ROZDZIAŁ IV

ELEMENTARNE METODY GEOMETRYCZNE
TEORII FUNKCJI

§ 1. Przesuwanie biegunów. Przebieg funkcji holomorficznej w obszarze jest niejako przeszydżony przez zachowanie się tej funkcji już w otoczeniu jednego jakiegokolwiek punktu obszaru. Jeśli jednak zamiast obszaru rozważałybyśmy dowolny zbiór otwarty, wówczas otrzymałybyśmy funkcję holomorficzną w całym tym zbiorze, definiując ją niezależnie w poszczególnych składowych zbioru. Interesujący przypadek jest taki, że każda funkcja holomorficzną w dowolnym zbiorze otwarty, gdy zbiór G określać można jako granicę ciągu funkcji wymiernych holomorficznych w G, a nawet gdy zbiór G nie roznica płaszczyzny i nie zawiera punktu ∞, jako granicę ciągu wielomianów. Pęknięte to twierdzenie udowodnił Bunge w drugiej połowie ubiegłego stulecia.

Dowód przebiega w trzech etapach: I. funkcję holomorficzną W(z), daną w zbiorze otwartym G, przedstawiamy na zbiorze domkniętym F ⊆ G jako sumę całek krzywoliniowych postaci
\[\frac{1}{2\pi i} \int_G \frac{W(z)}{z-z} \, dz \]
zał. W zbiorach C, przebiegających w G − F;

2. całki te zdefiniowane jako funkcje zmiennej z, aproksymowane jednostajnie na F przez funkcje wymienne, posiadające bieguny na krzywych C; 3. bieguny te „przesuwaną” poza danymi zbiorami otwartymi G tak, by otrzymane funkcje wymienne stały się holomorficzne w G.

Pierwszy etap otrzymuje się wprost, na mocy lemmatu 10.1, Rozdz. III. Drugi opiera się na następującym prostym lemmacie:

(1.1) Jeżeli f(z) jest funkcją ciągłą na krzywej regularnej C nie mającej punktów wspólnych ze zbiorami domkniętymi F, wówczas dla każdej liczby ε > 0 istnieje funkcja wymierna Q(z) posiadająca bieguny wyłącznie na C i taka, że
\[\left| \int_C \frac{f(z)}{z} \, dz - Q(z) \right| \leq \varepsilon \quad dla \quad z \in F. \]

Dowód. Niech \[z = g(t) \], gdzie \(a \leq t \leq b \), będzie równaniem krzywej C i niech M będzie kresem górnym \[|g'(t)| \] w \([a, b] \). Funkcja \[f(g(t))/g'(t) - z \] jest funkcją ciągłą zmiennych z i t, gdy z zbieżności zbior F, a t przedział\[[a, b] \]. Możemy więc podzielić przedział na skończoną ilość podprzedziałów \[[t_i, t_{i+1}] \], gdzie i = 0, 1, ..., n - 1, tak by
\[\left| \int_{t_i}^{t_{i+1}} \frac{f(z)'}{z} \, dz - f(z) \right| < \frac{\varepsilon}{M(b-a)} \quad dla \quad t_i \leq t \leq t_{i+1} \quad oraz \quad z \in F. \]

Przyjmując tezę
\[Q(z) = \sum_{i=0}^{n-1} \frac{f(z)}{g'(z)} \left[g(t_{i+1}) - g(t_i) \right], \]
mamy dla \(z \in F \)
\[\left| \int_C \frac{f(z)}{z} \, dz - Q(z) \right| =
\[= \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \left| \frac{f(z)'}{z} - \frac{f(z)}{g'(z)} \right| \, dz' \leq \frac{\varepsilon}{M(b-a)} = \varepsilon, \]
co należało dowieść.

W trzecim etapie dowodu twierdzenia Bungego opraczyliśmy na następującym lemmacie „o przesuwaniu biegunów”:

(1.2) Jeżeli F jest zbiorem domkniętym, zaś a, b dwoma punktami poza F takimi, że
\[2q(a, b) < q(a, F) \quad oraz \quad 2q(a, b) < q(b, F), \]
wówczas dla każdej liczby ε > 0 i każdej funkcji wymiennej P(z), posiadającej jedynkę biegun w punkcie a, istnieje funkcja wymierna Q(z), posiadająca jedynkę biegun w punkcie b i spełniająca nierówność
\[|P(z) - Q(z)| \leq \varepsilon \quad dla \quad z \in F. \]
Dowód. Rozróżniamy trzy przypadki:

(a) \(a = \pm \infty, b = \pm \infty \). Funkcja \(P(z) \) jest tedy (ob. Rozdz. III, tw. 7.3) wielomianem względem \(1/(z-a) \), a poszukiwana funkcja \(Q(z) \) ma być wielomianem względem \(1/(z-b) \).

Przyjmiemy najpierw, iż \(P(z) \) redukuje się do jednego wyrażenia \(1/(z-a) \).

Z drugiej \(^1\) z nierówności (1.3) wynika, iż dla \(z \in F \) mamy

\[
|a-b|/(z-b) \leq |a-b|/(a-Fb) \leq 1/2 .
\]

Zatem

\[
1/(z-a) = 1/(z-b)^{a} \cdot (1-a/b)^{b}/(z-b)^{a} = 1/(z-b)^{a} \sum_{k=0}^{\infty} A_{k}(a/b)^{k},
\]

gdzie \(A_{k} = (k+n-1)!/(n-1)!k! \), przy czym szereg w ostatnim członie powyższego związku jest zbieżny jednostajnie na \(F \). Warunek (1.4) będzie więc spełniony, gdy obierając wartość \(N \) dostatecznie wielką, przyjmiemy

\[
Q(z) = 1/(z-b)^{a} \sum_{k=0}^{N} A_{k}(a/b)^{k}.
\]

Jeżeli \(P(z) \) jest dowolnym wielomianem względem \(1/(z-a) \), tzn. jest postaci \(\sum_{j=0}^{N} B_{j}/(z-a)^{j} \), wówczas na zasadzie otrzymanego już wyniku możemy określić dla każdego \(j=1,2,\ldots,s \) funkcję \(Q_{j}(z) \), która jest wielomianem względem \(1/(z-b) \) i spełnia na zbiorze \(F \) nierówność

\[
1/(z-b)^{j} - Q_{j}(z) \leq \frac{e^{s}}{s^{j}B_{j}}.
\]

Funkcja \(Q(z) = B_{0} + B_{1}Q_{1}(z) \) jest wówczas także wielomianem względem \(1/(z-b) \) i czyni zadość warunkowi (1.4).

(b) \(a = \pm \infty, b = \infty \). Funkcja \(P(z) \) jest znów wielomianem względem \(1/(z-a) \) i, jak poprzednio, wystarczy dowodzenie, gdy \(P(z) \) redukuje się do jednego wyrażenia \(1/(z-a)^{a} \). Poszukiwana funkcja \(Q(z) \) musi jednak tym razem być wielomianem, ponieważ posiadać ma jedyny biegun w punkcie \(b = \infty \).

Z drugiej strony, ponieważ \(z = b + 1/u \), funkcja \(P(z) \) jest wielomianem względem \(1/u \). Poszukiwana funkcja \(Q(z) \) ma być natomiast wielomianem względem \(u = 1/(z-b) \). Dla uzasadnienia lemmatu w rozważanym przypadku wystarczy więc okazać, iż dla każdego \(\eta > 0 \) oraz każdej liczby całkowitej \(n \) istnieje wielomian \(R(u) \) taki, że

\[
1/|u^n| - R(u) < \eta \quad \text{dla} \quad u \in \overline{K}(c;r).
\]

Otoż dla \(u \in \overline{K}(c;r) \) mamy \(|u - r|/|r| \leq |r|/|r| < 1 \); rozwinięcie

\[
1/|u^n| = e^{\log(1-\frac{r-u}{r})} = e^{\sum_{k=0}^{\infty} A_{k}(r-u/e)^{k}},
\]

gdzie \(A_{k} = (k+n-1)!/(n-1)!k! \), jest więc jednostajnie zbieżne w \(\overline{K}(c;r) \) i za \(R(u) \) wystarczy przyjąć dostatecznie dużą sumę częściową tego rozwinięcia.

Możemy udowodnić teraz następujące twierdzenie aproksymacyjne:

*[1] Można tu zauważyć, iż w przypadkach (a) i (b) korzystamy tylko z drugiej nierówności (1.3), a w przypadku (c) tylko z pierwszej.
Jeżeli $W(z)$ jest funkcją holomorficzną w zbiorze otwartym G, wówczas dla każdego zbioru domkniętego $F \subset G$ oraz każdej niez $\varepsilon > 0$ istnieje funkcja wymierna $H(z)$, holomorficzna w G (t.j. o biegunach w dopełnieniu zbioru G) i spełniająca warunek

$$|W(z) - H(z)| < \varepsilon \quad \text{dla} \quad z \in F.$$

Co więcej, jeżeli dany jest dowolny zbiór E, który zawiera się w dopełnieniu zbioru G i którego domknięcie posiada punkty wspólne ze wszystkimi skладowymi tego dopełnienia, wówczas funkcja $H(z)$ może być tak określona, by wszystkie jej bieguny należały do zbioru E.

Dowód. Możemy przyjąć, że punkt ∞ nie należy do zbioru G; istotne, w przeciwnym razie, stosując inwersję o środku w dowolnym punkcie nie należącym do zbioru G, możemy zbiór ten przekształcić na zbiór otwarty, który już punkta ∞ nie zawiera.

Niech Φ oznacza zbiór wszystkich punktów z, dla których

$$q(z, G) \geq q(z, F) \quad \text{lub} \quad 2q(z, G) \geq q(F, G).$$

Zbiór Φ jest domknięty (por. Wstęp, § 11), zawiera F i zawarty jest w G. Na mocy lematu 10.1 (II), Rozdz. III, oraz lematu 1.1 istnieje więc funkcja wymierna $Q(z)$, której wszystkie bieguny leżą w $G - \Phi$ i która spełnia warunek

$$|W(z) - Q(z)| < \frac{\varepsilon}{2} \quad \text{dla} \quad z \in \Phi.$$

Funkcję tę przedstawiamy w postaci $Q(z) = Q_1(z) + \ldots + Q_m(z)$, gdzie każda z funkcji $Q_i(z)$ jest wymierna i posiada jeden tylko biegun. (Rozkład taki istnieje dla każdej funkcji wymiernej $Q(z)$ na mocy tw. 7.5, Rozdz. III; w rozważanym jednak przypadku wynika też bezpośrednio z metody konstrukcji funkcji $Q(z)$ na zasadzie lematu 10.1, Rozdz. III, oraz lematu 1.1.)

Weźmy pod uwagę którąkolwiek z funkcji $Q_i(z)$, np. funkcję $Q_1(z)$. Niech a będzie jej biegunem i niech b będzie punktem dopełnienia zbioru G takim, że $q(a, b) = q(a, G)$ (por. Wstęp, tw. 8.3). Ponieważ punkt a należy do $G - \Phi$, przeto żaden z warunków (1.7) nie jest spełniony dla $z=a$, a więc

$$q(a, b) = q(a, G) < q(a, F),$$

$$2q(a, G) < 2q(a, G) < q(F, G) \leq q(F, b).$$

Niech teraz S oznacza tę skladową zbioru G_1, która zawiera punkt b. Z założenia każda skladowa dopełnienia zbioru G posiada punkty wspólne z domknięciem zbioru E. Niech $ceS \cdot \frac{\varepsilon}{2} \cdot \frac{\varepsilon}{2}$. Istnieje więc punkt $d \in E$ tak, iż

$$q(c, d) < \frac{\varepsilon}{2} q(F, G).$$

Z drugiej strony, ponieważ b i c należą do tej samej składowej S, przeto (ob. Wstęp, tw. 9.1) wynika, że ciąg punktów $b = p_1, p_2, \ldots, p_n = c$ tej składowej w ten sposób, by

$$q(p_i, p_{i+1}) \leq q(F, G) \quad \text{dla} \quad k = 1, 2, \ldots, n - 1.$$

Przyjmując dla symetrii $p_0 = a$ oraz $p_{n+1} = d$, otrzymujemy punkty p_0, p_1, \ldots, p_n należą wszystko do G, przeto $q(p_i, F) \geq q(G, F)$ $\forall i \geq 1$ i zazwyczaj (1.12) dla $k = 1, 2, \ldots, n$ wynika, że $q(p_i, G) = q(p_i, F)$ $\forall i = 0, 1, \ldots, n$, co wprowadza na niego $Q_i(z)$, która te same bieguny wzbudza w zbiorze E, tak by

$$q_i(z, G) = q_i(z, F) \quad \text{dla} \quad z \in E.$$

Przyjmięcy te wyniki, $Q_i(z) = Q_{i+1}(z)$, stwierdzamy, że funkcja $Q_i(z)$ jest funkcją wymiernej, która jedynie biegun d nie należy do E. W ten sam sposób wszystkim pozostałym funkcjom $Q_2(z), \ldots, Q_m(z)$ przyporządkowujemy funkcję wymiernej $Q_i(z)$, a więc, otrzymujemy funkcje wymierne $H(z)$, które nie posiada biegunów poza E i która, jak wynika z (1.10), spełnia warunek $|H(z) - Q(z)| < \varepsilon/2$ dla $z \in F$, a więc, z uwagi na (1.8), sądą warunek (1.6).
§ 2. Twierdzenie Rungego. Twierdzenie Cauchy'ego dla obszaru jednostkowego. Z tw. 1.5 wynika natychmiast

(2.1) **Twierdzenie Rungego.** Każda funkcja \(W(z) \), holomorficzna w zbiorze otwartym \(G \), może być przedstawiona w tym zbiorze jako granica niemal jednostkowo ciągów funkcji wymiernych \(\{H_n(z)\} \) o biegunach należących do dopelnienia zbioru \(G \).

Co więcej, jeżeli dany jest dowolny zbiór \(E \), który zawiera się w dopelnieniu zbioru \(G \) i którego domknięcie posiada punkty wspólnie ze wszystkimi składowymi tego dopelnienia, to funkcja \(H_n(z) \) mogą być tak określone, by wszystkie ich bieguny należały do zbioru \(E \).

Dowód. Niech \(G \) oznacza zbiór punktów z zbioru \(G \) takich, że \(\delta(z,G) > 1/n \), i niech \(H_n(z) \) będzie funkcją wymierną, która nie posiada biegunów poza zbiorem \(E \) i która spełnia na zbiorze \(G \) nierówność \(|H_n(z)| - W(z) | \leq 1/n \). Funkcje ta istnieje na mocy tw. 1.5, gdyż \(G \subseteq C \).

