sum_{i=1}^{n} h(u_i), \quad u_1, u_2, \ldots, u_n \in U,
\]

(3.5)

\[0,1 \in U_h,
\]

(3.6)

\[\text{jeżeli } u \in U_h, \text{ to } u' \in U_h.
\]

Użyteczność pojęcia miary zewnętrznej wynika z następującego twierdzenia:

Twierdzenie 2. Jeżeli \(h \) jest miarą zewnętrzną w ciele \(U \), to \(U_h \) jest przeliczalnie addytywnym podciàdem ciała \(U \).

Określenie 5. Funkcja \(h \) rozpatrywana w ciele \(U_h \) jest miarą w ciele \(U \).

Udowodnimy kolejne dalsze własności miary zewnętrznej, z których wyniknie twierdzenie 2.

(3.10) Jeżeli \(u \in U_h \), \(v_1, v_2 \in U \), \(v_1 \rightarrow u \) i \(v_2 \rightarrow u' \), to

\[h(v_1 + v_2) = h(v_1) + h(v_2).
\]

Mamy bowiem w przypadku \(h(v_1 + v_2) < +\infty \) na podstawie zależności i (3.4): \(h(v_1 + v_2) = h((v_1 + v_2) u) + h((v_1 + v_2) u') = h(v_1) + h(v_2) \), w przypadku zaś przeciwnym na mocy (3.5) \(+\infty = h(v_1 + v_2) < h(v_1) + h(v_2) = +\infty \), czyli (3.10) również zachodzi.

(3.11) Jeżeli elementy \(u_1, u_2 \in U_h \) są rozłączne, \(v_1 \rightarrow u_1 \) i \(v_2 \rightarrow u_2 \), to

\[h(v_1 + v_2) = h(v_1) + h(v_2).
\]
VII. Miary w ciałach Boole'a

Z założenia wynika, że \(u_3 \rightarrow u' \), a więc twierdzenie (3.11) wynika z twierdzenia (3.10).

Szczególnym przypadkiem twierdzenia (3.11) jest przypadek, gdy \(v_1 = u_1 \) i \(v_3 = u_3 \), a więc dla \(u_1, u_2 \in U_h \) rozłącznych zachodzi warunek

\[
(3.12) \quad h(u_1 + u_2) = h(u_1) + h(u_2).
\]

Przez indukcję otrzymujemy z twierdzenia (3.11):

\[
(3.13) \quad \text{Jeżeli } u_1, u_2, \ldots, u_n \in U_h \text{ są elementami rozłącznymi i } v \in U, \text{ to }
\]

\[
h(v \sum_{i=1}^{n} u_i) = \sum_{i=1}^{n} h(vu_i).
\]

Własność (3.13) można też wyrazić następująco:

Miara zewnętrzna jest addytywna na tych elementach ciała, które dają się rozdzielić elementami mierzalnymi.

(3.14) Jeżeli \(u_1, u_2 \in U_h \), to \(u_1 + u_2 \in U_h \).

Należy udowodnić, że jeżeli warunek (3.4) zachodzi dla elementów \(u_i \) i \(v_i \), to zachodzi też dla elementu \(u_i + v_i \). Niech \(v \in U \) i \(h(v) < +\infty \). Korzystając z założeń i twierdzenia (3.10)

\[
h(v) = h(vu_i) + h(vu'_i) = h(vu_i) + h(vu'_i u_i) + h(vu'_i u'_i) =
\]

\[
= h(vu_i + vu'_i u_i) + h(vu'_i u'_i) = h(v(u_i + u'_i u_i)) + h(vu'_i u'_i) =
\]

\[
= h(v(u_i + u'_i)) + h(v(u_i + u'_i)),
\]

co należało okażeć.

Na podstawie (3.7), (3.14), (3.1) i (3.12) mamy

(3.15) \(U_h \) jest podciąłem ciała \(U \), a \(h \) jest niewielką i addytywną funkcją w ciele \(U_h \).

(3.16) Jeżeli \(u_1, u_2, \ldots \in U_h, v \in U, h(v) < +\infty \), to

\[
h(v \sum_{i=1}^{n} u_i) = \lim_{n \to \infty} h(v \sum_{i=1}^{n} u_i).
\]

Na podstawie twierdzenia 7 rozdziału III książki pierwszej (str. 120) istnieje taki ciąg \(w_0, w_1, \ldots \) elementów rozłącznych ciała \(U_h \), że

\[
\sum_{i=1}^{\infty} u_i = \sum_{i=1}^{\infty} w_i \quad \text{i} \quad \sum_{i=1}^{n} u_i = \sum_{i=1}^{n} w_i \quad (i = 1, 2, \ldots).
\]

§ 3. Miary zewnętrzne Carathéodory’ego

Korzystając z tego i kolejno z (3.1), (3.2), (3.3) i (3.13) otrzymujemy

\[
\lim_{n \to \infty} h(v \sum_{i=1}^{n} u_i) < h(v \sum_{i=1}^{\infty} u_i) = h(v \sum_{i=1}^{\infty} w_i) <
\]

\[
\lim_{n \to \infty} h(v \sum_{i=1}^{n} w_i) = \lim_{n \to \infty} \sum_{i=1}^{n} h(vw_i) =
\]

\[
\lim_{n \to \infty} h(v \sum_{i=1}^{n} w_i) \leq \lim_{n \to \infty} h(v \sum_{i=1}^{n} u_i),
\]

co kończy dowód twierdzenia (3.16).

