On a par définition

\[(8.8) \quad E = \sum_{n=1}^{m} E_n.\]

Or, pour tout \(n\) naturel et pour tout \(\varepsilon > 0\) il existe évidemment une chaîne \(c = (a_0 = t_0, t_1, \ldots, t_m = b_0)\) telle que l’on ait à la fois \(|t_j - t_{j-1}| < \frac{1}{n}\) et \(L (a_0, b_0) < \Lambda (c) + \varepsilon\), c. à d. que

\[(8.9) \quad \sum_{j=1}^{m} \left\{ L \left(t_{j-1}, t_j \right) - \sqrt{\left(x(t_j) - x(t_{j-1}) \right)^2 + \left(y(t_j) - y(t_{j-1}) \right)^2} \right\} < \varepsilon.\]

Mais pour tout \(j = 1, 2, \ldots, m\) on a selon l’inégalité (8.1)

\(L \left(t_{j-1}, t_j \right) \geq \sqrt{\left(x(t_j) - x(t_{j-1}) \right)^2 + \left(y(t_j) - y(t_{j-1}) \right)^2}\); si l’on désigne donc par \(\sum_{j}^{m}\) la somme s’étendant seulement sur les indices \(j\) des intervalles \([t_j, t_{j-1}]\) qui renferment des points de \(E_n\), on en tire en vertu de (8.7) et (8.9) successivement \(|E_n| \leq \sum_{j}^{m} (t_j - t_{j-1}) < \varepsilon \sum_{j}^{m} \left(x(t_j) - x(t_{j-1}) \right) + \sum_{j}^{m} \left(y(t_j) - y(t_{j-1}) \right) < \varepsilon\) et au final tout arbitraire, \(|E_n| = 0\) quel que soit \(n\), ce qui entraîne en vertu de (8.8) que \(|E| = 0\) et par conséquent que l’on a presque partout la relation (8.6), c. q. f. d.

Ce théorème est dû à M. L. Tonelli [4]; cf. aussi F. Riesz [4].

CHAPITRE IV.

Intégrale de Lebesgue
(définition descriptive).

Fonctions sommables.

§ 1. Étant donnée dans l’espace \(R^n\) une fonction de point quelconque \(f(x)\), nous dirons qu’elle est intégrable au sens de Lebesgue, ou intégrable \((\mathcal{I})\) ou sommable, lorsqu’elle est presque partout la dérivée d’une fonction de figure \(F(R)\) additive et absolument continue. Nous l’écritrons

\[F(R) = \int_{R} f(x) \, dx\]

et appellerons la fonction \(F(R)\) l’intégrale de \(f(x)\) au sens de Lebesgue.

Le point variable \(x \in R^n\) sera donné souvent par ses \(n\) coordonnées \(x_1, x_2, \ldots, x_n\); la fonction \(f(x)\) s’écrit alors dans la forme \(f(x_1, x_2, \ldots, x_n)\) et son intégrale dans celle d’intégrale multiple

\[\int_{R} \cdots \int_{R} f(x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \ldots \, dx_n,\]

qui indique explicitement le nombre des dimensions de l’espace en question.

La relativisation de ces définitions aux fonctions \(f(x)\) définies presque partout dans une figure au lieu que dans l’espace entier, est immédiate: l’intégrale d’une fonction de point \(f(x)\) sommable dans une figure \(R_0\) est une fonction \(F(R)\) additive et absolument continue de figure \(R \subset R_0\).

On fait parfois distinction entre l’intégrale lebesguienne indéfinie et l’intégrale lebesguienne définie, en entendant par la première la fonction \(F(R)\) dans la figure \(R_0\) et par la seconde ses
Chapitre IV. Intégrale de Lebesgue.

valeurs individuelles sur les figures $R \subset R_0$. Dans le cas où $f(x)$ est une fonction sommable d'une variable réelle, son intégrale est une fonction de figure dans R_1 (la droite) et il lui correspond (cf. Chap. I, § 14, p. 17) à une constante additive près une fonction absolument continue de variable réelle $F(x)$, qu'on appelle aussi intégrale indéfinie de Lebesgue de la fonction $f(x)$.