Zbiory \(G \), tworzą ciąg wstępujący zbiórów otwartych, których sumą jest dany zbiór \(G \); ponieważ zaś ciąg \(\{H_n(z)\} \) jest zbieżny do \(W(z) \) jednostajnie w każdym z zbiórów \(G_n \), więc tą samą (por. Rozdz. I, § 2) jest niemal jednostkowo zbieżny w całym zbiorze \(G \).

Jeżeli zbiór otwarty \(G \) nie rozciąga płaszczyzny (ob. Wstęp, § 9), wówczas w sformułowaniu tw. 2.1 przyjąć można jako zbiór \(E \) dowolny punkt dopelnienia zbioru \(G \). Jeżeli ponadto zbiór \(G \) nie zawiera punktu \(\infty \), wówczas przyjąć można, że \(z = \infty \) redukuje się wprost do punktu \(\infty \). Ponieważ funkcja wymierna o jedynym biegunie w punkcie \(\infty \) jest wielomianem, otrzymujemy przeto następujący szczególnie ważny przypadek twierdzenia Rungego:

(2.2) **Jeżeli zbiór otwarty \(G \) nie rozciąga płaszczyzny i nie zawiera punktu \(\infty \), wówczas każda funkcja holomorficzna w zbiorze \(G \) jest w tym zbiorze granicą niemal jednostajnie zbieżnego ciągu wielomianów.**

Ogólnie otrzymujemy, że zbiór \(E \) spełniający warunki tw. Rungego, obejmując dowolnie po jednym punkcie na kaŜdej ze składowych dopelnienia zbioru \(G \). Określony w ten sposób zbiór \(E \) jest wszakże nieprzeliczalny w przypadku, gdy zbiór \(CG \) zawiera nieprzeliczalną ilość składowych. Również jednak i w tym przypadku możemy przyjąć za zbiór \(E \) zbiór przeliczalny, a mianowicie dowolny zbiór przeliczalny wszędziegędy w \(CG \) (Wstęp, tw. 4.5).

Z tw. 2.2 wyprowadzimy twierdzenie następujące, które naarty będzie twierdzeniem Cauchy'ego dla obszaru jednostkowego i które uważać można za uogólnienie twierdzenia Cauchy'ego dla prostokąta (Rozdz. II, tw. 4.1):

(2.3) **Jeżeli zbiór otwarty \(G \) nie rozciąga płaszczyzny (w szczególności, jeżeli jest obszarem jednostkowym) i nie zawiera punktu \(\infty \), wówczas całka krylowiśniona każdej funkcji \(W(z) \) holomorficznej w \(G \) znika wszędzie w każdym skończonym zakresie, przębiczej w \(G \).

KaŜda zatem funkcja holomorficzna w zbiorze otwartym, nie rozciągającym płaszczyzną i nie zawierającym punktu \(\infty \), posiada w tym zborie funkcję pierwotną.

Dowód. Niech \(H_n(z) \) będzie ciągiem wielomianów niemal jednostajnie zbieżnym do \(W(z) \) w \(G \). Ponieważ każdy wielomian posiada funkcję pierwotną, zatem, w myśl tw. 2.2, Rozdz. II, cała jego znika wszędzie w każdym skończonym zakresie, przębiczej w \(G \), i tym samym

\[
\int W(z) \, dz = \lim \int H_n(z) \, dz = 0.
\]

Do zastosowań i uogólnień twierdzenia Cauchy'ego w sformułowaniu (2.3) wróćmy jeszcze w końcowych §§ tego rozdziału.

UWAGA. 1. Jeżeli \(a < b > 0 \) oraz \(n > 0 \), wówczas istnieje wielomian \(P_n(z) \) taki, że w kole \(K(0;a) \):

\[
P_n(z) < 1/n, \quad \text{gdy} \quad 8z \leq a \quad \text{lub} \quad 8z > a.
\]

\[
P_n(z) = n, \quad \text{gdy} \quad 8z = b.
\]

2. Przykład ciągu funkcji \(W(z) \), które w całej płaszczyźnie otwartej jest zbieżne do zera, ale nie jest zbieżny wnikal jednostkowe. Opierając się na wyniku ćwiczenia poprzedniego, zbudować ciąg wielomianów, który \(1^{\circ} \) jest zbieżny do zera w całej płaszczyźnie otwartej; \(2^{\circ} \) jest zbieżny jednostkowo w otoczeniu każdego punktu nie leżącego na osi rzeczywistej, lecz \(3^{\circ} \) nie jest zbieżny jednostkowo w otoczeniu każdego punktu osi rzeczywistej (p. Rozdz. II, § 7, cw. 2).

3. Przykład ciągu funkcji holomorficznych zbioru zbioru w całej płaszczyźnie otwartej, którego granica nie jest jednak funkcji holomorficznej. Zbudować ciąg \(\{P_n(z)\} \) wielomianów takie, że \(\lim P_n(z) = 0 \) na osi rzeczywistej, podczas gdy \(a \)

\[
\lim P_n(z) = 1 \quad \text{poza tą osią.}
\]

4. Niech \(0 < r < R \), \(r > 0 \) i niech \(Q(z) \) będzie funkcją holomorficzną w kole \(K(0;R) \). Zbudować wielomian \(P(z) \) spełniający warunki następujące: \(1^{\circ} \) \(|P(z)| < z \) dla \(8z \), \(2^{\circ} \) na każdym odcinku \([re^{i\theta},re^{i\theta}] \) istnieją dwa punkty \(z_i = z_i(0), z_i = z_i(0) \) takie, że \(|P(z_1) + Q(z_1)| < r \) oraz \(|P(z_2) + Q(z_2)| > 1/r \).
5. Przykład funkcji $W(z)$ holomorficznej w kole $K(0;1)$ takiej, że dla żadnej wartości θ nie istnieje granica $\lim W(re^{i\theta})$ skończona ani niekonieczna. Niech $w(r)$ będzie ciągiem rosnącym liczb dodatnich, dążącym do 1. Opierając się na (6), określić przez indukcję ciąg wielomianów $|P_n(z)|$, takie, że: (a) $|P_n(z)| < 1/2^n$ dla $|z| < w(n)$, (b) na każdym odcinku $[w(n), w(n+1))$ istnieją dwa punkty, w których wartość bezwzględna sumy $P_1(z) + P_2(z) + \ldots + P_n(z)$ jest odpowiednio $< 1/2^n$ oraz $\geq 2^n$. Szerok $\sum P_n(z)$ jest wówczas niemal jednostajnie zbieżny w $K(0;1)$ do funkcji holomorficznej, posiadającej żądaną własność.

6. Niech H będzie przestrzenią metryczną, której elementami są funkcje holomorficzne w kole $K(0;1)$ (p. Rozdz. II, § 7, ew. 3; Rozdz. I, § 2, ew. 3).

Niech $0 < r < 1$, $\epsilon > 0$. Oznaźmy przez δ rodzinę wszystkich funkcji $W(z)$ holomorficznych w $K(0;1)$ takich, że na każdym odcinku $[r^\theta, e^{i\theta}]$ istnieją punkty, w których odpowiednio $|W(z)| < \delta$ oraz $|W(z)| > 1/\delta$. Dowieść, że funkcje holomorficzne w $K(0;1)$, które nie należą do rodziny δ, tworzą w przestrzeni H zbior domknięty nigdy gęsty.

Wynikałoby stąd (nie opierając się na wyniku ew. 5), że istnieją funkcje $W(z)$ holomorficzne w kole $K(0;1)$ takie, że granica $\lim W(re^{i\theta})$, skończona ani niekonieczna, nie istnieje dla żadnego θ i że wartość tę posiadają wszystkie funkcje holomorficzne w kole $K(0;1)$ z wyjątkiem funkcji tworzących w przestrzeni H zbior pierwszej kategorii (Kierst-Szpilrajn).

7. Niech H oznacza (jak w ew. 6) przestrzeń, której elementami są funkcje holomorficzne w kole $K(0;1)$. Niech K_1, K_2, \ldots, K_n będzie dowolnymi układem skończonym kół i niech 3δ oznacza rodzinę wszystkich funkcji $W(z)$ holomorficznych w kole $K(0;1)$, takich, że na każdym promieniu kola $K(0;1)$ istnieją punkty, w których $W(z)$ przyjmuje wartości należące odpowiednio do kół K_1, K_2, \ldots, K_n. Dowieść, że funkcje, które nie należą do rodziny 3δ tworzą w przestrzeni H zbior domknięty nigdy gęsty.

Opierając się na tym, dowiesć, że istnieją funkcje $W(z)$ holomorficzne w kole $K(0;1)$, które przekształcają każdy promień tego kola na zbior gęsty na przestrzeni H na płaszczyźnie z takie, że dla każdego θ krzywa $w W(re^{i\theta})$, gdzie $0 < r < 1$, jest zbioroż we wszystkim zbiorze gęsity na płaszczyźnie z i że wszystkie te posiadają nawet wszystkie funkcje holomorficzne w kole $K(0;1)$ z wyjątkiem funkcji tworzących w przestrzeni H zbior pierwszej kategorii (Kierst-Szpilrajn).

8. Dowieść, że istnieją funkcje holomorficzne w kole $K(0;1)$, które w każdym wychyku tego kola przyjmują wszystkie wartości zespolone skończone, i że własność tę posiadają wszystkie funkcje holomorficzne w $K(0;1)$ z wyjątkiem funkcji tworzących w przestrzeni H (ew. 6, 7) zbior pierwszej kategorii (Kierst-Szpilrajn).

9. Twierdzenie Morrey (ob. Rozdz. I, § 8) dla koła. Na to, aby funkcja $W(z)$ ciągła w zbiorze otwartym G była holomorficzna w G, konieczne i wystarczające, by $\frac{dW(z)}{dz} = 0$ dla każdego kola domkniętego $K \subseteq G$ (Julienman). (6)

[Wąt. Skrzyżuję z twierzeń: Rozdz. I, § 18, ew. 1, oraz Rozdz. II, § 6, ew. 8.]

§ 3. Gałąź logarytmu. Rozważania końcowe § 2 zastosowaliśmy do gałęzi logarytmu holomorficznych. Podobnie jak w rozdziałach poprzednich (Rozdz. I, § 11; Rozdz. II, § 1) używać będziemy terminu „gałąź“ w znaczeniu „gałąź jednnoznaczna".

Opierając się na tw. 2.3, możemy uznać, że wobec towarz. ówce tw. 11.1, Rozdz. I, w sposób następujący:

(3.1) Jeżeli G jest zbioriem otwartym, nie rozeznającym płaszczyzny (w szczególności obszarem jednoznacznym), wówczas dla każdej funkcji $F(z)$ holomorficznej i nie znikającej nigdy w zbiorze G istnieje w tym zbiorze gałąź holomorficzna log $F(z)$ (a tym samym i gałąź holomorficzna $[F(z)]^a$ dla każdej wartości a).

Dowód. Twierdzenie jest oczywiste, gdy zbior G jest całą płaszczyzną, ponieważ wówczas, na zasadzie twierdzenia Liouville'a (Rozdz. II, tw. 3.11), funkcja $F(z)$ redukuję się do stałej. Możemy tedy założyć, iż $G \neq \emptyset$. Możemy dalej przyjąć, że G nie zawiera punktu ∞, gdyż w przeciwnym przypadku, stosując inwersję $z \rightarrow \frac{1}{z}$ w dowolnym punkcie dopełnienia zbioru G, przekształcimy ten zbior na zbior otwarty, również nie rozeznającym płaszczyzny, a ponadto nie zawierajacy już na pewno punktu ∞.

Ponieważ z założenia funkcja $F(z)$ nie znika nigdy w zbiorze G, funkcja $F'(z)/F(z)$ jest wówczas holomorficzna w G i na zasadzie tw. 2.3 posiada funkcję pierwotną; istnieje gałąź holomorficzna log $F(z)$ w G wynika z towarz. ówce tw. 2.6, Rozdz. II.

Szczególnym przypadkiem tw. 3.1 jest twierdzenie następujące, które stanowi bezpośrednie uogólnienie tw. 11.1, Rozdz. I:

(3.2) W każdym zbiorze otwartym, nie rozeznającym płaszczyzny i nie zawierającym punktu 0 ani ∞, istnieje gałąź log z.

ĆWICZENIE. 1. Jeżeli C jest okręgiem koła zbieżności szeregu potęgowego, a Z zbioru punktów, które są pierwiotkami sum cząstkowych tego szeregu, wówczas każdy punkt okręgu C jest punktem skupienia zbioru Z (Jentzsch).

[Wąt. Niech K będzie kołem zbieżności szeregu. Zależając, że na C istnieje punkt a należący do Z, oznaczmy przez K_a takie otozenie punktu a, w którym żadna z sum cząstkowych $a_n(z)$ nigdy nie znika, a przez $\Phi(a)$ gałąź holomorficzna $(a_n(z))^{1/a}$ w K_a. Ciąg $(\Phi(a))$ jest ograniczony (Rozdz. III, § 2, ew. 3) i — jeśli dobierzemy stosownie gałąź $\Phi — bieżej do 1 w K_a (Rozdz. II, § 2, ew. 2; I, § 3, ew. 2; III, § 3, ew. 3). Mieliśmy więc $a \in K_a \subseteq R$ (Rozdz. III, § 2, ew. 3 (a)).]
Z drugiej strony, na mocy wzoru (3.3), Rozdz. III, mamy dla $j = 1, 2, \ldots, n$

$$\frac{1}{2\pi} \int_0^{2\pi} \log |a_j - Re^{i\theta}| \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} \log |1 - \frac{a_j}{R} e^{-i\theta}| \, d\theta + \log R = \log R$$

i przez zlogarytmowanie wyrażenia podealowego w (4.4) otrzymujemy zadaný wzór (4.2).

Ażeby pokazać, iż drugi wyraz lewej strony tego wzoru równy jest całce oznaczonej $\int_0^R \frac{m(r) \, dr}{r}$, zauważmy, iż można założyć, że $|a_1| \leq |a_2| \leq \ldots \leq |a_n|$. Przyjmując dla symetrii $a_{n+1} = R$, mamy wówczas

$$\int_0^R \frac{m(r) \, dr}{r} = \sum_{j=1}^n \int_{|a_j|}^{|a_{j+1}|} \frac{n(r) \, dr}{r} = \sum_{j=1}^n \int_{|a_j|}^{|a_{j+1}|} \frac{n(r) \, dr}{r} =$$

$$= \sum_{j=1}^n (\log |a_{j+1}| - \log |a_j|) = -n \log R - \sum_{j=1}^n \log |a_j| = \log \frac{R^n}{|a_1 a_2 \ldots a_n|},$$

co należało udowodnić.