(3.17) Jeżeli \(u_1, u_2, \ldots \in U_h, v \in U_h \), to \(\sum_{i=1}^{\infty} u_i \in U_h \).

Niech \(v \) będzie dowolnym elementem ciała \(U \) i niech \(h(v) < +\infty \). Korzystając z założenia i kolejno z (3.16), (3.11) i oczywistego zawierania \((\sum_{i=1}^{\infty} u_i)' \to (\sum_{i=1}^{n} u_i)' \) otrzymujemy

\[
h(v \sum_{i=1}^{n} u_i) + h(v \sum_{i=1}^{n} w_i) = h(v \sum_{i=1}^{n} u_i) + h(v \sum_{i=1}^{n} w_i) =
\]

\[
= \lim_{n \to \infty} h(v \sum_{i=1}^{n} u_i) = \lim_{n \to \infty} h(v \sum_{i=1}^{n} w_i) =
\]

\[
= \lim_{n \to \infty} h(v \sum_{i=1}^{n} u_i) = \lim_{n \to \infty} h(v \sum_{i=1}^{n} w_i) =
\]

\[
= \lim_{n \to \infty} \sum_{i=1}^{n} h(vu_i) = \lim_{n \to \infty} \sum_{i=1}^{n} h(vw_i) =
\]

\[
= \lim_{n \to \infty} \sum_{i=1}^{n} h(vu_i) = \lim_{n \to \infty} \sum_{i=1}^{n} h(vw_i) =
\]

\[
= h(v) = h(v \sum_{i=1}^{\infty} u_i) + h(v \sum_{i=1}^{\infty} w_i) = h(v \sum_{i=1}^{\infty} u_i),
\]

a ponieważ na podstawie (3.5) mamy

\[
h(v) = h(v \sum_{i=1}^{\infty} u_i) + h(v \sum_{i=1}^{\infty} w_i) = h(v \sum_{i=1}^{\infty} u_i),
\]

więc ostatecznie

\[
h(v) = h(v \sum_{i=1}^{\infty} u_i) = h(v \sum_{i=1}^{\infty} w_i),
\]

co dowodzi spełnienia warunku (3.4), a tym samym dowodzi twierdzenia (3.17).

(3.18) Jeżeli \(u_1, u_2, \ldots \in U \) jest ciągiem elementów parami rozłącznych, to

\[
h(\sum_{i=1}^{n} u_i) = \sum_{i=1}^{n} h(u_i).
\]
Dowód. Korzystając kolejno z (3.16) i (3.15) otrzymujemy
\[h\left(\sum_{i=1}^{n} u_i\right) = \lim_{n \to \infty} h\left(\sum_{i=1}^{n} u_i\right) = \lim_{n \to \infty} \sum_{i=1}^{n} h(u_i) = \sum_{i=1}^{\infty} h(u_i). \]

Udowodniony jeszcze jedno twierdzenie potrzebne do dowodu twierdzenia 2:

(3.19) Jeśli \(x \in U_k, \) \(y \in U, \) \(h(y) = 0 \) i \(x = y, \) to \(x \in U_k. \)

Dowód. Niech \(x \) będzie dowolnym elementem ciała \(U \) i niech \(h(x) < +\infty. \) Mamy \(h(x) = h(x - y + y) < h(y) + h(y'), \) ale z założenia wynika, że \(h(y) = 0, \) więc \(h(x) < h(y) + h(y') = h(y') < h(y), \) co dowodzi, że dla elementu ciała \(U \) spełniony jest warunek (3.4), a więc \(x \in U_k. \)

Z (3.15), (3.17), (3.19) oraz z określenia 1 i (9.3) wynika twierdzenie 2.