§ 2. En vertu du théorème 3, Chap. III, § 4, toute fonction sommable admet exactement une seule intégrale. La définition de l'intégrale implique aussiitôt les théorèmes suivants.

Théorème 1. Les fonctions équivalentes ne sont sommables que simultanément et leurs intégrales sont égales. Réciproquement, si les intégrales indéfinies de deux fonctions sommables sont identiques (c. à d. égales pour toute figure R), ces fonctions sont équivalentes.

Théorème 2. Toute combinaison linéaire à coefficients constants $a f_1 + b f_2$ de deux fonctions sommables f_1 et f_2 est aussi sommable et on a

$$\int_R (a f_1 + b f_2) \, dx = a \int_R f_1 \, dx + b \int_R f_2 \, dx$$

pour toute figure R.

Comme conséquence immédiate de ce théorème et du th. 3, Chap. III, § 4, on a le

Théorème 3. L'intégrale d'une fonction sommable presque partout non négative (non positive) est partout non négative (non positive).

Plus généralement, si deux fonctions sommables f_1 et f_2 remplissent l'inégalité $f_1 < f_2$ presque partout, on a $\int_R f_1 \, dx < \int_R f_2 \, dx$ pour toute figure R.

Théorème 4. Si une fonction sommable $f(x)$ est non négative presque partout dans une figure R_0 et si $\int_R f(x) \, dx = 0$, on a dans R_0 presque partout $f(x) = 0$.

Démonstration. En vertu du théorème précédent l'intégrale de $f(x)$ est non négative sur toute figure $R \subset R_0$; comme nulle sur R_0, elle est donc nulle sur toute figure $R \subset R_0$. La fonction $f(x)$, qui est presque partout la dérivée de son intégrale, s'annule en conséquence presque partout dans R_0.

[§ 2] Fonctions sommables.

Théorème 5. Toute fonction sommable est mesurable et presque partout finie.

Théorème 6. Étant donnée une suite presque partout non décroissante $(f_n(x))$ de fonctions sommables sur une figure R_0 et dont les intégrales $\int_R f_n \, dx$ forment une suite bornée supérieurement, la fonction $f(x) = \lim_{n \to \infty} f_n(x)$ est aussi sommable sur la figure R_0 et on a

$$\int_R f(x) \, dx = \lim_{n \to \infty} \int_R f_n(x) \, dx.$$

Démonstration. Les fonctions $F_n(R) = \int_R f_n \, dx$ forment en raison du th. 3 une suite monotone, par hypothèse bornée sur R_0, donc aussi sur toute figure $R \subset R_0$. Elles tendent par conséquent vers une limite finie

$$F(R) = \lim_{n \to \infty} F_n(R)$$

qui est également une fonction additive.

Or, par suite de la continuité absolue des fonctions F_n on a pour tout n naturel $E(F_n; R_0) = 0$, donc $E(F; R_0) = E(F_n; R_0) + E(F - F_n; R_0) \leq \int_R F(R) - F_n(R) \, dx$, d'où, selon (2.2), $E(F; R_0) = 0$, de sorte que la fonction $F(R)$ est également absolument continue dans R_0.

Il en résulte par définition de l'intégrale que

$$F(R) = \int_R f(x) \, dx \quad \text{pour tout} \ R \subset R_0.$$

Comme on a d'autre part en vertu du th. 4, Chap. III, § 5,

$$F(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f(x) \quad \text{presque partout, la formule (2.3) exprime que la fonction} \ f(x) \ \text{est sommable et, en vertu de (2.2), on a l'égalité (2.1), q. f. d.}$$

Le th. 6, qui porte le nom du théorème de Lebesgue sur l'intégration terme à terme des suites monotones de fonctions, distingue essentiellement l'intégrale de Lebesgue de celle de Riemann, pour laquelle un tel théorème serait faux. Il est facile, en effet, de donner des exemples d'une suite monotone de fonctions intégrables au sens de Riemann, bornées dans leur ensemble et dont la limite soit une fonction n'admettant point d'intégrale riemannienne.