Tw. 4.1 nógólnina można łatwo na funkcje meromorficzne:

(4.5) Jeżeli funkcja $F(z)$, meromorficzna na kole domkniętym $K(0; R)$, nie posiada w punkcie 0 pierwiastka ani bieguna, wówczas oznacza przez a_1, a_2, \ldots, a_n pierwiastki, zaś przez b_1, b_2, \ldots, b_m bieguna funkcji $F(z)$ w tym kole, mamy

$$\log |F(0)| + \log R^{-\infty} \sum_{i=1}^m \frac{b_i-b_j}{a_j-a_z} = \frac{1}{2\pi} \int_0^{2\pi} \log |F(Re^{i\theta})| \, d\theta.$$
Dowód. Przyjmując \(P(z) = (z-b_1)(z-b_2)\ldots(z-b_m) \), widzimy natychmiast, iż obydwie funkcje \(F(z) \) i \(\varphi(z) \) są holomorficzne w kotle domkniętym \(K(0; R) \), nie znają w punkcie 0 i posiadają pierwiastki odpowiednio w punktach \(a_1, a_2, \ldots, a_n \) oraz \(b_1, b_2, \ldots, b_m \). Stosując do tych funkcji wzór \((4.1) \) i odkładając strony otrzymuje się równości \((4.6)\) i \((4.7)\).

Wzór \((4.2)\) nosi nazwę wzoru Jensena. Nieco ogólniejsze wzory \((4.6)\) i \((4.7)\) nie wykraczające zresztą istotnie poza wzór \((4.2)\), nazywają się niekiedy wzorami Jensena–Nevanliina.

O磐CJENIA. 1. Jeżeli \(a_1, a_2, \ldots, a_n \) jest ciągiem pierwiastków \(F \) funkcji \(W(z) \) holomorficznej, ograniczonej i uznawanej tożsamej tożsamej w kole \(K(0; 1) \), wówczas \(a_1, a_2, \ldots, a_n \leq 0 \), a więc \(\sum_n (1 - |a_n|) < \infty \) (każdy pierwiastek występuje w ciągu \(\{a_n\} \) tyle razy, ile wynosi jego krótkałość) (Blaschke).

2. Jeżeli ciąg ograniczony \(\{W(a_n)\} \) funkcji holomorficznych w kotle \(K = K(0; 1) \) jest zbieżny w punktach pewnego ciągu \(\{a_n\} \), takiego że \(a_1, a_2, \ldots, a_n \leq 0 \), przy czym \(a_n \neq 0 \) dla \(n = 1, 2, \ldots \) oraz \(a_{n+1} \) dla \(n = 1, 2, \ldots \), wówczas ciąg \(\{W(a_n)\} \) jest zbieżny niemal jednostajnie w całym kotle \(K \).

3. Niech \(W(z) \) będzie funkcją holomorficzną, nie znikającą tożsamej tożsamej w kotle \(K(0;1) \) i taką, że

\[
\left| W(z) \right| \leq \exp \left(\frac{A}{1-|z|^2} \right),
\]

gdzie \(A \) i \(r \) są stałymi dodatnimi. Wówczas, jeżeli \(\{a_n\} \) oznacza ciąg pierwiastków funkcji \(W \) w kotle \(K(0;1) \), to szereg \(\sum_n (1 - |a_n|)^{p+1} \) jest zbieżny dla każdej liczby \(p > 2 \) (Montel).

[Wsk. Zanotować, że dla każdego \(m \) ilość pierwiastków \(a_n \) takich, iż \(|a_n| < 1 - 2^{-m} \), nie przekracza liczby \(B 2^{m+1} \), gdzie \(B \) jest pewną stałą.]

§ 5. Przyrosty logarytmu i argumentu wzdłuż krzywej.

Jeżeli funkcja \(F(z) \) jest funkcją ciągłą na zbiorze \(E \) i wartości tej funkcji na \(E \) należą do pewnego koła \(K \) nie zawierającego punktu 0 ani \(\infty \), wówczas na zbiorze tym istnieje gałąź \(\log F(z) \). Istotnie, oznaczając przez \(L(z) \) dowolną gałąź \(\log z \) w \(K \), spostrzegamy odrzucą, że funkcja \(L[F(z)] \) jest gałązą \(\log F(z) \) na \(E \).

Opierając się na tej uwadze, pokazujemy, że jeżeli \(P(t) \) jest funkcją ciągłą skończoną, nigdzie nie znikającą w przedziale \(I = [a, b] \), wówczas istnieje w tym przedziale gałąź \(\log P(t) \). Niech w tym celu \(t \) będzie kresem dolnym wartości \(|P(t)| \) na \(I \). Ponieważ \(m > 0 \), prawo przedział \([a, b] \) rozbić możemy na skończoną ilość podprzeczeń,

\[
[|a|, |a|, \ldots, |a|, \ldots, |a|, \ldots, |a|],
\]

gddie \(a = a \), \(a = b \) tak aby w żadnym z nich oscylacja funkcji \(P \) nie przekraczała liczby \(\frac{1}{m} \). Wartości, jakie funkcja przyjmuje na przedziałie \([a, b] \), należą wtedy do koła \(K(P[a_b] ; m) \), nie zawierającego punktu 0, i przeto w każdym przedziale \([a, b] \) określić możemy gałąź \(L(t) \) logarytmu \(F(t) \). Dorzucając ewentualnie do funkcji \(L(t) \) odpowiednie wielkości do wartości, Dabei:\n
\[
L(t) \to L(t) \text{ wzdłuż krzywej } P(t).
\]

Różnica \(L(b) - L(a) \) zna\nsiwy przyrost \(\arg F(t) \) na przedziale \(I \). Ponieważ dwie różnie gałązie \(\log F(t) \) w \([a, b] \) mogą różnić się co najwyżej o stałą (Rozdz. I, tw.11.2), przeto przyrost ten nie zależy od wyboru gałąży \(\log F(t) \) i jest określony jednoznacznie.

Istnienie gałązi logarytmu funkcji równoważne jest (por. Rozdz. I, § 11) istnieniu gałązi argumentu; analogicznie przeto możemy określić przyrost \(\arg F(t) \) na przedziale \(I \). Przyrosty te oznaczać będziemy odpowiednio przez \(A \log F(t) \) i \(A \arg F(t) \). Widoczne jest, iż

\[
A \arg F(t) = \frac{1}{t} \int_a^b A \log F(t) \ dt.
\]

Jeżeli funkcja \(F(t) \), skończona, ciągła i nigdzie nie znikająca w przedziale \(I \), posiada w nim pochodną ciągłą — lub ogólniej: jeżeli przedział \(I \) można rozbić na skończoną ilość podprzeczeń, takich, iż w każdym z nich funkcja \(F(t) \) posiada pochodną ciągłą — wówczas \(F(t)/F(0) \) jest pochodną gałąź \(\log F(t) \), przy czym

\[
A \log F(t) = \int_a^b \frac{F'(t)}{F(t)} \ dt.
\]

Jeżeli \(W(z) \) jest funkcją skończoną, ciągłą i nigdzie nie znikającą na krzywej \(C \);

\[
z = z(t), \text{ gdzie } a \leq t \leq b,
\]

wówczas przez przyrost \(\log W(z) \) oraz \(\arg W(z) \) wzdłuż krzywej \(C \) rozumiemy odpowiednio przyrosty \(\log W(z) \) i \(\arg W(z) \) na przedziale \(I = [a, b] \), zmiennej \(t \); przyrosty te oznaczać będziemy przez \(A \log W(z) \) i \(A \arg W(z) \). Jeżeli \(C \) jest krzywą regularną, a \(W(z) \) funkcją holomorficzną na \(C \) (t.j. funkcją określoną i holomorficzną).
§ 6. Indeks punktu względem krzywej. Jeżeli C jest dowolną krzywą zamkniętą (nie zawierającą punktu ∞), wówczas indeksem punktu $z_0=\infty$ nie leżącego na C, względem tej krzywej nazywać będziemy liczbę
\[
\frac{1}{2\pi i} \int_{C} \log(z-z_0) \, dz = \frac{1}{2\pi i} \int_{C} \carg(z-z_0) \, dz
\]
calkowitą na mocy tw. 5.4. Przez indeks punktu ∞ względem dowolnej krzywej zamkniętej rozumieć będziemy liczbę 0. Indeks punktu z_0 względem krzywej C oznaczać będziemy przez $\ind C_{z_0}$.

Indeks jest niezmieniennikiem przekształceń liniowych płaszczyzny. Innymi słowy, jeżeli C jest w przekształceniu liniowym punkt z_0 i punkt z, krzywa C i krzywa γ' odpowiadają sobie wzajemnie, to $\ind C_{z_0} = \ind C'_{z_0}$.

Istotnie, jeżeli θ jest kątem obrotu przekształcenia, z dowolnym punktem krzywej C, a γ' odpowiadającym mu punktem krzywej γ', wówczas (por. Rozdz. I §14, str. 79)
\[
\arg(\gamma'-z_0) = \theta + \arg(z-z_0).
\]

Przyrost $\arg(z-z_0)$ wzdłuż krzywej γ' równy jest więc przyrostowi $\arg(z-z_0)$ wzdłuż krzywej C.

Z tw. 5.4 wynika, że
\[
\int_{C} \log(z-z_0) \, dz = \frac{1}{2\pi i} \int_{C} \carg(z-z_0) \, dz
\]

Dla każdej krzywej regularnej zamkniętej C oraz każdego punktu a poza C.

Latwo zauważyć, iż jeżeli C' jest dowolną krzywą zamkniętą, wówczas dla każdego punktu a o dostatecznie wielkiej wartości bezwzględnej mamy $\ind C'a = 0$. W samej rzeczy, jeśli K oznacza koło zawierające C, wówczas dla każdego punktu a zewnętrz tego koła istnieje w K gałąź $\arg(z-a)$, a więc $2\pi \ind C'a = \carg(z-a) = 0$.

Dla każdej krzywej zamkniętej C indeks punktu a względem C, uważany za funkcję punktu a, jest więc funkcją ciągłą w punkcie ∞.

Dokładniej,
\[
\int_{C} \log(z-z_0) \, dz = \frac{1}{2\pi i} \int_{C} \carg(z-z_0) \, dz
\]

Dowód. Ze względu na tw. 11.1 Wstępu wystarczy pokazać, iż $\ind C'a$ jest poza krzywą C' funkcją ciągłą punktu a. W przypadku, gdy krzywa C' jest regularna, ciągłość ta wynika bezpośrednio z tw. 6.1. Ażeby uogólnić tę własność na dowolne krzywe zamknięte, weźmy
pod uwagę dowolny punkt \(a \) poza krzywą \(C \) i podzieliemy \(C \) na skończoną ilość krzywych \(C_1, C_2, \ldots, C_n \) tak, by każdy z nich zawierał się w pewnym kole posiadającym punkt \(a \) wewnątrz. Niech \(K_1, K_2, \ldots, K_n \) będą kołami przyporządkowanymi w ten sposób krzywym \(C_1, C_2, \ldots, C_n \) i niech \(K \) będzie otoczeniem punktu \(a \), nie posiadającym punktów wspólnych z żadnym z tych kół. Dla każdego tedy punktu \(z \in K \) istnieje gałąź \(\arg(z - x) \) w każdym z kół \(K_1, K_2, \ldots, K_n \). Jeżeli przetoczyliśmy \(z_{a_1}, z_{a_2} \) oznaczające odpowiednio początek i koneic krzywej \(C \), wówczas dla każdego \(z \in K \) przyrost \(\arg(z - x) \) wzdłuż \(z_{a_1} \) pokrywa się z przyrostem wzdłuż odsepienia \([z_{a_1}, z_{a_2}] \); zatem, oznaczając przez \(C_0 \) lamaną zamkniętą \([z_0, z_1, \ldots, z_N] \), mamy

\[
\text{ind}_{C_0} z = \frac{1}{2\pi i} \int_{C_0} \frac{dz}{z - z_0}
\]

dla każdego punktu \(z \in K \). Index \(\text{ind}_{C_0} \) jest więc funkcją ciągłą \(z \) w otoczeniu każdego punktu \(a \) poza krzywą \(C \), co należało udowodnić.

Z drugiej strony indeks punktu względem krzywej zależy również w sposób ciągły od samej krzywej. Dokładniej:

(6.3) Niech \(\{C_j\} \) będzie ciągiem krzywych zamkniętych, danych odpowiednio przez równania \(z = z_j(t) \) w przedziale \([a, b]\), i niech \(C \) oznacza krzywą zamkniętą \(z = z(t) \) w tym samym przedziale. Wówczas, jeżeli ciąg \(z_j(t) \) dąży jednostajnie do \(z(t) \), to dla każdego punktu \(w_0 \), nie leżącego na \(C \), mamy, pozyszając od pewnej wartości \(n \),

\[
\text{ind}_{C_0} w_0 = \text{ind}_{C_0} w_0.
\]

Dowód. Podzielmy przedział \([a, b]\) na \(k \) części równych. Niech \(a = a_0 < a_1 < \ldots < a_k = b \) będą punktami podziału i niech \(C^{(j)} \) oznacza ogólne luki krzywej \(C \) w przedziale \([a_j, a_{j+1}]\), gdzie \(j = 1, 2, \ldots, k \). Możemy założyć, że liczba \(k \) jest dostatecznie wielka na to, by każdy luku \(C^{(j)} \) zawierał się w pewnym kole \(K_j \), nie zawierającym punktu \(w_0 \), ani punktu \(a \).

Oznaczmy dla każdego \(n = 1, 2, \ldots \) oraz \(j = 1, 2, \ldots, k \) przez \(C^{(j)}_{n} \) luki krzywej \(C \) w przedziale \([a_j - 1, a_j]\) i przez \(L^{(j)} \) krzywą zamkniętą \(C^{(j)}_{n} + [z_j(a_j), z_j(a_j)] = C^{(j)}_{n} + [z_j(a_j), z_j(a_j)] \), ze względu na zbieżność jednostajną ciągu \([z_j(t)] \) do \(z(t) \) w przedziale \([a, b]\) istnieje taka liczba \(N \), że dla \(n > N \) oraz \(j = 1, 2, \ldots, k \) luku \(C^{(j)}_n \), a więc również i cała krzywa \(C^{(j)}_n \), zawiera się w kole \(K^{(j)} \). W każdym kole \(K^{(j)} \) (jako nie zawierającym punktu \(w_0 \)) istnieje gałąź \(\arg(z - w_0) \), a przyprzyrost \(\arg(z - w_0) \) wzdłuż każdej krzywej \(L^{(j)}_{n} \) dla \(n > N \) jest zerem.