§ 4. Miary zewnętrzne Carathéodory’ego w przestrzeniach metrycznych

Będziemy rozpatrywali przestrzeń \(R, \) w której została określona metryka \(q. \) Dla \(p \in R \) i \(X \subset R \) oznaczmy przez \(\delta(p, X) \) odległość punktu \(p \) od zbioru \(X, \) przez \(\delta(X, Y) \) zaś odległość zbiorów \(X \) i \(Y \) w przestrzeni \(R. \) Przypominamy, że (por. wstęp, (3.2) i (3.3), str. 18)

(4.1) \[\delta(p, X) = \inf_{x \in X} \delta(p, x), \]

(4.2) \[\delta(X, Y) = \inf_{x \in X} \inf_{y \in Y} \delta(x, y). \]

Okrólenie 5. Funkcja \(h \) określona dla podzbiorów przestrzeni metrycznej \(R \) nazywa się miarą zewnętrzną w tej przestrzeni, jeśli jest miarą zewnętrzną (w sensie określenia 3) w ciele \(W(R), \) a ponadto spełnia warunek

(4.3) \[h(X + Y) = h(X) + h(Y) \quad dla \ X \subset Y \subset X + Y \subset R \quad \delta(X, Y) > 0. \]

O mierze zewnętrznej \(h \) w przestrzeni metrycznej \(R \) udowodniony następujący zasadniczy lemat:

(4.4) Jeśli \(G \) jest zbiorem otwartym przestrzeni \(R, a \) \(W \) dowolnym podzbiorom \(G \) takim, że \(h(W) < +\infty \) i

\[W_n = \bigcap_{i=1}^{\infty} \left[\delta(x, R - t) > \frac{1}{n} \right], \]

\[h(W) = \lim_{n \to \infty} h(W_n). \]

Dowód. Z określenia zbiorów \(W_n \) wynika, że \(W_n \subset W_{n+1} \subset W \) dla \(n = 1, 2, 3, ..., \) więc na podstawie warunku (3.2)

(4.5) \[\lim_{n \to \infty} h(W_n) < h(W). \]

Przyjmijmy dalej \(F = R - G, \) \(P_n = W - W_n \) i \(D_n = W_{n+1} - W_n. \) Mamy wtedy

(4.6) \[D_n = \bigcap_{i=n}^{\infty} \left[\delta(x, F) > \frac{1}{i} \right], \]

a ponieważ zbiór \(F \) jest zamknięty (jako uzupełnienie zbioru otwartego \(G), \) więc

(4.7) \[P_n = \bigcap_{i=n}^{\infty} D_i. \]

Z nierówności trójkątowej (por. wstęp, str. 9 i (4.6) wynika, że dla \(p \in D_n, q \in D_{n+1} \) mamy

\[\delta(p, q) > \delta(p, F) - \delta(q, F) > \frac{1}{n + 1} - \frac{1}{n + 2} > 0, \]

a zatem

\[\delta(D_n, D_{n+1}) > 0, \]

skąd na mocy (3.2) i (4.3) otrzymujemy

\[h(D_1) + h(D_2) + \ldots + h(D_{n-1}) = h(D_1 + D_2 + \ldots + D_{n-1}) < h(W), \]

\[h(D_2) + h(D_3) + \ldots + h(D_{n+1}) = h(D_2 + D_3 + \ldots + D_{n+1}) < h(W), \]

a więc szereg \(\sum_{i=1}^{\infty} h(D_i) \) jest zbieżny.

Wynika z tego na mocy (4.7) i (3.3), że

(4.8) \[\lim_{n \to \infty} h(P_n) = \lim_{n \to \infty} h\left(\sum_{i=1}^{\infty} D_i\right) < \lim_{n \to \infty} h(D_i) = 0. \]

Ale \(W = W_n + P_n, \) więc \(h(W) < h(W_n) + h(P_n). \) Przechodząc do granicy mamy z uwagi na (4.8)

\[h(W) = \lim_{n \to \infty} h(W_n), \]

co wraz z (4.6) daje tezę lematu (4.4).

Podstawy rachunku prawdopodobieństwa
Twierdzenie 3. Jeżeli \(h \) jest miarą zewnętrzną w przestrzeni metrycznej \(R \), to każdy zbiór borelowski tej przestrzeni jest mierzalny.

Dowód. Niech \(G \) będzie zbiorem otwartym przestrzeni \(R \), \(V \) zaś dowolnym zbiorem tej przestrzeni o skończonej mierze \(h(V) \); dalej niech \(F = R - G \), \(W = VG \) i analoLogicznie jak w (4.4) \(W_n = \), Ponieważ \(W_n \subseteq W \) i \(\delta(W_n, VF) > \frac{1}{n} \), więc \(h(V) > h(W_n + VF) = h(W_n) + h(VF) \), a przechodząc do granicy i korzystając z (4.4) otrzymujemy

\[
h(V) > h(VG) + h(VF),
\]
na podstawie zaś subaddytywności funkcji \(h \) mamy

\[
h(V) < h(VG) + h(VF),
\]
co razem daje

(4.9)

\[
h(V) = h(VG) + h(VF),
\]
a więc zbiór otwarty \(G \) jest mierzalny.

Ponieważ zgodnie z tezą (3.8) twierdzenia 2 ciało zbiorów mierzalnych jest przeliczalnie addytywne, a dowodniliśmy, że należą do niego zbiory otwarte, więc najmniejsze przeliczalne addytywne ciało rozpostarte na klasie zbiorów otwartych, to znaczy ciało zbiorów borelowskich, również zawiera się w ciele zbiorów mierzalnych, co należało okazać.