Théorème 7. Toute fonction dérivée d'une fonction à variation bornée est sommable.
Toute fonction à variation bornée est somme de deux fonctions, à savoir de l'intégrale de sa dérivée et de sa fonction des singularités.

Démonstration. En vertu du th. 9, Chap. I, § 13, on a pour toute fonction $F(R)$ à variation bornée la décomposition $F(R) = \Phi(R) + S(R)$, où $\Phi(R)$ est une fonction absolument continue et $S(R)$ est la fonction des singularités de $F(R)$. On a donc dans presque tout point x l'égalité $F(x) = \Phi(x) + S(x) = \Phi(x)$, car $S(R)$, comme fonction singulière, a d'après le th. 7, Chap. III, § 7, la dérivée presque partout nulle. Par conséquent $F(R) = \Phi(R) + S(R) = \int_R \Phi(x) \, dx + S(R) = \int_R F(x) \, dx + S(R)$ pour toute figure R.

Fonction caractéristique d'un ensemble.

§ 3. Étant donné un ensemble quelconque E dans \mathbb{R}, on appelle fonction caractéristique de E la fonction $c_E(x)$ égale à 1 en tout point x de E et à 0 partout ailleurs.

Il est évident que la fonction caractéristique d'une somme finie ou dénombrable d'ensembles disjointes est la somme des fonctions caractéristiques de ces ensembles. De même, si (E_n) est une suite monotone, ascendant ou descendant, d'ensembles et $E = \lim_{n \to \infty} E_n$, on a $c_E(x) = \lim_{n \to \infty} c_{E_n}(x)$ pour tout point x de l'espace.

On a le théorème suivant, qui n'est qu'un autre énoncé du th. de Lebesgue sur les points de densité des ensembles mesurables (voir Chap. III, § 6, th. 6).

Théorème 8. La fonction caractéristique d'un ensemble mesurable E quelconque est sommable et son intégrale est la fonction de la mesure de cet ensemble; on a notamment $\int_R c_E(x) = M(E)$ pour toute figure R.

Plus généralement, on a le

Théorème 9. Si une fonction mesurable et finie $f(x)$ n'admet qu'un nombre fini des valeurs $\nu_1, \nu_2, ..., \nu_m$, chacune dans l'ensemble $E_1, E_2, ..., E_m$ respectivement, alors $f(x)$ est une fonction sommable et on a

$$\int_R f(x) \, dx = \nu_1 \cdot M(E_1) + \nu_2 \cdot M(E_2) + ... + \nu_m \cdot M(E_m).$$

§ 4. Sommabilité absolue des fonctions.

Démonstration. C'est une conséquence du th. 8 et du th. 2, p. 62, la fonction $f(x)$ étant une combinaison linéaire des fonctions caractéristiques des ensembles $E_1, E_2, ..., E_m$ à coefficients $\nu_1, \nu_2, ..., \nu_m$.

Théorème 10. Pour que la fonction caractéristique d'un ensemble soit sommable, il faut et il suffit que cet ensemble soit mesurable.

Démonstration. La nécessité de la condition résulte immédiatement du th. 5, p. 63, et la suffisance du th. 8.

Théorème 11. Si une fonction additive $F(R)$ est l'intégrale de la fonction $f(x)$, on a dans tout point x_0 où la fonction f est semicontinue supérieurement (inférieurement)

$$\bar{F}(x_0) < f(x_0) \quad (\underline{F}(x_0) > f(x_0)).$$

En particulier, dans tout point x_0 où la fonction $f(x)$ est continue son intégrale $F(R)$ est dérivable et on a $F'(x_0) = f(x_0)$.

Démonstration. La fonction $f(x)$ étant semicontinue supérieurement dans x_0 et un $\varepsilon > 0$ étant donné arbitrairement, on a pour tout point x de tout carré Q suffisamment petit et contenant x_0 l'inégalité $f(x) < f(x_0) + \varepsilon$, donc en vertu des th. 3, p. 62, et th. 8, p. 64,

$$F(Q) < |Q| \cdot f(x_0) + \varepsilon,$$

d'où $\bar{F}(x_0) = \lim_{\|Q\| \to 0} F(Q) \leq f(x_0) + \varepsilon$, ce qui donne l'inégalité $\bar{F}(x_0) < f(x_0)$, qui était à démontrer.