Z drugiej strony, oznaczając przez \(A_{n}^{(j)} \) przyrost \(\arg(z - w_0) \) wzdłuż krzywej \(L^{(j)}_{n} \), mamy

\[
\sum_{j=1}^{k} A_{n}^{(j)} = A_{n} \arg(z - w_0) \Rightarrow \text{ind}_{C_0} w_0 = \text{ind}_{C_0} w_0,
\]

a więc \(\text{ind}_{C_0} w_0 = \text{ind}_{C_0} w_0 \) dla \(n > N \), co należało udowodnić.

Z tw. 6.2 wynika, iż \(\text{ind}_{C} \) uważane za funkcję punktu \(z \) posiada wartość stałą na każdym zbiorze spójnym \(E \) rozłącznym z krzywą \(C \) (każdy bowiem taki zbiór zawiera się w jednej ze skladowych dopełnienia krzywej \(C \)). Wartość tę nazywamy indeksem zbioru \(E \) względem krzywej \(C \) i oznaczamy przez \(\text{ind}_{C} E \).

Zupełnie nie definiuje powyższe paragrafy przykładami.

Dla każdego prostokąta \(I \), w myśl wzorów (4.1), Rozdz. II, mamy \(\text{ind}_{C} z = 0 \) dla \(z \in CI \) oraz \(\text{ind}_{C} z = 1 \) dla \(z \in \partial I \).

Jeżeli \(C \) oznacza okrąg \(z = a + re^{i\theta} \), gdzie \(a \neq \infty \), \(0 \leq \theta \leq 2\pi \), wówczas dla każdego punktu \(z \) leżącego "wewnątrz" okręgu mamy \(\text{ind}_{C} = 0 \), ponieważ punkt \(t \) należy do tej składowej dopełnienia okręgu, która zawiera punkt \(\infty \). Dla punktów \(z \) leżących "wewnątrz" okręgu, t.j. należących do tej składowej dopełnienia \(C \), która zawiera środek \(z \) i okręgu, mamy \(\text{ind}_{C} = 1 \), ponieważ

\[
\text{ind}_{C} = \frac{1}{2\pi i} \int_{C} \frac{dz}{z - a} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{ire^{i\theta} d\theta}{r e^{i\theta} - a} = 1.
\]

Ogólnie, każda krzywa zamknięta bez punktów wielokrotnych dzieli płaszczyznę na dwa obszary: jeden z nich zawiera punkt \(0 \) i nazywa się zewnętrznym względem krzywej \(C \), a drugi wewnętrzny. Wszystkie punkty obszaru wewnętrznych, jako zawierającego punkt \(0 \), posiadają indeks równy zero, natomiast wszystkie punkty obszaru zewnętrznego posiadają indeks równy \(1 \) lub \(-1 \) (orientując stosownie krzywą \(C \), można przyjąć, iż indeks punktów obszaru wewnętrznego równy jest \(1 \)). Dowód ten twierdzeń jest w sposób niezwykle skomplikowany, wymaga rozważań dość subtelnych, które tu pominiemy. Zauważmy jednak, iż w przypadkach konkretnych, z jakimi spotykamy się w zagadnieniach teorii funkcji (por. np. tą, § 8.9, indeksy punktów oblicza się łatwo przy pomocy ad hoc stosowanych metod. Można np. posługiwać się schematem widocznym na rysunku.

Także dla punktu \(a \) z leżącego w obszarze wewnętrzny krzywej \(C \), zakreślony kwadrat \(I \) zawarty również całkowicie w tym obszarze. Przedłużając boki tego kwadratu w obydwia strony do spotkania się z krzywą \(C \), otrzymujemy
podział obszaru wewnętrznego na dziewięć obszarów, które — poza kwadratem \(I \) — oznaczono za pomocą na rysunku cyframi 1, 2, ..., 9. Krzywe ograniczające te obszary, po stosownym zorientowaniu (jak na rysunku), oznaczyliśmy przez \(C_1, C_2, ..., C_9 \). Wówczas, przy odpowiednim zorientowaniu krzywej \(C_2 \),

\[
\text{ind} \, C_2 = \frac{1}{2\pi i} \int_{C_2} \frac{dz}{z-a} = 1 + \sum_{k=1}^{9} \frac{1}{2\pi i} \int_{C_k} \frac{dz}{z-a}.
\]

Obiekt każdego z krzywych \(C_k \) można zinterpretować w sposób jednolity i nie zawierający punktów \(a \) (na rysunku zaznaczono to jest dla krzywej \(C_4 \)) i przeto, ponieważ w obszarze takim istnieje gałąź \(\text{arg}(z-a) \), mamy \(2\pi \text{ind} \, C_2 = 2\pi \text{arg}(z-a) = 0 \) dla \(k=1,2,3,8 \). Z (6.4) wynika więc, że \(\text{ind} \, C_2 = 1 \).

(7.1) Jeżeli \(W(z) \) jest funkcją regularną (z pominięciem co najwyżej odosobnionego zbioru osobliwości) w zbiór otwartym \(G \), nie rozciągającym płaszczyzny i nie zawierającym punktu \(\infty \), wówczas dla każdej krzywej regularnej zamkniętej \(\Gamma \), przebiegającej w \(G \) i nie zawierającej punktów osobliwości funkcji \(W(z) \), zachodzi wzór

\[
\frac{1}{2\pi i} \int_{\Gamma} W(z)dz = \sum_{n=1}^{\infty} \text{res}_{\infty} W(z) - \text{ind} \, \Gamma, e_n,
\]

gdzie \(e_n \) oznacza ciąg punktów osobliwości funkcji \(W(z) \) w \(G \).

Wśród punktów tych co najwyższej skończona ilość posiada względem krzywej \(\Gamma \) indeksa różny od zero i przeto zwraca uwagę po stronie prawej równości (7.2) redukcja się do sumy skończonej.

Dowód. Niech dla skrócenia \(a = (\Gamma, CG) \) i \(\varrho = (\Gamma, CG) \); niech \(d_n \) oznacza punkt doprońienie zbioru \(\Theta \) taki, iż \(\varrho = (\Gamma, d_n) \) (por. Wstęp, tw. 8.3). Ponieważ ciąg \(e_n \) nie posiada punktów skupienia w \(G \) zatem (o ile ciąg ten jest nieskończony) \(\lim_{n \to \infty} d_n = \infty \) i poszczególne od pewnej wartości \(n = N \) mamy \(\varrho \leq a ; \) tym samym

\[
\text{g}(e_n,d_n) < (\Gamma, \varrho) \quad \text{dla} \quad n \geq N,
\]

Rozróżnijmy teraz dwa przypadki. Jeżeli \(d_n = \infty \), wówczas przez \(L_n \) oznaczamy odniesie \([e_n,d_n] \), który — jak widać natychmiast ze względu na (7.3) — nie posiada dla \(n \geq N \) punktów wspólnych z \(\Gamma \). Jeżeli natomiast dla pewnego \(n \geq N \) mamy \(d_n = \infty \), wówczas z (7.3) wynika, że \(1/|e_n| < 1/|z| \) dla każdego punktu \(z \neq \Gamma \) i przeto krzywa \(\Gamma \) leży całkowicie wewnątrz koła \(K(\Omega,|e_n|) \); oznacza to, że w tym przypadku przez \(L_n \), dowolną półprostą, wychodzącą z punktu \(e_n \) i leżącą poza kołem \(K(\Omega,|e_n|) \). Latwo zauważyć że względem na \(q_n \to 0 \), iż zbiór spójny \(\bigcup_{n=N}^{\infty} L_n \cup CG \) jest domknięty; nadto nie ma punktów wspólnych krzywą \(\Gamma \) (p. rysunek), a ponieważ zawiera punkt \(\infty \), więc (§ 6, str. 181, 183) indeks tego zbioru względem \(\Gamma \) jest równy zero i w szczególności \(\text{ind} \, \Gamma = 0 \) dla \(n \geq N \). Wzór (7.2) okazuje się tedy równoważny wzorowi

\[
\frac{1}{2\pi i} \int_{\Gamma} W(z)dz = \sum_{n=1}^{\infty} \text{res}_{\infty} W(z) - \text{ind} \, \Gamma, e_n.
\]

Niezależnie \(G_1 = -\sum_{n=N}^{\infty} L_n \). Mamy \(G_1 = \sum_{n=N}^{\infty} L_n \), zbiór \(G_1 \) jest zatem otwarty i nie rozciągający płaszczyzny. Funkcja \(W(z) \) posiada w \(G_1 \) skończoną co najwyżej ilość punktów osobliwości, mianowicie \(e_1, e_2, ..., e_N \). Funkcja \(W(z) - \sum H_n(z) \), gdzie \(H_n(z) \) oznacza część główną funkcji \(W(z) \) w punkcie \(e_n \) jest tedy (Rozdz. III, tw. 7.2) holomorficzna w \(G_1 \). W myśl więc twierdzenia Cauchy’ego w postaci (2.3) mamy

\[
\frac{1}{2\pi i} \int_{\Gamma} [W(z) - \sum H_n(z)]dz = 0,
\]

skąd na mocy tw. 7.7, Rozdz. III, otrzymujemy natychmiast wzór (7.4), równoważny, jak zauważyliśmy, wzorowi (7.2).

Z uwagi na tw. 9.1, Rozdz. III, z powyższego twierdzenia o residuach wynika natychmiast, iż

(7.5) Jeżeli \(W(z) \) jest funkcją meromorficzną w zbiorze otwartym \(G \), nie rozciągającym płaszczyzny i nie zawierającym punktu \(\infty \), zaś \(F(z) \) funkcją holomorficzną w \(G \), wówczas dla każdej krzywej regularnej \(C_n \), zamkniętej, przebiegającej w \(G \) i nie zawierającej pierwiastków ani biegunów funkcji \(W(z) \), mamy

\[
\frac{1}{2\pi i} \int_{\Gamma} F(z) \frac{W(z)}{W(z)}dz = \sum_{i=1}^{N} \text{F} \, (a_i) \, \text{ind} \, \Gamma, a_i - \sum_{j} \text{F} \, (b_j) \, \text{ind} \, \Gamma, b_j,
\]

gdzie \(a_i \) oznacza ciąg pierwiastków, a \(b_j \) ciąg biegunów funkcji \(W(z) \) w \(G \), przy czym każdy z tych pierwiastków oraz biegunów powinien się w tych ciągach i tytyle razy, ile wynosi jego krótwość.
W szczególności (przyjmując $F(z)=1$ tożsamościowo),

\[
\frac{1}{2\pi i} \int \frac{W'(z)}{W(z)} \, dz = \sum_i \text{ind}_{a_i} - \sum_j \text{ind}_{b_j}.
\]

Spośród punktów a_j i b_j co najmniej skończona ilość posiada względem krzywej C indeks różny od zero i przez szczególne występujące po prawej stronie równości (7.6) i (7.7) redukują się do sum skończonych.

Tw. 7.5 uważać można za uogólnienie tw.9.2, Rozdz. III.

Zanotujemy także następujący wariant wzoru Cauchy'ego, który otrzymać możemy np., podstawiając $W(z)=z-a$ w równość (7.6):

(7.8) Jeżeli $F(z)$ jest funkcją holomorficzną w zbiorze otwartym G, nie rozciągającą płaszczyzny i nie zawierającym punktów ∞, wówczas dla każdej krzywej zamkniętej C przebiegającej w G oraz dla każdego punktu $a \in G$ nie leżącego na C mamy

\[
P(a):= \frac{1}{2\pi i} \int \frac{F(z)}{z-a} \, dz.
\]

Tw. 7.5, a w szczególności wzór (7.7), zastosowane być mogą do obliczenia, ile razy funkcja holomorficzna przyjmuje pewną wartość. Ograniczając się do funkcji holomorficznej w kół, udowodnione twierdzenie następujące:

(7.9) Niech W będzie funkcją ciągłą na kole domkniętym $K=\bar{K}(a;r)$ i holomorficzną w jego wnętrzu, Γ krzywą, na którą funkcja W przekształca okrąg C koła K, i wszędzie w_0, dowolną, nie przyjmowaną przez funkcję W na okręgu C, t.j. nie leżącą na krzywej Γ.

Wówczas, oznaczając przez h ilość razy, jaką funkcja przyjmuje wartość w_0 wewnątrz koła K, mamy

\[
h=\text{ind}_{a_0} w_0 = \frac{1}{2\pi} \int_{\Gamma} \frac{W'(z)}{W(z)-w_0} \, dz.
\]

Dowód. Niech $\{a_i\}$ będzie dowolnym ciągiem rosnącym liczb, dążących do r, i niech h oznacza ilość razy, jaką funkcja przyjmuje wartość w_0 w koło $K(a;\rho)$. Niech c_0 oznacza okrąg koła $K(a;\rho)$, a Γ_0 krzywą, na jaką $W(z)$ przekształca ten okrąg. Zakładając, że wartość w_0 nie jest przyjmowana na okręgu Γ_0, będziemy miedzi na mocy twierdzeń 7.5 i 5.4

\[
h = \frac{1}{2\pi i} \int_{C_0} \frac{W(z)-w_0}{W(z)} \, dz = \frac{1}{2\pi} \int_{C_0} \frac{W'(z)}{W(z)-w_0} \, dz = \frac{1}{2\pi} \text{Arg}_a[w_0-a] = \frac{1}{2\pi} \text{Arg}_a[w_0-a],
\]

Ponięwa zaś dla wartości m dostatecznie wielkich mamy z pewnością $h_m=\tilde{h}$, przeto korzystając jeszcze z tw.6.3, otrzymujemy równość (7.10).

W twierdzeniu 7.9 moglibyśmy — rzecz prosta — zastąpić koło domknięte przez dowolny obszar domknięty, ograniczony przez krzywą zamkniętą. Dowód jednak — identyczny z dowodem tw. 7.9, jeżeli ściśle o treści analitycznej — wymagałby znacznego podkreślenia rozważań topologicznych, związanych z aproksymacją brzegu obszaru przez krzywe regularne przebiegające wewnątrz obszaru.

CZERWIECNA. 1. Obliczyć całkę krzywoliniową funkcji $1(1-2z)(z-\bar{z})^2$ wzdłuż elipsy $x^2+y^2-4x-2y=0$, dla $x=1$ oraz $x=4$.