§ 5. Twierdzenie Frécheta-Nikodyma

Twierdzenie 4. Jeżeli \(g \) jest funkcją nieujemną i przeliczalnie addytywną w podciele \(V \) przeliczalnie addytywny ciała \(U \), to w ciele \(U \) istnieje miara będąca rozszerzeniem funkcji \(g \).

Trudność konstrukcji rozszerzenia \(h \) powstaje oczywiście jedynie w tym przypadku, gdy \(V \) nie jest przeliczalnie addytywnym podciałem ciała \(U \), w przeciwnym bowiem razie twierdzenie 4 wynika natychmiast z twierdzenia 1. Przypominamy, że zgodnie z określeniem 3 z księgi pierwszej, rozdziału III (str. 115) przez funkcję przeliczalnie addytywną w podciele \(V \) przeliczalnie addytywnego ciała \(U \) rozumiemy taką funkcję \(g \), która spełnia warunek \(f(\sum_{i=1}^{n} u_i) = \sum_{i=1}^{n} f(u_i) \)
dla \(u_1, u_2, \ldots \in V \), ale oczywiście tylko wtedy, gdy \(\sum_{i=1}^{n} u_i \in V \), co nie musi mieć miejsca w przypadku, gdy \(V \) nie jest przeliczalnie addytywnym podciałem \(U \).

Dowód twierdzenia 4. Przyjmijmy dla \(u \in U \)

(5.1)

\[
h(u) = \inf \left\{ \lim_{n \to \infty} g(\sum_{i=1}^{n} r_i) \right\}.
\]

Zauważmy, że mając założenia, że dla każdego ciągu \(v_1, v_2, \ldots \) elementów ciała \(V \) istnieje \(\lim_{n \to \infty} g(\sum_{i=1}^{n} v_i) \) jako granica ciągu rosnącego (granica ta jest równa \(+\infty \), gdy ciąg \(g(\sum_{i=1}^{n} v_i) \) nie jest ograniczony z góry lub też gdy początkowy od pewnego wyrazu jego elementy stałe są równe \(+\infty \)). Wprost z (5.1) wynika, że

(5.2) \(h \) jest funkcją nieujemną, monotoniczną i równą 0 dla elementu pustego ciała \(U \).

Dalej mamy

(5.3)

\[
h(v) = g(v) \ \text{dla} \ v \in V.
\]

Przyjmując bowiem \(v_i = v \) dla \(i = 1, 2, \ldots \) otrzymujemy

\[
h(v) = \inf \lim_{n \to \infty} g(\sum_{i=1}^{n} r_i) = \lim_{n \to \infty} g(\sum_{i=1}^{n} v_i) = g(v).
\]

Przypuszcmy jednak, że \(h(v) < g(v) \); istnieje więc taki ciąg \(v_1, v_2, \ldots \) elementów ciała \(V \), że

\[
v \to \infty \ \text{i} \ \lim_{n \to \infty} g(\sum_{i=1}^{n} v_i) < g(v), \ \text{a więc} \ v = v \cdot 1, v_1 = \sum_{i=1}^{n} v_i,
\]
a na podstawie przeliczalnej addytywności funkcji \(g \) w ciele \(V \) (por. rozdział III, twierdzenie 8, str. 123) mamy

\[
g(v) = g(\sum_{i=1}^{n} v_i) = \lim_{n \to \infty} g(\sum_{i=1}^{n} v_i) < g(\sum_{i=1}^{n} v_i),
\]
wbew przypuszczeniu.

Wykażemy, że

(5.4)

\[
h(\sum_{i=1}^{n} r_i) = \lim_{n \to \infty} g(\sum_{i=1}^{n} r_i) \ \text{dla} \ r_1, r_2, \ldots \in V.
\]
VII. Miary w ciałach Boole'a

Wobec (5.2) i (5.3) jest

$$h\left(\sum_{i=1}^{\infty} a_i\right) > \lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_i\right).$$

Stosując (5.1) i (5.2) otrzymujemy

$$h\left(\sum_{i=1}^{\infty} a_i\right) = \inf_{\sum_{i=1}^{\infty} a_i = \sum_{i=1}^{\infty} b_i} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} b_i\right)\right] < \lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_i\right),$$

co kończy dowód tezy (5.4).