En particulier, si x_0 est un point de continuité de $f(x)$, donc de semicontinuité supérieure et inférieure à la fois, on a simultanément $\bar{F}(x_0) < f(x_0) < \underline{F}(x_0)$, d'où $F'(x_0) = \bar{F}(x_0) = \underline{F}(x_0) = f(x_0)$, c. q. f. d.

Sommabilité absolue des fonctions.

§ 4. A toute fonction de point $f(x)$ on peut faire correspondre deux fonctions $\tilde{f}(x)$ et $\hat{f}(x)$, dites respectivement partie non négative et partie non positive de $f(x)$, et définies comme il suit:

$$\tilde{f}(x) = f(x) \text{ ou } 0, \quad \text{suivant que } f(x) \geq 0 \text{ ou } f(x) < 0,$$

$$\hat{f}(x) = f(x) \text{ ou } 0, \quad \text{suivant que } f(x) \leq 0 \text{ ou } f(x) > 0.$$

Les relations suivantes entre les fonctions f, \tilde{f}, \hat{f} et leurs valeurs absolues sont évidentes:

S. Bani, Théorie de l'intégrale.
Chapitre IV. Intégrale de Lebesgue.

(4.1) \(f = f^+ + f^- = |f| \) et \(|f| = f^+ - f^- = f + |f| \),
d'où
\[
\begin{align*}
 f^+ &= \frac{1}{2} (|f| + f) \quad \text{et} \\
 f^- &= -\frac{1}{2} (|f| - f).
\end{align*}
\]

Théorème 12. Si une fonction mesurable \(f(x) \) il existe une fonction sommable \(g(x) \) telle que l'on ait

\(|f(x)| \leq g(x) \) presque partout,

alors la fonction \(f(x) \) est aussi sommable.

Démonstration. Il est évident que si une fonction \(f \) satis- fait à la condition (4.2), il en est de même des fonctions non négatives \(f^+ \) et \(|f| \). Vu la décomposition (4.1), nous pouvons donc admettre que la fonction donnée \(f(x) \) soit elle-même non négative.

Or, il existe en conséquence, d'après le th. 20, Chap. II, § 9, une suite monotone non décroissante de fonctions mesurables \(\{f_n\} \) dont chacune n'admet qu'un nombre fini de valeurs et qui convergent partout vers la fonction \(f \). Pour tout \(n \) naturel on a donc en vertu de l'hypothèse presque partout \(f_n(x) < f(x) < g(x) \), où \(f_n(x) \) est en vertu du th. 9 sommable, et on conclut du th. 3, p. 62, que l'on a \(\int f_n(x) \, dx \leq \int g(x) \, dx \) pour toute figure \(R \). La fonction \(f(x) = \lim f_n(x) \) est par conséquent sommable en vertu du th. 6, p. 63, c. q. f. d.

Corollaires. Il en résulte en particulier que toute fonction mesurable bornée est sommable, c. à d. que pour les fonctions bornées les conditions de la mesurabilité et de la sommabilité coïncident. Il en résulte aussi que le produit d'une fonction sommable et d'une fonction mesurable, bornée dans une figure, est sommable dans cette figure.

Théorème 13. Si \(f(x) \) est une fonction sommable et \(F(R) = \int_R f(x) \, dx \), alors \(|f|, f^+ \) et \(f \) sont des fonctions sommables et on a:

\[
\begin{align*}
 \overline{W}(F; R) &= \int_R |f| \, dx, \quad \underline{W}(F; R) = \int_R f \, dx \quad \text{et} \\
 W(F; R) &= \int_R f \, dx.
\end{align*}
\]

Démonstration. En effet, dans tout point \(x \) où \(f(x) = F'(x) \) et où la dérivée \(\overline{W}(x) \) existe, donc presque partout, on a

\[
\begin{align*}
 \overline{W}(F; x) &= \overline{W}(F; R) - \overline{W}(F; R_R) \\ &= \overline{W}(F; R_R) - \overline{W}(F; R_R).
\end{align*}
\]