2. Jeżeli $\zeta_1,\zeta_2,\ldots,\zeta_m$ jest układem m różnych punktów na płaszczyźnie otwartą i $\eta_1,\eta_2,\ldots,\eta_m$ układem m liczb, wówczas istnieje zawsze jeden i tylko jeden wielomian stopnia $\leq m-1$, przyjmujący w punktach ζ_i odpowiednio wartości η_i. Sprawdzić, że wielomianem tym jest

\[
\sum_{k=1}^{m} \eta_k = \sum_{k=1}^{m} \frac{\eta_k}{(\zeta_k-\zeta)^2}.
\]

gdzie $\eta_0=(z-z_1)(z-z_2)\ldots(z-z_m)$. Wielomiany w ten sposób określone nazywają się wielomianami interpolacyjnymi Lagrange'a.

Niech $W(z)$ będzie funkcją holomorficzną na koło domkniętym $K=\bar{K}(0;\rho)$, zaś $\zeta_1,\zeta_2,\ldots,\zeta_m$ układem m różnych punktów wewnątrz tego koła. Pokaż, iż wielomian interpolacyjny Lagrange'a, przyjmujący w punktach ζ_i wartości $W(z_i)$, dany jest wewnątrz koła K przez wzór

\[
P(z) = \frac{1}{2\pi i} \int_{K} \frac{W(\zeta)}{\zeta-z} \, d\zeta.
\]

3. Jeżeli $W(z)$ jest funkcją holomorficzną na koło domkniętym $\bar{K}(0;\rho)$ i $P_m(z)$ oznacza wielomian interpolacyjny stopnia $\leq m-1$, przyjmujący w punktach $\exp(2\pi i k/m)$ dla $k=0,1,\ldots,m-1$ te same wartości co $W(z)$, wówczas $P_m(z)$ dąży jednostajnie do $W(z)$ w kół $K(0;\rho)$ gdy $m \to \infty$.

4. Udowodnić, że dla $0<\eta<1$

\[
\lim_{n \to \infty} \frac{1}{\pi} \sum_{k=0}^{\infty} \exp(2\pi\eta k) = \frac{\exp(2\pi-1)\eta}{\sin\eta}.
\]

gdzie η jest dowolną liczbą nie całkowitą (Kronecker).

5. Wariant twierdzenia Brouwer (por. Rozdz. III, tw.10.2). Niech $\Phi(z)$ i $\Psi(z)$ oznaczają funkcje meromorficzne w obszarze jednostajnym G nie zawierającym punktów ∞ i niech Φ^0, Φ^1 oraz Ψ^0, Ψ^1 oznaczają pierwiastki i bieguny odpowiednio funkcji $\Phi(z)$ oraz $\Psi(z)+\Phi(z)$ w obszarze G. Niech G będzie dowolną krzywą zamkniętą przebiegającą w G i nie przecinającą przez żadne z tych pierwiastków ani biegunów.
§ 8. Metoda reszty w obliczaniu całek oznaczonych. Posługujemy się często twierdzeniem o reszciech przy obliczaniu wartości całek rzeczywistych. Dla zilustrowania metody podamy obliczenie całki \[\int_0^\infty \phi(x) \, dx, \] gdzie \(\phi(x) \) jest liczbą rzeczywistą nie całkowitą, a \(Q(x) \) funkcją wyniorną nie posiadającą biegunów w punktach rzeczywistych niejennych. Zakładamy, iż całka ta ma wartość skończoną, lub – co jest równoważne – że

(8.1) \[\phi(x) \rightarrow 0 \quad \text{gdy} \quad x \rightarrow 0 \quad \text{oraz gdy} \quad x \rightarrow \infty. \]

Wyznaczyć bowiem można dwie liczby całkowite \(p \) i \(q \) w ten sposób, że \(\phi(x) \) oraz \(Q(x) \) dają do granic skończonych i różnych od zera, gdy \(x \) dąży odpowiednio do 0 i do \(\infty \). W drugim przypadku, gdy całka \[\int_0^\infty \phi(x) \, dx \] jest skończona, jest więc równoważne warunkowi, że \(\phi(x) \rightarrow 0 \) gdy \(x \rightarrow 0 \) oraz \(\phi(x) \rightarrow 0 \) gdy \(x \rightarrow \infty \), co z kolei równoważne jest warunkowi (8.1).

Niech \(G \) oznacza płaszczyznę otwartą z wyłączeniem dodatniej półosi rzeczywistej \(x \geq 0 \). W obszarze \(G \) możemy określić (por. np. Rozdz. I, tw. 11.1) gałąź holomorficzną \(L(z) \) logarytmu \(z \) w ten sposób, by dążyła do zera, gdy \(z \rightarrow 1 \) przez wartości półpłaszczyzny górnej. Przez \(\phi(z) \) rozumieć będziemy (por. Rozdz. I, § 11) funkcję \(\exp(zL(z)) \). Przyjmując \(z = x + iy \), mamy

(8.2) \[\lim_{x \to 0+} \phi(x) = \phi(0), \quad \lim_{x \to 0-} \phi(x) = \phi(-0) = \phi(0). \]

Niech teraz \(\epsilon = \pi \) będzie dowolną liczbą dodatnią i niech \(\hbox{C}(r'), \hbox{C}(r'') \) oznaczają odpowiednio luki okręgów \(\hbox{C}(r') = \hbox{C}(0; r'), \hbox{C}(r'') = \hbox{C}(0; r'') \), dane przez równania:

\[z = r'e^{it}, \quad z = r''e^{it}, \quad \text{gdy} \quad -\pi \leq \epsilon \leq 2\pi. \]

Weźmy pod uwagę krzywą zamkniętą, złożoną z tych dwóch luku oraz dwóch odcinków (rys. 8.1):

(8.3) \[\hbox{C}_1 = \hbox{C}_1(r', r'') = \hbox{C}_1(r') + [r'e^{-it}, r'e^{it}] - \hbox{C}_1(r'' + [r''e^{it}, r''e^{-it}], \]

zakładając, iż promień \(r'' \) jest dostatecznie wielki, a promień \(r' \) i \(r'' \) dostatecznie małe na to, aby na krzywych tej nie leżały żadne z biegunów funkcji \(Q(z) \). Oznaczając teraz przez \(b_1, b_2, \ldots, b_n \) bieguny, położone w skończenności, funkcji \(\phi(z) \), lub – co jest równoważne – funkcji \(Q(z) \), mamy w myśl tw. 7.1 „o reszty

(8.4) \[\frac{1}{2\pi i} \int_{C_1(r')} \phi(z) \, dz = \sum_{j=1}^n \frac{R_j \hbox{ind}_C b_j}{C_j}, \]

gdzie \(R_j \) oznacza resztum funkcji \(\phi(z) \) w punkcie \(b_j \). Z drugiej strony, w myśl (8.2) i (8.3),

\[\lim_{r' \to 0} \int_{C(r')} \phi(z) \, dz = \int_{C(r')} \phi(z) \, dz - \int_{C(r'')} \phi(z) \, dz + (1 - e^{2\pi i}) \int_{C(r')} \phi(z) \, dz \]

i przechodząc do granicy, gdy \(r' \to 0 \) oraz \(r'' \to \infty \), otrzymujemy z uwagi na (8.1)

(8.5) \[\lim_{r' \to 0, r'' \to \infty} \int_{C(r')} \phi(z) \, dz = (1 - e^{2\pi i}) \int_0^\infty \phi(z) \, dz = -2i e^{2\pi i} \sin \alpha \int_0^\infty \phi(z) \, dz. \]

Wreszcie, gdy bieguny \(b_j \) znajdują się w pierścieniu \(P(0; r', r'') \), wówczas

\[\lim_{r' \to 0, r'' \to \infty} \frac{1}{2\pi i} \int_{C(r')} \frac{dz}{z-b_j} = \frac{1}{2\pi i} \int_{C(r')} \frac{dz}{z-b_j} - \frac{1}{2\pi i} \int_{C(r)} \frac{dz}{z-b_j} = 1. \]
Gdy więc \(r'' \) jest dostatecznie wielkie, a \(\varepsilon \) oraz \(r' \) dostatecznie małe, w wzorze (4.4) wszystkie indeksy \(i, j \) są równe 1, co zresztą można także sprawdzić bezpośrednio posługując się metodą §6, zważmyzy, że wszystkie bieguny \(b_j \) znajdą się w obszarze „wewnątrznym” krzywej \(C_i(r', r'') \). Korzystając zatem z (8.5), otrzymujemy

\[
\int_{r''}^{r'} Q(z) \, dz = -\frac{\pi e^{-\delta l}}{\sin \alpha x} \sum_j R_j.
\]

\[\text{WYKOM}] 1. Obliczyć całki:

(a) \(\int_{r''}^{r'} \frac{\cos \theta l dt}{(r^2 + b^2)^2} \), \((a > 0), \) \((b > 0), \) \((a + b), \) \((a > 0), \)

(b) \(\int_{r''}^{r'} \frac{\cos \theta l dt}{(r^2 + a^2)^2} \), \((a > 0), \)

(c) \(\int_{r''}^{r'} \frac{\sin \theta l dt}{(r^2 + a^2) d} \), \((a > 0), \) \((a > 0), \)

(d) \(\int_{r''}^{r'} \frac{\sin \theta l dt}{(r^2 + a^2)^2} \), \((a > 0), \)

Wsk. ad. (a): \(\lambda \) względu napisać można w postaci \(\int_{r''}^{r'} \frac{e^{\theta l dt}}{(r^2 + b^2)^2} ; \) rozważmy całkę wyrażenie \(e^{\theta l dt}(r^2 + b^2)(a^2) \) wzdłuż krawędzi utworzonej z górnego polokręgu koła \(K(b, \varepsilon) \) i ze środkiem tego koła; przechodzimy do granicy wraz \(r \rightarrow +\infty \); Analogicznie obliczamy pozostałe całki.

2. Niech \(I_k = \int_{r''}^{r'} \frac{\log z}{1 + r^2} \, dt \). Obliczyć całki \(I_k \) oraz \(I_1 \) i znaleźć związek rekurencyjny między \(I_k \) \((k > 1) \) a \(I_1 I_2 \ldots I_{k-1} \).

Wsk. Czynność \(\log z/(1 + r^2) \) wzdłuż krawędzi zamkniętej utworzonej z górnych półprostek kół \(K(\varepsilon, b) \) i \(K(\varepsilon, r) \) (gdzie \(0 < r < \varepsilon \)) oraz dwóch odcinków osi rzeczywistej, przechodzimy do granicy wraz \(r \rightarrow +\infty \); otrzymujemy \(I_1 \) oraz \(I_2 \).

3. Obliczyć całki

(a) \(\int_{r''}^{r'} \frac{\theta l dt}{1 + r^2} \), \((b > 0), \)

(b) \(\int_{r''}^{r'} \frac{\theta l dt}{1 + 2 r \cos \alpha - \beta} \), \((b > 0), \)

(c) \(\int_{r''}^{r'} \frac{\theta l dt}{1 + 2 r \cos \alpha - \beta} \), \((b > 0), \)

4. Obliczyć wartość główną całki \(\int_{r''}^{r'} \frac{l dt}{1 - r} \), \((b > 0), \) \((b > 0), \) \((b > 0), \)

\[\text{gdzie} \frac{C_i(r_1, r_2)}{C_i(r_1', r_2')} \]

W §9. Twierdzenie i wzór Cauchy'ego dla pierścienia.

W Rozdz. III, §4, udowodniliśmy rozwiązałość funkcji na szereg potęgowy w otoczeniu każdego punktu, w którym funkcja jest holomorficzna. Nie zostało jednak udowodnione, iż funkcja holomorficzna w pewnym koło rozwija się na szereg potęgowy w całym tym koło. Dowód tego twierdzenia w postaci nieco ogólniejszej, mianowicie dla rozwinieć Laurenta, oprzyrządujemy następującymi warunkami twierdzenia i wzoru Cauchy'ego, które nazwaliśmy odpowiednio \(\text{twierdzeniem} \) i \(\text{wzorem Cauchy'ego dla pierścienia} \).

(9.1) Jeżeli \(W(z) \) jest funkcją ciągłą w pierścieniu domkniętym \(K_b(r_1, r_2) \), gdzie \(0 < r_1 < r_2 < \infty \), i holomorficzna wewnątrz tego pierścienia, wówczas

\(\int_{r_1}^{r_2} W(z) \, dz = \frac{1}{2\pi i} \int_{\gamma} W(z) \, dz \)

(9.3) \(W(z) = \frac{1}{2\pi i} \int_{\gamma_1} W(z) \, dz = \frac{1}{2\pi i} \int_{\gamma_2} W(z) \, dz \)

gdzie \(C_1 = C(r_1, r_2) \) i \(C_2 = C(r_1, r_2) \).

Dowód. Możemy przyjąć oczywiście \(z_0 = 0 \). Niech \(G \) oznacza zbór tych punktów pierścienia \(P(r_1, r_2) \), które leżą na półosi rzeczywistej dodatniej. Oznaczmy przez \(C_i(r_1) \) \(C_i(r_2) \) łuki okręgów, dane odpowiednio przez równania:

\(z = r_1 e^{\theta i} \quad \text{oraz} \quad r_2 = r_2 e^{\theta i} ; \quad \text{gdzie} \quad \theta \leq \theta < 2\pi - \varepsilon \)

zakładamy, iż \(r_1 < r_1 < r_2 < r_2 \) oraz \(0 < \varepsilon < \alpha \). Wzmy pod uwagę krzywą zamkniętą (p. rysunek)

\(C_i(r_1, r_2) = C_i(r_2) + [r_2 e^{-\theta i}, r_2 e^{\theta i}] \quad C_i(r_1) + [r_1 e^{\theta i}, r_1 e^{-\theta i}] \)

złożoną z dwóch łuków oraz dwóch odcinków. Krzywa ta przebiega w obszarze jednospójnym \(G \) i w myśl tw. Cauchy'ego w postaci (2.3) mamy

\(\int_{C_i(r_1, r_2)} W(z) \, dz = 0 \).

Rozkładając odpowiednio do (9.4) lewą stronę tej równości na cztery całki i przechodzimy do
granicy, najpierw wraz z $z \to 0$ (przy czym suma całego wzdłuż odcinków staje się zerem), a następnie wraz z $r_1 \to r_1$ oraz $r_2 \to r_2$, otrzymujemy wzór (9.2).

Niewątpliwie, aby dowolnym punktem pierścienia $P(x_0; r_1, r_2)$. Funkcja $[W(z) - W(z_0)]/(z - 3)$ jest ciągłą w punkcie z, a w całym pierścieniu优点ką $P(x_0; r_1, r_2)$ i holomorficzna w jego wnętrzu. Można więc podać te wzory (9.2) funkcję tę zamiast $W(z)$. Otrzymujemy

\[\int_0^W(z) - W(z_0) dz = \int_0^W(z) - W(z_3) dz;\]

prowadzą zaś (§ 6, str. 183) \[\int_0^W(z) dz = 0 \text{ oraz } \int_0^W(z) dz = 2\pi i,\]

zatem

\[\int_0^W(z) dz = \int_0^W(z) dz = W(z_0) - \int_0^W(z) dz = 2\pi iW(z_0),\]

równoważny wzorowi (9.3).