Wobec (5.1) i (5.4) mamy

$$h(\sum_{i=1}^{n} a_i) = \inf_{\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} b_i\right)\right] \text{ dla } u \in U. \tag{5.5}$$

Udowodnimy teraz

$$h\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}\right) < \sum_{j=1}^{m} h\left(\sum_{i=1}^{n} a_{ij}\right) \text{ dla } v^{(0)} e V \quad (i, j = 1, 2, \ldots) \tag{5.6}$$

Korzystając kolejno z (5.4), (5.2) i znowu z (5.4) mamy

$$\sum_{j=1}^{m} h\left(\sum_{i=1}^{n} a_{ij}\right) = \lim_{n \to \infty} \sum_{j=1}^{m} h\left(\sum_{i=1}^{n} a_{ij}\right) = \sum_{j=1}^{m} \lim_{n \to \infty} h\left(\sum_{i=1}^{n} a_{ij}\right) =$$

$$= \lim_{m \to \infty} \sum_{j=1}^{m} h\left(\sum_{i=1}^{n} a_{ij}\right) > \lim_{m \to \infty} \sum_{j=1}^{m} h\left(\sum_{i=1}^{n} a_{ij}\right) = h\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}\right). \tag{5.7}$$

Z (5.5) wynika, że dla każdego $\eta > 0$ istnieje ciąg podwójny $(v^{(0)})$, $i, j = 1, 2, \ldots$, elementów ciała V taki, że $u_j \to \sum_{i=1}^{n} v^{(0)}$ oraz

$$h(u_j) + \frac{\eta}{2} > h\left(\sum_{i=1}^{n} v^{(0)}\right).$$

Wtedy oczywiście mamy $\sum_{i=1}^{n} u_j \to \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}$.

Opteracyjając się na tym i kolejno na (5.2) i (5.6), otrzymujemy

$$h\left(\sum_{j=1}^{m} u_{ij}\right) < h\left(\sum_{j=1}^{m} v^{(0)}\right) < \sum_{j=1}^{m} h\left(\sum_{i=1}^{n} v^{(0)}\right) <$$

$$< \sum_{j=1}^{m} \left(h(u_j) + \frac{\eta}{2}\right) = \sum_{j=1}^{m} h(u_j) + \eta,$$

co wobec dowolności liczby η dowodzi nierówności (5.7).

Z (5.2), (5.7) i (5.3) wynika, że

(5.8) Funkcja h jest miarą zewnętrzną w ciele U, będącą rozszerzeniem funkcji g o ciało V na ciało U.

Oznaczając ciało elementów mierzalnych według funkcji h, jak poprzednio, przez U_h udowodniliśmy, że

$$V \subset U_h \tag{5.9}$$

Niech $v \in V$, zaś $u \in U$ i $h(u) < +\infty$. Korzystając z (5.1) oraz z monotoniczności i addytywności funkcji g w ciele V, otrzymujemy

$$h(u v) + h(u v') = \inf_{u \to \sum_{i=1}^{n} a_{ij}} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_{ij}\right)\right] + \inf_{u' \to \sum_{i=1}^{n} a_{ij}} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} a'_{ij}\right)\right] =$$

$$= \inf_{u \to \sum_{i=1}^{n} a_{ij}} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_{ij}\right)\right] + \inf_{u' \to \sum_{i=1}^{n} a_{ij}} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} a'_{ij}\right)\right] =$$

$$= \inf_{u \to \sum_{i=1}^{n} a_{ij}} \left\{\lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_{ij}\right) + \lim_{n \to \infty} g\left(\sum_{i=1}^{n} a'_{ij}\right)\right\} =$$

$$= \inf_{u \to \sum_{i=1}^{n} a_{ij}} \lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_{ij} + \sum_{i=1}^{n} a'_{ij}\right) =$$

$$= \inf_{u \to \sum_{i=1}^{n} a_{ij}} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_{ij} + a'_{ij}\right)\right] =$$

$$= \inf_{u \to \sum_{i=1}^{n} a_{ij}} \left[\lim_{n \to \infty} g\left(\sum_{i=1}^{n} a_{ij}\right)\right] =$$

co dowodzi, że dla elementów V spełniony jest warunek (3.4), a więc każdy taki element jest mierzalny według funkcji h, co należało okazać.

Twierdzenie 4 wynika z (3.8), (3.9) oraz twierdzenia 2.
§ 6. Aproksymacja miary rozszerzonej za pomocą funkcji rozszerzonej:
Rozszerzenie minimalne

Udowodnimy najpierw ogólne

Twierdzenie 5. Dla każdego elementu \(u \in U \) istnieje taki element \(v = \prod_{j=1}^{\infty} \sum_{i=1}^{\infty} r^{(i)}_j \in V \), gdy \(u \rightarrow v \) i \(h(v) = h(u) \).

Dowód. Z (5.5) wynika, że dla każdego naturalnego \(j \) istnieje taki element \(v^{(j)} = \prod_{i=1}^{\infty} \sum_{i=1}^{\infty} e^{(i)}_j \in V \), gdy \(u \rightarrow v^{(j)} \) i \(h(v^{(j)}) - h(u) < \frac{1}{j} \).

Z monotoniczności funkcji \(h \) wynika, że element \(v = \prod_{j=1}^{\infty} \sum_{i=1}^{\infty} e^{(i)}_j \) ma żądane własności.

Obecnie przejdziemy do miar będących rozszerzeniem funkcji bardziej specjalnych.

Określenie 6. Funkcję \(g \) określoną w podeście \(V \) ciała \(U \) nazywamy \(\kappa \)-skończoną, jeśli istnieje ciąg elementów parami rozłącznych \(s_1, s_2, \ldots \in V \) takie, że \(g(s_i) < +\infty \), \(i = 1, 2, \ldots \), i \(\sum_{i=1}^{\infty} s_i = 1 \).

W szczególności, każda funkcja skończona jest \(\kappa \)-skończona, możemy bowiem przyjąć \(s_1 = 1, s_i = 0 \) dla \(i = 2, 3, \ldots \).

Twierdzenie 6. Jeżeli funkcja \(g \) jest \(\kappa \)-skończona, to dla każdego elementu \(u \in U \) istnieje taki element \(v = \prod_{j=1}^{\infty} \sum_{i=1}^{\infty} v^{(i)}_j \in V \), gdy \(u \rightarrow v \) i \(h(v) = h(u) \).

Dowód. Zależny najpierw o elementie \(u \), że jest miary skończonej: \(h(u) < +\infty \). Na mocy (5.5) istnieje wtedy element \(u = \sum_{k=1}^{\infty} k_k \), \(k_k \in V \), miary skończonej zawierający \(u \). Na mocy twierdzenia 5 istnieje taki element \(w = \prod_{j=1}^{\infty} \sum_{i=1}^{\infty} w^{(i)}_j \), gdy

\[u_0 \rightarrow u \rightarrow w \quad \text{i} \quad h(u_0 - u) = h(w). \]

Ponieważ \(u_0 \) jest mieralne, więc

\[h(w) = h(u_0 - u) + h(w_{u_0}). \]

\[u_0 - u \rightarrow w \quad \text{i} \quad h(u_0 - u) = h(w). \]

\(h(w) = h(u_0 - u) + h(w_{u_0}). \)

§ 6. Aproksymacja miary rozszerzonej — Rozszerzenie minimalne

Mamy jednak \(h(w) = h(u_0 - u) \), więc \(h(w_{u_0}) = 0 \), co daje

\[h(w) = h(u_0 - u). \]

Na mocy mierzalności elementu \(u \), (6.1) i tego, że \(u \rightarrow u_0 \) otrzymujemy

\[h(u_0) = h(u_0 - u) + h(u_0' + u) = h(u) + h(w), \]

na mocy zaś mierzalności elementu \(w \) i (6.2)

\[h(u_0) = h(u_0 - u) + h(u_0' - u) = h(u) + h(w). \]

Porównując prawe strony wzorów (6.3) i (6.4), otrzymujemy

\[h(u) = h(u_0 w_0'). \]

Z tego, że \(u_0 - u \rightarrow w \) i \(u \rightarrow u_0 \), wynika

\[u_0 - u = u_0 w_0' \rightarrow u. \]

Dalej mamy

\[u_0 w_0' = \prod_{k=1}^{\infty} \sum_{j=1}^{\infty} k_k \prod_{j=1}^{\infty} \sum_{i=1}^{\infty} (v^{(i)}_j)^{k_k} = \prod_{k=1}^{\infty} \sum_{j=1}^{\infty} k_k \prod_{j=1}^{\infty} \sum_{i=1}^{\infty} (v^{(i)}_j)^{k_k} \]

Porządkując teraz dla każdego \(i \) ciąg podwójny \((w^{(i)}_j)_k \) w ciąg pojędncyzy \(v^{(i)}_1, v^{(i)}_2, \ldots \) otrzymujemy \(u_0 w_0 = \prod_{j=1}^{\infty} v^{(i)}_j \), co ze względu na (6.5) i (6.6) kończy dowód w przypadku elementu \(u \) miary skończonej.

Przypuśmy teraz, że \(h(u) = +\infty \). Na mocy zalozonej \(\kappa \)-skończonosci funkcji \(g \) istnieje ciąg elementów rozłącznych \(s_1, s_2, \ldots \in V \) miary skończonej \(h \) takie, że \(\sum_{k=1}^{\infty} k_k = u \), \(k_k \) są miary skończonej, więc na mocy poprzedniej części twierdzenia istnieje dla każdego \(k \) element \(w_k = \prod_{j=1}^{\infty} v^{(i)}_j \), \(v^{(i)}_j \in V \), zawarty w \(w_k \) i równa miary z elementem \(k_k \). Mamy więc \(\sum_{k=1}^{\infty} k_k = u \), i ze względu na rozłączność elementu \(s_k \)

\[h(u) = \sum_{k=1}^{\infty} h(k_k) = \sum_{k=1}^{\infty} h(w_k) = h(\sum_{k=1}^{\infty} k_k). \]

Porządkując teraz przy każdym \(i \) ciąg podwójny \((w^{(i)}_j)_k \) w ciąg pojedynczy \(v^{(i)}_1, v^{(i)}_2, \ldots \) otrzymujemy \(\sum_{k=1}^{\infty} v^{(i)}_j = \prod_{j=1}^{\infty} v^{(i)}_j \), co kończy dowód.
TWIERDZENIE 7. Jeżeli g jest funkcją κ_2-skośniętą, to rozszerzenie h, określone wzorem (5.1), rozpatrywane na ciele U_h, jest rozszerzeniem minimalnym funkcji g do miary w U, to znaczy każda miara f w ciele U będąca rozszerzeniem g jest równocześnie rozszerzeniem h.