(9.6) Funkcja $W(z)$ holomorficzna w pierścieniu $P(x_0; r_1, r_2)$ rozwija się w pierścieniu tym na serię Laurenta niemal jednostajnie zbieżny.

Do dowodu, korzystając z tw. 9.1, stosujemy w istocie tę samą metodę co w dowodzie nieco słabszego twierdzenia 5.7, Rozdz. III. Możemy przy tym oczywiście przyjąć, iż $z_0 = 0$.

Niech $r_1 < r_2 < r_3 < r_4$. Wówczas, przyjmując ogólnie $C(r) = C(0, r)$, mamy w myśl tw. 9.1

\[W(z_0) = \frac{1}{2\pi i} \int_0^W(z) dz = \int_0^W(z) dz = \int_0^W(z) dz;\]

Dla punktów z na okręgu $C(r_0)$ mamy $|z| = r_0 < 1$, a dla z na okręgu $C(r_2)$ analogicznie $|z| = |z| < 1$. Zatem

\[\int_0^W(z) dz = \int_0^W(z) dz = \int_0^W(z) dz = \int_0^W(z) dz = \int_0^W(z) dz;\]

i analogicznie

\[\int_0^W(z) dz = \int_0^W(z) dz = \int_0^W(z) dz = \int_0^W(z) dz = \int_0^W(z) dz;\]

Podoświadczanie te rozwinięcia w (9.7), otrzymujemy w pierścieniu $P(0; r_1, r_2)$ rozwinięcie funkcji $W(z)$ na szereg Laurenta

\[W(z) = \sum_{n=-\infty}^{+\infty} a_n z^n\]

o współczynnikach a_n, danych przez całki występujące w dwu wzorach poprzednich. Z uwagi na jednoznaczność rozwinięcia na serię Laurenta (por. Rozdz. III, § 4) spółczynniki te są te same dla rozwinięć funkcji $W(z_0)$ we wszystkich pierścieniach $P(0; r_1, r_2)$, gdzie $r_1 < r_2 < r_3 < r_4$. Równość (9.8) spełniona jest więc dla całego danego pierścienia $P(0; r_1, r_2)$, a zbieżność niemal jednostajna szeregu występującego w tej równości jest już konsekwencją tw. 4.3, Rozdz. III.

Z tw. 9.6 wynika w szczególności, iż funkcja holomorficzna w pewnym otoczeniu pierścieniowym punktu l_0 rozwija się w całym tym otoczeniu na serię Laurenta. Jeżeli ponadto założymy, iż funkcja jest holomorficzna również w punkcie l_0, wówczas całość główna jej rozwinięcia znika (por. np. tw. 4.9, Rozdz. III) i rozwinięcie jej staje się szeregiem potęgowym. Zatem:

(9.9) Funkcja holomorficzna w kole rozwija się w całym tym kole na serię potęgowy.

Aalogicznie uzupełnienie możemy twierdzenia Rozdz. III, § 13, dotyczące funkcji dwu zmiennych. Mianowicie:

(9.10) Na to, aby funkcja $F(z, w)$ była holomorficzna w iloczynie kar-
tegijskim $K(z_0; r_1) \times K(w_0; r_2)$ dwóch koł, konieczne jest i wystarcza, aby rozwijała się w nim na serii niemal jednostajnie zbieżny postaci

\[\sum_{n=0}^{+\infty} a_n(z) w^n, \text{ jeżeli } w_0 = \infty, \text{ lub } \sum_{n=0}^{+\infty} a_n(z) w^n, \text{ jeżeli } w_0 = \infty,\]

gdzie $a_n(z)$ są funkcjami holomorficznymi w $K(z_0; r_1)$.

Dowód. Dostateczność warunku jest widoczna. W celu udowodnienia, iż jest konieczny, zauważmy, iż funkcja $F(z, w)$ jest holomorficzna w otoczeniu dwukółowym $K(z_0; r_1) \times K(w_0; r_2)$, przy czym możemy oczywiście przyjąć, iż $w_0 = z_0 = 0$. Na mocy tw. 9.9 mamy w otoczeniu tym rozwinięcie

S. Saks i A. Zygmund. Funkcje analityczne.
(9.11) \[F(z,w) = \sum_{n=0}^{\infty} a_n(z) w^n \]
on spółczynnikach \(a_n(z) \) danych przez całki (por. Rozdz. III, tw. 4.6):

\[a_n(z) = \frac{1}{2\pi i} \oint_{C(z)} \frac{F(z,w)}{w^{n+1}} \, dw, \]

gdzie \(q_2 \) jest dowolną liczbą dodatnią mniejszą od \(r_2 \) i \(C(q_2) = C(0;q_2). \)
Z (9.12) wynika przede wszystkim, na mocy tw. 5.7, Rozdz. II (jak w rozumowaniu Rozdz. III, §13), iż funkcje \(a_n(z) \) są holomorficzne w kół K(0;r_2).
Z drugiej strony, oznaczając przez \(q_1 \) dowolną liczbę dodatnią mniejszą od \(r_1 \), a przez \(M(q_1,q_2) \) kresy górne \(F(z,w) \) dla \(|z| \leq q_1 \) i \(|w| \leq q_2 \) mamy z (9.12), że \(|a_n(z)| \leq M(q_1,q_2)/q_2^n \) dla \(|z| \leq q_1 \).
Szereg występujący we wzorze (9.11) jest więc niemal jednostajnie zbieżny w każdym otoczeniu dwukołowym K(0;r_1)×K(0;q_2), gdy \(0 < q_2 < r_1 \) i \(0 < q_1 < r_2 \), a tym samym w całym otoczeniu dwukołowym K(0;r_1)×K(0;r_2).

Twierdzeniu 9.10 nadajemy jeszcze postać następującą:

(9.13) Na to, aby funkcja \(F(z,w) \) była holomorficzna w otoczeniu dwukołowym K(0;r_1)×K(w_0;r_2), gdzie \(z_0 = \infty, w_0 = \infty \), koniecznie jest i dostateczne, by w otoczeniu tym rozwijał się na szereg podwójny niemal jednostajnie i bezwzględnie zbieżny postaci

\[\sum_{m,n=0} a_{m,n}(z-w_0)^m(w-w_0)^n. \]

Spółczynniki tego szeregu dane są przez

\[a_{m,n} = \frac{1}{2\pi i} \oint_{C(z)} \oint_{C(w)} \frac{F(\zeta,\omega)}{(\zeta-z_0)^{m+1}(\omega-w_0)^{n+1}} \, d\zeta \, d\omega, \]

gdzie \(C_1, C_2 \) są dowolnymi okręgami zawartymi odpowiednio w kółach K(z_0;r_1), K(w_0;r_2) i spółokolowymi odpowiednio z okręgami tych koł.

Dowód. Dostateczność warunku jest oczywista. W celu udowodnienia jego konieczności przyjmijmy \(z_0 = w_0 = 0 \). Funkcja \(F(z,w) \) holomorficzna w otoczeniu dwukołowym K(0;r_1)×K(0;r_2), rozwija się w otoczeniu tym na szereg (9.11) o spółczynnikach \(a_n(z) \) holomorficznych w kół K(0;r_1) i danych przez wzór (9.12). W kół tym mamy więc \(a_n(z) = \sum_{m=0} a_{m,n} z^m \), gdzie

\[a_{m,n} = \frac{1}{2\pi i} \oint_{C(z)} \oint_{C(w)} \frac{F(\zeta,\omega)}{(\zeta-z_0)^{m+1}(\omega-w_0)^{n+1}} \, d\zeta \, d\omega, \]

przy czym \(C_1 \) oznacza dowolny okrąg C(0;q_1) o promieniu \(q_1 < r_1 \). Podstawiając w tę całość wyrażenie na \(a_n(z) \) (9.12), otrzymujemy

\[F(z,w) = \sum_{m=0}^{\infty} a_{m,n} z^m(w-w_0)^n, \]

gdzie \(C_2 \) oznacza dowolny okrąg C(0;q_2) o promieniu \(q_2 < r_2 \). Oznaczając przez \(M(q_1,q_2) \) kresy górne \(F(z,w) \) dla \(|z| \leq q_1 \) i \(|w| \leq q_2 \), mamy więc \(|a_{m,n}| \leq M(q_1,q_2)/q_2^n \).
W otoczeniu dwukołowym K(0;q_1)×K(0;q_2) szereg podwójny \(\sum_{m,n=0} a_{m,n} z^m w^n \) jest tedy bezwzględnie i niemal jednostajnie zbieżny, przy czym

\[\sum_{m,n=0} a_{m,n} z^m w^n = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m,n} z^m w^n = \sum_{n=0}^{\infty} a_n(z) w^n = F(z,w). \]

Ponieważ zaś o \(q_1 \) i \(q_2 \) zakładamy tylko, że \(0 < q_1 < r_1 \) oraz \(0 < q_2 < r_2 \), zatem rozważany szereg podwójny jest niemal jednostajnie i bezwzględnie zbieżny w całym otoczeniu dwukołowym K(0;r_1)×K(0;r_2) i równość (9.13) zachodzi w całym tym otoczeniu.

Jeżeli funkcja \(W(z) \) jest holomorficzna w otoczeniu punktu \(z_0 = 0 \), przy czym \(W(z_0) = 0 \), to wówczas (por. Rozdz. III, tw. 12.4) jest jednocześnie odwrotna w pewnym otoczeniu punktu \(z_0 \). Jej funkcja odwrotna, którą oznaczamy przez \(F(z) \), jest holomorficzna w pewnym otoczeniu punktu \(w_0 = W(z_0) \) i rozwija się wewnątrz w pewnym otoczeniu tego punktu na szereg potęgowy o środku \(w_0 \).
Przyjmując dla prostej \(w_0 = z_0 = 0 \), znajdziemy dla spółczynników tego rozwinięcia wyrażenia, które w pewnych przypadkach okazują się szczególnie dogodne rachunkowo. Niemień więc

(9.14) \[F(w) = \sum_{n=1} a_{m,n} w^n, \]

i niech \(K(0;R) \) będzie kołem domkniętym, w którym funkcja \(W(z) \) jest holomorficzna, jednocześnie odwrotna i nigdzie nie znika przez punktem 0. Oznaczmy przez \(M \) kres dolny wartości \(|W(z)| \) na okręgu \(C = C(0;R) \).
Weźmy z drugiej strony pod uwagę kolo \(K(0;r) \) o promieniu \(r < M \) dostatecznie małym na to, by funkcja \(W \) przyjmowała w kole \(K(0;R) \) każdą wartość \(w \in K(0;r) \).
Będziesz więc miał dla \(w \in K(0;r) \), w sposób tw. 7.5 zastosowanego do kola (por. analogiczne rozumowanie w dowodzie tw. 14.1, Rozdz. III):

\[F(w) = \frac{1}{2\pi i} \oint_{C(0;R)} \frac{W(z)}{z} \, dz, \]

skąd

\[F'(w) = \frac{1}{2\pi i} \oint_{C(0;R)} \frac{W'(z)}{(W(z)-w)^2} \, dz = -\frac{1}{2\pi i} \oint_{C(0;R)} \frac{1}{W(z)-w} \, dz. \]

13*
ROZDZIAŁ IV. Elementarne metody geometryczne.

Calcultując przez części wzdłuż okręgu C (tzn. całkując przez części względem zmiennej θ w przedziale $[0,2\pi]$) po podstawieniu $z = R e^{i\theta}$, mamy

$$F^*(w) = \frac{1}{2\pi i} \int_C \frac{dz}{W(z) - w}$$

i, ponieważ $|w| < r < M$, otrzymujemy rozwinięcie funkcji $F^*(w)$ na serię potęgową w kół K($0; r$):

$$F^*(w) = \frac{1}{2\pi i} \int \frac{dz}{W(z)} - \frac{1}{n} \left[\frac{1}{n} \int W(z)^n \right] + \sum_{n=1}^{\infty} \frac{1}{2\pi i} \left[\frac{1}{n} \int W(z)^n \right].$$

Porównując to rozwinięcie z (9.16), widzimy, że

$$an = \frac{1}{2\pi i} \int \frac{dz}{W(z)}.$$

Otoż, ponieważ funkcja $W(z)$ nie zmienia się w kółu $K(0; R)$ poza punktem 0, całka po prawej stronie wzoru (9.17) równa jest na mocy tw. 7.1 reszty funkcji $1/W(z)^n$ w tym punkcie. Dla obliczenia tego reszty przyjmujemy $G(z) = zW(z)$, funkcja $G(z)$ jest holomorficzna na kółu domkniętym $K(0; r)$ i prawastronnie, że dla $a > 1$ spełniony jest równość (9.17) w rozwinięciu funkcji $G(z)^n$ na serię Laurenta o środku 0 jest spójny z rozwinięciem funkcji $G(z)^n$ na serię potęgowy. Spójność tych równości jest (por. Rozdz. III, § 1) skąd na mocy (9.17)

$$an = \frac{1}{2\pi i} \int \left[\frac{d}{dz} \left[G(z)^n \right] \right]_{z=0}.$$

Podstawiając te wyrażenia w (9.16) zamiast a_n, otrzymujemy szereg, który nosi nazwę szeregu Lagrange'a.

Otwierzenie. 1. Funkcja $\exp \left[\frac{1}{n} \left(\frac{1-z}{z} \right) \right]$ jest w tej liczba dowolną, posiada w punkcie $z = 0$ rozwinięcie $\sum I_n(z) \cdot z^n$ zbieżne w calej płaszczyźnie z wyłączeniem punktów 0 i 0. Pokaż, że

$$I_n(z) = \frac{1}{2\pi i} \int_0^{2\pi} \cos(n \alpha - u \sin \alpha) du.$$

Funkcja $I_n(z)$ nosi nazwę funkcji Besselega.

2. W rozwinięciu Laurenta funkcji $\sin \left[\frac{z+1}{z} \right]$ w punkcie 0 są spójne równie i wyrażają się przez całkę $\frac{1}{2\pi i} \int \frac{dz}{\sin(2z\cos \theta) \cos \theta}$.

3. Jeżeli funkcja meromorficzna na kółu domkniętym $K(0; 1)$ i holomorficzna w jego wnętrzu rozwija się wewnątrz tego kola na szereg potęgowy $\sum a_n z^n$ i posiada dokładnie jeden biegun z_0 na okręgu $C(0; 1)$, wówczas lim $n a_n/n^{\alpha} = z_0$.