Dowód. Niech $u \in U_h$. Mamy udowodnić, że u jest mierzalna według miary f i że wartości miar f i h dla elementu u są równe. Podobnie jak poprzednio założymy najpierw, że $h(u) <= +\infty$.

Na mocy twierdzeń 5 i 6 istnieją wtedy elementy

$$v = \bigoplus_{i=1}^{\infty} w_i, \quad w = \bigoplus_{i=1}^{\infty} w'_i,$$

$$v^P, \theta_iw^P \in V,$$

także, że $w \to u \to v$ i $h(w) = h(u) = h(v)$.

Z twierdzenia (3.12) z rozdziału III księgi pierwszej (str. 122) wynika, że miary f i h przyjmują na elementach w i v te same wartości, a więc $f(w) = h(w) = f(v) = +\infty$. Mamy dalej $f(v) = f(w) + f(v - w)$, co ze względu na poprzednią równość i skończoność $f(v)$ daje $f(v - w) = 0$. Element $v - u$ jako zawarty w elemencie $v - w$ miary f zero jest zgodnie z (2.3) mierzalny według funkcji f i oczywiście też jest miary f zero. Wynika z tego, że element $u = w + (u - w)$ jako suma dwóch elementów mierzalnych jest mierzalny i $f(u) = f(w) + f(u - w) = f(v) = h(u)$.

W przypadku gdy $h(u) = +\infty$, korzystając z κ_2-skończenności funkcji g, utwórzmy ciąg elementów rozłącznych $s_1, s_2, ..., s_\infty \in V$, takich, że $g(s_k) < +\infty$, i rozpatrzmy elementy ciąg $s_1u, s_2u, ..., s_\infty u$. Wszystkie one jako elementy skończonych miary h są mierzalne według miary f, i miary h i f przyjmują na nich te same wartości. Mamy więc

$$h(u) = h(\bigoplus_{k=1}^{\infty} s_ku_k) = \sum_{k=1}^{\infty} h(s_ku_k) = \sum_{k=1}^{\infty} f(s_ku_k) = f(u),$$

co kończy dowód.

W przypadku gdy funkcja rozszerzana g jest κ_2-skończona, z twierdzenia 7 wynika, że ciało U_j jest bardzo specjalnie postać. Można bowiem łatwo za pomocą twierdzeń s^2 i s^3 z rozdziału III księgi pierwszej (str. 121-122) wkomponować, że każde dwie miary przyjmujące te same wartości w ciele V przyjmują również te same wartości w ciele $[V]_f$, rozszerzając więc funkcję h z ciała V do miary w ciele U metodą podaną w twierdzeniu 1 otrzymujemy minimalne rozszerzenie funkcji g do miary w ciele U, a więc U_j jest ciałem tych elementów w, które mają postać $w = v + u$, $u \in [V]_f$, v zaś jest zawarty w pewnym elemencie miary 0 ciała $[V]_f$.

§ 6. Aproksymacja miary rozszerzalnej — Roszczernienie minimalne 217

W przypadku gdy g nie jest funkcją κ_2-skończoną, twierdzenia 6 i 7 nie zachodzą. W szczególności, funkcja g może się nie rozszerzać na $[V]_f$ w sposób jednomocny, o czym poniżej następujący przykład.

Niech I_n będzie przedziałem $E = \{0 \leq x < 1\} (n = 0, 1, 2, ..., n + 1)$ na płaszczyźnie R_2. Utwórzmy podciał $V = \{[I_1, I_2, ...]\}$ ciała $W(R_2) = U$. Oczywiście,

$$B \sim \bigoplus_{i=1}^{\infty} I_i < [V]_f = V.$$ Ciało $V_i = \{[V] + [B - \sum_{i=1}^{\infty} I_i]\}$ składa się z tych zbiorów X, które mają postać

$$X = \sum_{i=1}^{\infty} I_i + Y_i, \quad Y_i, Y_{i+1} < V.$$ Niech w będzie miara Lebesgue'a na płaszczyźnie R_2. Przyjmijmy

$$g(X) = m(X)$$ dla $X < V$ i rozszerzmy funkcję g na V_1 przyjmując

$$g_1(X) = m(Y_1 \bigoplus_{i=1}^{\infty} I_i) + m(Y_1I_1),$$

gdzie

$$X = X_1 \bigoplus_{i=1}^{\infty} I_i + Y_1, \quad Y_1, Y_{i+1} < V.$$ Mamy $g_1(X) = 1$ i g_1 jest przeliczną addytwną funkcją w V_1, a więc istnieje rozszerzenie h_1 funkcji g_1 do miary w ciele U_1, ale h_1 jest oczywiście również rozszerzeniem funkcji g. Innym rozszerzeniem funkcji g do miary w ciele U jest miara Lebesgue'a m. Oba te rozszerzenia nie są jednak równe na elementach

$$R_2 = \bigoplus_{i=1}^{\infty} I_i < [V]_f = [V_1]_f,$$

gdzie $m(R_2) = +\infty$, zaś $h(R_2) = 1$.