Wzgl. Funkcję daną przedstawiać można w postaci sumy szeregu potęgowego $\sum b_n z^n$, zbieżnego w kół o promieniu $\alpha < 1$, oraz wielomianu względem $1/(z - z_0)$.

4. Uogólnić twierdzenie cw. 3, jak następuje: Jeżeli funkcja meromorficzna na kółu domkniętym $K(0; 1)$ rozwija się wewnątrz tego kola na szereg potęgowy $\sum a_n z^n$ i jeżeli wśród biegunów tej funkcji na okręgu $C(0; 1)$ istnieje jeden biegun z_0 krotności większej od wszystkich pozostałych, wówczas lim $a_n/n^{\alpha+1} = z_0$.

5. Niech $m_1, m_2, ..., m_k$, ... będzie ciągiem rosnącym liczb całkowitych dodatnich, zaś $\{P_k(z)\}$ ciągiem wielomianów takich, że dla każdego k stopień wielomianu $P_k(z)$ jest m_k. Dowiedz, że jeśli wówczas szereg

$$W(z) = \sum_{k=0}^{\infty} P_k(z) z^{m_k} + \sum_{k=0}^{\infty} P_k(z) z^{m_k} + \ldots + \sum_{k=0}^{\infty} P_k(z),$$

jest niemal jednostajnie zbieżny w kółu $K(0; 1)$, to rozwinięcie funkcji $W(z)$ na szereg potęgowy w tym kół otrzymuje się formalnie, wykonywane mnożenia i znosząc nawiązy po prawej stronie równości (*).

Zbadaj przykład, wskazywajcy, że założenie niemal jednostajnej zbieżności szeregu (*) jest tu istotne, tzn. że twierdzenie przestaje być na ogół prawdziwe dla zbieżności zwykłej, nawet gdy o szeregu (*) znamy, że jest zbieżny do funkcji holomorficznej w kółu $K(0; 1)$.

6. Pierwiastek z funkcji $\exp(z^2)$ jest $e^w + w^2$ (jak funkcja parametru w) dany jest w otoczeniu punktu $w = 0$ przez szereg

$$z = a + w^2 \sin a + \frac{1}{2} w^3 \sin^3 a + \frac{1}{24} w^4 \sin^4 a + \ldots$$

Rozwinięcie na szereg potęgowy parametru w w otoczeniu punktu $w = 0$ pierwiastek z równań:

(a) $z - w^2 = 0$,
(b) $z = a + w^2$.

Obliczyć promienie zbieżności tych szeregów.

8. Niech $W(z)$ będzie funkcją holomorficzną w otoczeniu punktu $z = 0$, przy czym $W(0) = w_0$ i $W(0) = 0$; niech dalej $H(z)$ będzie dowolną funkcją holomorficzną w otoczeniu punktu 0. Wówczas w otoczeniu punktu w_0

$$H(W^{-1}(w)) = \sum a_n (w-w_0)^n,$$

gdzie $a_n = H(0)$, $a_n = \frac{1}{n!} \left[\frac{d}{dz} \left[H(z)^n \cdot [W(z)]^n \right] \right]_{z=0}$ dla $n > 1$ (Szereg Lagrange'a w postaci rozwinięcia).

9. Jeżeli z znamy pierwiastek równań (a), (b), to w otoczeniu punktu $w = 0$ mamy $\sin z = \sum_{n=1}^{\infty} \frac{b_n}{n!} w^n$, gdzie $b_n = \frac{n-1}{2} \left[\frac{n-3}{4} \right]^{n-5} \ldots$.
§ 10. Definicja analityczna obszaru jednospójnego.

Zarówno w twierdzeniu Cauchy’ego 2.3 o całce krzywoliniowej, jak i w tw. 3.1 o gałęzi logarytmu funkcji holomorficznej, istotne jest założenie, iż rozważany tam zbiór otwarty nie rozcinana płaszczyzny. W samym rzeczy, ohydna te twierdzenia można odwrócić, otrzymując w ten sposób kryteria analityczne nierozcinania płaszczyzny przez zbiór otwarty. Mianowicie:

(10.1) Na to, aby zbiór otwarty G nie zawierający punktu ∞ nie rozчинiał płaszczyzny, konieczne jest i wystarcza, aby całka krzywoliniowa każdej funkcji holomorficznej w zbiorze G zniknęła wzdłuż każdej krzywej regularnej zamkniętej, przebiegającej w tym zbiorze.

(10.2) Na to, aby zbiór otwarty G nie rozcinając płaszczyzny, konieczne jest i wystarcza, aby dla każdej funkcji W(z), holomorficznej i nigdzie nie znikającej w G, istniała w G gałąź log W(z).

Dowód tych twierdzeń oprzymy na lemmacie następującym, z którego korzystać będziemy również przy dowodzie twierdzeń ogólniejszych (pr. dalej, § 12).

(10.3) Jeżeli S jest składoną dopełnieniem zbioru otwartego G, nie zawierającą punktu ∞, wówczas istnieje w G lamań zamknięta C (bez punktów wielokrotnych) taka, iż indC S = ∞.

Dowód. Możemy założyć (uwzględniając ewentualnie punkt ∞ ze zbioru Θ), że G nie zawiera punktu ∞.

W myśl tw. 9.6 Wstępu zbiór CG możemy wówczas przedstawiać w postaci sumy dwu zbiorów domkniętych rozłącznych F₁ i F₂, w ten sposób, by zbiór F₂ zawierał zbiór S a nie zawierał punktu ∞.

Na mocy tedy twierdzeń 10.3 i 10.2 Wstępne istnieje układ skończony nie zachodzących na sebze kwadratów Q₁, Q₂, ..., Qₙ takich, iż

\[F₁C \subseteq \bigcup_{j=1}^{n} Q_j \]

\[F₂ \setminus \bigcup_{j=1}^{n} Q_j = \emptyset. \]

(10.6) brzeg zbioru \(\bigcup_{j=1}^{n} Q_j \) składa się ze skończonej liczby rozłącznych lamanych zamkniętych C₁, C₂, ..., Cₘ bez punktów wielokrotnych, o bokach zorientowanych zgodnie ze zwrotem kwadratów Qₖ przyległych do tych boków.
2πi · \text{ind}_{\mathcal{C}} a = \int_{\mathcal{C}} \frac{dz}{z-a} + 0.

Krzywa taka istnieje na mocy lemmatu 10.3. Z uwagi więc na tw. 2.6, Rozdz. II, w zbiorze \mathcal{C} nie można określić gołęzi $\log(z-a)$, jakkolwiek funkcja $z-a$ jest oczywiście holomorficzna i nie zniką nigdzie w tym zbiorze.

W tw. 10.1 i 10.2 zamiast „zbior otwartý” podstawiamy możemy w szczególności „obóz”, Twierdzenia te zawierają tezę pewną definiując analizacyjną jednostopniową obszaru. Przez definięj analizacyjną pewną własnością rozumiane tu, z granica mówiąc, każdą taką definicję, z której widoczne jest natychmiast, iż własność ta jest niezmiennej przekształcień wiernych (p. dalej, Rozdz. V, § 1).

§ 11. Twierdzenie Jordana dla łamanej zamkniętej.

Wspomniane na końcu § 6 twierdzenie Jordana o rozcięciu płaszczyzny przez krzywą zamkniętą udowodniliśmy dla linii lamyanych w postaci następującej:

(11.1) Dopełnienie linii łamanej zamkniętej bez punktów wielokrotnych $L = \{z_0, z_1, \ldots, z_n = z_0 \}$ jest sumą dwu obszarów rozłącznych G_1 i G_2. Oznaczając przez G_i ten z tych obszarów, który zawiera punkt ∞, mamy

\[\text{ind}_{\mathcal{C}} G_1 = 0, \quad \text{ind}_{\mathcal{C}} G_2 = 1. \]

Łamana L jest przy tym wspólnym brzegiem obszarów G_1 i G_2.

Dowód. Uдовodniamy przede wszystkim, iż dopełnienie lamańej \mathcal{C} zawiera co najwyżej dwie składowe. Dowód opiera się na następującej elementarnej konstrukcji geometrycznej.

Niech $[z_0, z_1]$ i $[z_2, z_{n+1}]$ będą dwoma kolejnymi bokami łamanej L i niech $z_1 = z_{k-1}$ i $z_2 = z_{k+1}$ będą odpowiednio do bowiemi punktami tych boków. Niech dalej L_k będzie odcinkiem, dla którego z_1 jest jedynym punktem wewnętrznzym wspólnym z łamaną L_k, zaś L_{k+1} odcinkiem, dla którego z_2 jest jedynym punktem wspólnym z łamana L_{k+1} (p. rys.). Wówczas każdy punkt $z \neq z_k$ odcinka L_k dostatecznie bliżej punktu z_k, połączyć można z odcinkiem L_k (t. j. z jakimś punktem tego odcinka) przy pomocy łamanej, rozłącznej z L i złożonej z dwóch odcinków odpowiednio równoległych do boków $[z_k, z_{k-1}]$ oraz $[z_{k+1}, z_{k+2}]$.

Konstrukcję tę możemy rozszerzyć natychmiast przez indukcję, jak następuje. Niech a będzie dowolnie ustalonym punktem wewnętrznzym boku $[z_0, z_1]$ i niech $[c_0, c_1]$ będzie odcinkiem zawierającym a wewnątrz i nie posiadam poza punktami a żadnych innych punktów wspólnych z łamaną L; każdy z odcinków $[a, c_0]$ i $[a, c_1]$ zawiera się, oczywiście z pomięciem punktu a, w jednej ze składowych dopełnienia L. Składowe te oznaczmy odpowiednio przez G_1 i G_2.

Niech następnie T będzie dowolnym odcinkiem, który posiada dokładnie jeden punkt wspólny z L. Wówczas każdy punkt tego odcinka można połączyć z jakimś punktem odcinka $[c_0, c_1]$ łamaną L, która nie posiada punktów wspólnych z L.

Niech teraz z_{k+1} będzie dowolnym punktem nie leżącym na L i nie b będzie pierwszym punktem wspólnym odcinka $[b, a]$ z łamaną L. Odcinek $[b, a]$ nie posiada teży poza b punktów wspólnych z L, a więc, jak poprzednio, punkt z_{k+1} można połączyć z jakimś punktem bądź odcinka $[a, c_1]$, bądź odcinka $[a, c_1]$, przy pomocy łamanej rozłącznej z L. Każdy zatem punkt z_{k+1} płaszczyzny należy bądź do zbioru G_1, bądź do zbioru G_2. Tym samym jednak punkt ∞ musi należeć również do jednego z tych dwóch zbiorów i łamana L dzieli płaszczyznę na co najwyżej dwa obszary.

Pokażemy teraz, że w każdym otoczeniu każdego punktu $c \in L$ znajdują się punkty o różnych indeksach, dokładnie: o indeksach różniących się o 1. Wystarczy przy tym oczywiście ograniczyć się do rozważania punktów c, które nie są wierzchołkami łamanej L. Tym samym udowodnione będzie, iż obszary G_1 i G_2 istnieją różne oraz $\text{ind}_{\mathcal{C}} G_1 - \text{ind}_{\mathcal{C}} G_2 = 1$. Zakładając przeto, iż obszar G_1 zawiera punkt ∞, będziemy mieli $\text{ind}_{\mathcal{C}} G_1 = 0$, a więc $\text{ind}_{\mathcal{C}} G_2 = 1$.

Niech tedy a będzie punktem wewnętrznym któregoś z boków łamanej L, np. boku $[z_0, z_1]$. Ponieważ przy przekształceniu liniowym płaszczyzny indeksy punktów względem krzywej nie ulegają zmianie (por. § 6, str. 181), przeto, stosując ewentualnie obrót płaszczyzny, przyjmiemy dla prostoty, iż bok $[z_0, z_1]$ jest równoległy do jednej z osi spolaryzowany. Niech \mathcal{Q} będzie tym z dwóch kwadratów o boku $[z_0, z_1]$, którego zwrot dodatni przeciwny jest zwrotowi odcinka $[z_0, z_1]$, i niech $\beta, \alpha, \gamma, \delta$ będą kolejnymi wierzchołkami tego kwadratu (p. rysunek).
Oznaczmy przez \(I_0 \) lamaną \((s_0, \alpha_1, \beta_1, \gamma_1, \delta_1, \ldots, s_n)\). Dla każdego punktu 3 leżącego poza lamaną \(I_0 \) oraz poza obwodem kwadratu \(Q \) mamy
\[
\int_a^b \frac{dz}{z-3} = \int_a^b \frac{dz}{z-\alpha} + \int_a^b \frac{dz}{z-3},
\]
a więc
\[
\text{ind}_{I_0} 3 = \text{ind}_{I_0} \alpha + \text{ind}_{Q} 3.
\]
Oznaczmy teraz przez \(K \) dowolne otożnienie punktu c rozłączone z \(I_0 \) (na rysunku obrączka koła \(K \) oznaczony jest przez \(C \)). Indyk \(\text{ind}_{I_0} 3 \) posiada tę samą wartość \(A \) dla wszystkich punktów \(\in K \), z uwagi na (11.3)
\[
\text{ind}_{I_0} 3 = \text{ind}_{I_0} \alpha + \text{ind}_{Q} 3 = \begin{cases} A, & \text{dla } \alpha \in K, C \in Q, \\ A, & \text{dla } \alpha \in K, C \in K, Q. \end{cases}
\]
W każdym otożnieniu punktu c jest niejedna tedy punkty, których indeksy względem \(L \) różnią się o 1, skąd, jak zauważyliśmy wyżej, wynika, że równocześnie\((11.2) \). Zarazem udowodniliśmy, że każdy punkt lamannej \(L \) jest punktem skupienia obydwu obszarów \(G_1 \) i \(G_2 \), a ponieważ obszary te nie mogą przecinać się punktów brzegowych poza \(L \), zatem lama jest ich wspólnym brzegiem.

Z dwóch obszarów, na jakie lama zamknięta bez punktów wielokrotnych dzieli płaszczyznę, ten, który zawiera punkt \(\infty \), nazywamy zewnętrznym; drugi z nich nazywamy wewnętrznym. Na mocy twierdzenia 11.1 indeks obszaru wewnętrznego względem danej lamany jest równy \(+1 \) lub \(-1 \). Jeżeli indeks ten jest równy \(+1 \), wówczas mówimy, iż lama jest zorientowana dodatnio.

Opierając się na twierdzeniu Jordaana dla linii lamanowej, otrzymujemy natychmiast z tw. 7.9 wniosek następujący:

\[
\text{Jeżeli funkcja } W, \text{ ciągła na koło domkniętym } K \text{ i holomorficzna w jego wnętrzu, jest jednoznacznie odwracalna na okręgu } K \text{ i przekształca ten okrąg w lamaną zamkniętą } L, \text{ wówczas funkcja ta jest jednoznacznie odwracalna na całym koło } K \text{ i przekształca wewnątrz tego koła na obszar wewnętrzny lamaną } L.
\]

Opierając się na twierdzeniu Jordaana dla dowolnych krzywych zamkniętych, moglibyśmy oczywiście umieszczyć na tw. 11.4 założenie, że funkcja \(W \) przekształca okrąg na lamanę. \(Z \) odwracalności funkcji \(W \) na okręgu \(K \) wynika bowiem w każdym razie, że funkcja ta przekształca ten okrąg na pewną krzywą zamkniętą \(L \) bez punktów wielokrotnych, i tw. 11.4, w ogólniejszym sformułaniu, orzekłoby, że funkcja \(W \) przekształca w sposób jednojednoznaczny wnętrze koła \(K \) na obszar wewnętrzny krzywej \(L \).

Również koło domknięte \(K \) możemy zastąpić w tw. 11.4 przez dowolny obszar domknięty, ograniczony przez krzywą zamkniętą bez punktów wielokrotnych (por. uwagę, str. 187).

§ 12. Definicja analityczna stopnia spójności obszaru.

Jako uogólnienie twierdzeń §10 podamy kryterium analityczne \(n \)-spójności obszaru. Udowodniliśmy przed wszystkim następujące uzupełnienie lematu 10.3:

\[
\text{(12.1) Jeżeli } S_1, S_2, \ldots, S_n \text{ są w różnych składowych dopełnienia obszaru } G, \text{ nie zawierającym punktu } \infty, \text{ wówczas wyczuć można w } G \text{ składniki krzywych regularnych zamkniętych } C_1, C_2, \ldots, C_n \text{ takich, iż}
\]
\[
\text{ind}_{C_k} S_j = \begin{cases} 0, & \text{dla } k = j, \\ -1, & \text{dla } k \neq j, \end{cases}\]
\]
\text{gdzie } k, j = 1, 2, \ldots, n.

Dowód. Jaki w dowodzie lematu 10.3 przyjąć możemy, że \(G \) nie zawiera punktu \(\infty \).

Oznaczając wówczas przez \(S \) tę składową dopełnienia obszaru \(G \), która zawiera punkt \(\infty \), połączymy ją przeceń ze składownymi \(S_1, S_2, \ldots, S_n \), przy pomocy linii rozłącznych \(S_i \). W tym celu nies \(a_0, a_1, \ldots, a_n, a_0 \) oznaczają odpowiednio jakiekolwiek punkty brzegowe składowych \(S_1, S_2, \ldots, S_n \). Każdemu z punktów \(a_i \) (gdzie \(i = 2, 3, \ldots, n \)) przyporządkujemy pewien punkt \(b \in G \) w ten sposób, by odcinki \([a_0, b_2], \ldots, [a_{n-1}, b_n], [a_n, b_0] \) były rozłączne z \(S_1 \).

Łączymy następnie punkty \(b_2, b_3, \ldots, b_n \) z punktem \(b \) przy pomocy odpowiednio lamanych \(L_2, L_3, \ldots, L_n \), przebiegających w \(G \).

Niewygodne
\[
G_1 = G - [a_0, b_1] - \sum_{i=2}^{n} [a_i, b_i] + L_k,
\]
Zbiór \(G_1 \) jest otwarty, przy czym, jak łatwo dowodzimy, \(S_1 \) jest składową dopełnienia tego zbioru. W myśl lematu 10.3 przeprowadzić możemy w zbiorze \(G_1 \) lamaną zamkniętą \(C_1 \) bez punktów wielokrotnych taką, iż \(\text{ind}_{C_1} S_1 = 0 \); na mocy tw. 11.1 mamy więc dokładnie \(\text{ind}_{C_1} S_1 = 1 \) przy założeniu, że lama \(C_1 \) została zorientowana dodatnio. Ponieważ zaś \(S_2, S_3, \ldots, S_n \) zawierają się w tej składowej dopełnienia zbioru \(G \), która zawiera zbiór \(S_1 \), a więc punkt \(\infty \), zatem \(\text{ind}_{C_k} S_j = 0 \) dla \(k = 2, 3, \ldots, n \). Analogicznie określamy pozostałe krzywe \(C_k \) tak, aby warunki (12.2) były spełnione.

Udowodniliśmy z kolei lemat, który uważany być może za uogólnienie tw. 2.3:
ROZDZIAŁ IV. Elementarne metody geometryczne.

(12.3) Jeżeli dopełnienie zbioru otwartego G, nie zawierającego punktu ∞, ma dokładnie $n+1$ składowych, wówczas oznaczono przez S_1, S_2, \ldots, S_n te składowe, które nie zawierają punktu ∞, a przez C_1, C_2, \ldots, C_n układ krzywych w G spełniających warunki (12.2), mamy

$$\int_c W(z) \, dz = \sum_{j=1}^{n} \text{ind}_C S_j \int_{S_j} W(z) \, dz$$

dla każdej funkcji holomorficznej $W(z)$ i każdej krzywej regularnej zamkniętej C, przebiegającej w zbiorze G.

Dowód. Niech a_1, a_2, \ldots, a_n będą punktami obranymi dowolnie odpowiednio na składowych S_1, S_2, \ldots, S_n. Na mocy twierdzenia Rungego 2.1 funkcja $W(z)$ może być przedstawiona w zbiorze G jako granica niemal jednostajnie zbiennej ciągu funkcji wymiernych $(H_p(z))$ o biegunach o najwyżej w punktach $a_1, a_2, \ldots, a_n, \infty$. W myśl twierdzenia o residuach 7.1 mamy więc

$$\frac{1}{2\pi i} \int_c H_p(z) \, dz = \sum_{j=1}^{n} \text{ind}_C a_j \cdot \text{res}_{a_j} H_p = \sum_{j=1}^{n} \text{ind}_C S_j \cdot \text{res}_{a_j} H_p$$

dla każdej krzywej regularnej zamkniętej C przebiegającej w G, a w szczególności

$$\frac{1}{2\pi i} \int_c H_p(z) \, dz = \sum_{j=1}^{n} \text{ind}_C S_j \cdot \text{res}_{a_j} H_p = \text{res}_{a_k} H_p$$

da $k = 1, 2, \ldots, n$.

Podstawiając ostatnie wyrażenia w (12.5), mamy

$$\int_c H_p(z) \, dz = \sum_{j=1}^{n} \text{ind}_C S_j \cdot \int_{S_j} H_p(z) \, dz$$

i, przechodząc do granicy wraz z $p \to \infty$, otrzymujemy (12.4).

Możemy teraz podać następujące uogólnienie tw. 10.2:

(12.6) Na to, aby dopełnienie obszaru G posiadało co najwyżej $n+1$ składowych, konieczne i dostateczne, aby istniał układ w funkcji $\Phi_1(z) = \cdots = \Phi_n(z)$ holomorficznych, nigdzie nie znikających w G i takich, iż dla każdej funkcji $W(z)$, holomorficznej i nigdzie nie znikającej w G, istnieje gałąź $\log \{W(z)/[\Phi_1(z)]^{b_1} \cdots [\Phi_n(z)]^{b_n}\}$, gdzie b_1, b_2, \ldots, b_n są liczbami całkowitymi (zależnymi na ogóln od $W(z)$).

§ 12. Definicja analityczna stopnia spójności obszaru.

Dowód. Stosując ewentualnie inwersję, przyjąć możemy, iż G nie zawiera punktu ∞.

1° Udowodnimy najpierw konieczność warunku twierdzenia.

Załóżmy, iż dopełnienie obszaru G zawiera dokładnie $m+1$ składowych i oznaczmy przez S_1, S_2, \ldots, S_m te spośród tych składowych, które nie zawierają punktu ∞. Przez a_1, a_2, \ldots, a_m oznaczmy punkty wybrane odpowiednio na składowych S_1, S_2, \ldots, S_m a przez C_1, C_2, \ldots, C_m układ krzywych regularnych zamkniętych przebiegających w G i spełniających warunek

$$\text{ind}_C S_j = 0 \quad \text{dla} \quad k \neq j, \quad gdaże, \quad k, j = 1, 2, \ldots, m.$$

Układ taki istnieje na zasadzie lematu 12.1.

Załóżmy teraz, że $m \leq n$, i niech $W(z)$ będzie funkcją holomorficzną, nigdzie nie znikającą w G. W myśl lematu 12.3 dla każdej krzywej zamkniętej regularnej C przebiegającej w G mamy

$$\int_c W(z) \, dz = \sum_{j=1}^{m} \text{ind}_C S_j \cdot \int_{S_j} W(z) \, dz = \sum_{j=1}^{m} h_j \cdot \int_{z-\alpha_j} \frac{dz}{z-\alpha_j},$$

dzie $h_j = \frac{1}{2\pi i} \int_c W(z) \, dz$ są w myśl tw. 5.4 liczbami całkowitymi.

Przyjmując $F(z) = W(z)/(z-a_1)^{b_1} \cdots (z-a_m)^{b_m}$, mamy

$$F(z) = \frac{W(z)}{F(z)} = \frac{1}{\sum_{j=1}^{m} h_j (z-\alpha_j)},$$

i z równości (12.8) otrzymujemy

$$\int_c F(z) \, dz = \int_c W(z) \, dz - \sum_{j=1}^{m} h_j \cdot \int_{z-\alpha_j} \frac{dz}{z-\alpha_j} = 0.$$

Na mocy tw. 2.6, Rozdz. II, istnieje więc w G gałąź $\log F(z)$, t. j. $\log \{W(z)/(z-a_1)^{b_1} \cdots (z-a_m)^{b_m}\}$. Ponieważ $m \leq n$, funkcje zaś $z-a_1, \ldots, z-a_m$ są holomorficzne i nigdzie nie znikają w G, przeto warunek twierdzenia jest spełniony.

2° Przechodząc do dowodu dostateczności warunku twierdzenia, załóżmy, że S_1, S_2, \ldots, S_m są układem m składowych zbioru G i że żadna z tych składowych nie zawiera punktu ∞. Podobnie jak w dowodzie konieczności warunku oznaczmy przez a_1, a_2, \ldots, a_m
ROZDZIAŁ IV. Elementary metody geometryczne.

punkty wybrane dowolnie na tych składowych, a przez $C_1, C_2, ..., C_n$ krzywe regularne zamknięte, przebiegające w G i spełniające warunki (12.7).

Założmy teraz, że dla obszaru G określony został układ n funkcji $\Phi_1(z), \Phi_2(z), ..., \Phi_n(z)$, holomorficznych, nigdzie nie znikających w G, takich, iż dla kadażej funkcji $W(z)$ istnieje w G głąb

$$\log(\frac{W(z)}{[\Phi_1(z)]^{h_1} [\Phi_2(z)]^{h_2} ... [\Phi_n(z)]^{h_n}})$$

przy stosownym obiorze stałych całkowitych $h_1, h_2, ..., h_n$. W szczególności każdemu układowi m stałych całkowitych $a_1, a_2, ..., a_m$ odpowiada taki układ n stałych całkowitych $h_1, h_2, ..., h_m$ iż istnieje w G głąb

$$\log((z-a_1)^{h_1} ... (z-a_m)^{h_m}) / [\Phi_1(z)]^{h_1} ... [\Phi_n(z)]^{h_n},$$

t. z. w myśl tw. 2.6, Rozdz. II, że

$$\sum_{j=1}^{n} a_j \cdot \int_{C_j} \frac{dz}{z-a_j} - \sum_{j=1}^{n} h_j \cdot \int_{C_j} \frac{\Phi_i(z)}{\Phi_i(z)} dz = 0$$

dla każdej krzywej regularnej zamkniętej C, przebiegającej w G. Podstawiając w tej równości kolejno zamiast C krzywe C_k i przyjmując dla skrócenia $\beta_{k,i} = \frac{1}{2\pi i} \int_{C_k} \frac{\Phi_i(z)}{\Phi_i(z)} dz$, otrzymujemy na zasadzie (12.7) układ równań liniowych

$$\sum_{i=1}^{n} \beta_{k,i} h_i = a_k,$$

gdzie $k=1, 2, ..., m$.

Układ ten musi być rozwiązalny względem h_i przy każdym doborze stałych całkowitych a_k, co jest jednak możliwe tylko wtedy, gdy $m \leq n$, a przeto uzasadnia dostateczność rozwiązania warunku.

ROZDZIAŁ V

PRZEKSZTAŁCENIA WIERNE

§ 1. Definicja. Nazywamy przekształceniem wiernym 1) jednoznaczny zbiór otwartego każde przekształcenie jednoznacznie odwracalne tego zbioru, określone przez funkcje meromorficzne. Terminu „jednoznaczne” używamy ogólnie dla odróżnienia tych przekształceń od przekształceń wiernych określonych przez funkcje analityczne wieloznaczne (p. Rozdz. VI). W rozdziale tym zajmować się będziemy jednak wyłącznie odwzorowaniami jednoznacznymi, tak że zamiast „przekształcenie wierne jednoznaczne” mówić będziemy dla skrócenia wprost „przekształcenie wierne”.

Z tw. 12.3 i 12.3, Rozdz. III, wynika, że przy przekształceniu wiernym zbiór otwarty przekształca na zbiór otwarty, obszar na obszar, oraz iż przekształcenie odwrotnie względem przekształcenia wiernego jest również wierne. Dalej widoczne jest, że jeżeli $z=F(z)$ jest przekształceniem wiernym zbioru otwartego G na zbiór H, wówczas dla każdej funkcji $W(z)$, holomorficznej i nigdzie nie znikającej w H, istnieje głąb log $W(z)$ w H równoważnie istnieniu głąb log $W[F(z)]$ w G. Stosując tedy tw. 10.2, Rozdz. IV, wnosimy, iż

(1.1) Odwzorowanie wierne przekształca zbiór otwarty nie rozeinając płaszczyzny na zbiór otwarty, który również nie rozeina płaszczyzny; innymi słowy, nieoznacza płaszczyzny przez zbiór otwarty, a więc w szczególności jednoznaczność obszaru, jest niezmiennikiem przekształceń wiernych.

1) Używane są także terminy: przekształcenie odpowiednie, wiernokątny, równokątny (ang. conformal mapping, franc. représentation conforme, niem. konforme Abbildung).