§ 7. Przykłady i zadania

(7.1) Udowodnić, że warunek (2.2) określenia 1 można zastąpić warunkiem:

Dla każdego $u \in U$, jeżeli przy pewnych $v_1, v_2 \in V$ mamy $v_1 < u < v_2$ i $g(v_1) = g(v_2)$, to $u \in V$.

(7.2) W zbiorze X wyróżniamy punkt p, przyjmujemy dla $Y \times X$

$$g(Y) = \begin{cases} 0, & \text{jeżeli } p \notin Y, \\ 1, & \text{jeżeli } p \in Y. \end{cases}$$

Dowód. że g jest miara w $W(x)$.
VII. Miary w ciałach Boole'a

(7.3) Zachowując oznaczenia z twierdzenia 4 oznaczamy

\[h_\ast(u) = \sup_{\Pi_n} \left[\lim_{n \to \infty} g(\prod_{i=1}^{n} \nu_i) \right]. \]

Funkcja \(h_\ast \) nazywa się miarą wewnętrzną. Dowieść, że w przypadku, gdy funkcja \(g \) jest skończona, warunkiem koniecznym i dość-
statecznym mierzalności elementu \(u \in U \) jest warunek \(h(u) = h_\ast(u) \).

(7.4) Niech \(X \) będzie zbiorem nieskończonym nieprzeliczalnym. Przyja-
nymy dla zbiorów skończonych \(Y \subseteq X \), \(g(Y) = n \), gdzie \(n \) jest ilością
elementów zbioru \(Y \), dla \(Y \) przeliczalnych zaś lub takich, że zbiór \(\overline{X} \setminus Y \) jest najwyżej przeliczalny, przyjmujemy \(g(Y) = +\infty \). Udo-
wodnić, że \(g \) jest miarą w \(W(x) \). W ten sposób pojęcie miary
można też uważać za uogólnienie pojęcia liczności elementów.

(7.5) Dla przykładu podanego w (7.4) określamy funkcję \(h \) wzor-
em (5.1). Wykazać, że każdy podzbiór zbioru \(X \) jest mierzalny we-
dług funkcji \(h \).

(7.6) Zbadać zbiór elementów spełniających warunek (3.4) w przy-
kładku, gdy funkcja \(g \) spełnia warunki (3.1), (3.2) i słabszy od
(3.3) warunek

\[g(u_1 + u_2) \leq g(u_1) + g(u_2). \]

Rozdział VIII

Miary w przestrzeniach euklidesowych

§ 1. Treść rozdziału

Rozdział niniejszy jest zastosowaniem wyników rozdziału poprzedniego specjalnie do przestrzeni euklidesowych, a zarazem po-
wiązaniem badań rozdziałów VI i VII. Wynik zasadniczy zawarty
jest w twierdzeniach 4 i 5, z których pierwsze orzeka, że każdej
funkcji \(n \)-wymiarowo niemalnej daje się przyporządkować pewna
miara w przestrzeni \(R^n \), a drugie wyznacza klasy tych miar, które
dadzą się w podany tam sposób z takich funkcji otrzymać. Twier-
dzenie 5 podaje pewną własność funkcji \(n \)-wymiarowo niemalę-
nych spełniających dodatkowe warunki, ważne w pewnych zagadnie-
niach rachunku prawdopodobieństwa.

W paragrafie 5 omawiamy krótko miarę Lebesgue'a.

§ 2. Funkcje przedziału stowarzyszone z funkcjami \(n \)-wymiarowo
niemalnymi

Nawiązując do rozważań rozdziału pierwszego księgi I (str. 46-49) przypominamy, że przez \(P^\ast \) umówiliśmy się oznaczać klasę
\(n \)-wymiarowych przedziałów połotwartych (prawostronnie) \(n \)-wymia-
rowej przestrzeni kartezjańskiej \(R^n \), przez \(N^\ast \) ciało figur elementarnych tej przestrzeni, to znaczy klasę sum skończonych ilości param
rozłącznych przedziałów połotwartych tej przestrzeni. Ponieważ
często będziemy w tym rozdziale mówić o przedziałach skońco-
nych, to znaczy o zbiorach \(I = E \prod_{i=1}^{n} [a_i < x_i \leq \beta_i] \), gdzie \(-\infty < a_i <
\beta_i < +\infty \), więc klasę tych przedziałów oznaczmy dodatkowo
przez \(P^\ast \).