Par conséquent, \(\overline{W}(F; R) \) étant en vertu du th. 3, Chap. I, § 13, une fonction absolument continue avec \(F(R) \), on conclut du th. 3, p. 62, et du th. 12 que la fonction \(F(x) \) est sommable dans toute figure \(R \) et que l'on a

\[
\int_R \overline{f} \, dx \leq \int_R \overline{W}(x) \, dx = \overline{W}(F; R_R).
\]

D'autre part, comme \(f \) et \(f^+ > 0 \), on a pour toute figure \(R \subset R \) les relations \(\int_R f \, dx \geq \int_R \overline{f} \, dx \), donc, par définition de \(\overline{W}(R; R) \), la formule \(\int_R f \, dx \geq \overline{W}(F; R_R) \), qui donne avec

\[
\begin{align*}
 \overline{f}(x) < \overline{W}(x). \quad \overline{W}(F; R_R) \quad \text{et} \\
 \overline{f}(x) = \overline{W}(F; R_R) \quad \text{et} \\
 \overline{f}(x) = \overline{W}(F; R_R).
\end{align*}
\]

L'égalité \(\int_R f \, dx = \overline{W}(F; R_R) \), l'égalité \(\int_R f \, dx = \overline{W}(F; R_R) \) se déduit d'une façon symétrique et enfin les deux égalités donnent par soustraction \(\int_R f \, dx = \overline{W}(F; R_R) \), ce qui achève la démonstration.

Comme une généralisation sur les fonctions additives à variation bornée on obtient du th. 13 le

Théorème 14. \(F(R) \) étant une fonction additive à variation bornée et \(\overline{f}(x), \underline{f}(x) \) désignant respectivement les parties non négative et non positive de sa dérivée, on a presque partout

\[
W(F; x) = |F(x)|, \quad \overline{W}(F; x) = \overline{f}(x) \quad \text{et} \quad W(F; x) = \underline{f}(x).
\]

Démonstration. D'après le th. 9, Chap. I, § 13, sur la décomposition canonique de toute fonction à variation bornée, on a \(F(R) = \varphi(R) + S(R) \) où \(\varphi(R) \) est une fonction absolument continue et \(S(R) \) une fonction singulière. En vertu du th. 7, Chap. III, § 7, la dérivée de \(S(R) \) s'annule donc presque partout; par conséquent on a presque partout

\[
\begin{align*}
 F(x) &= \varphi(x) \quad \text{et} \\
 \overline{W}(F; x) &= \overline{W}(\varphi; x) \quad \text{et} \quad W(F; x) = \underline{W}(\varphi; x).
\end{align*}
\]

La même décomposition donne d'autre part les relations

\[
\begin{align*}
 W(\varphi; R) < W(S; R) < W(F; R) < W(\varphi; R) + W(S; R), \quad \text{d'où} \\
 W'(\varphi; x) - W'(S; x) < W'(F; x) < W'(\varphi; x) + W'(S; x).
\end{align*}
\]
Chapitre IV. Intégrale de Lebesgue.

Or, \(W(S; R) \), comme variation d'une fonction singulière, étant selon le th. 4, Chap. 1, § 13, également une fonction singulière, sa dérivée s'annule presque partout et l'inégalité (4.5) entraîne presque partout \(W^p(f; x) = W^p(p; x) \). On a par conséquent selon (4.4) et selon le th. 13, que \(W^p(f; x) = |\Phi(x)| = |F(x)| \), c. à. d. la première des relations q. f. d. Les deux autres en résultent aussitôt en vertu des identités

\[
2W = F + W, \quad 2W = F - W, \quad 2F^i = F^i + |F^i| \quad \text{et} \quad 2F^i = F^i - |F^i|,
\]

dont les deux premières sont équivalentes à la décomposition canonique de Jordan (Chap. I, § 10) et les deux dernières sont des conséquences immédiates de la définition des parties non négative et non positive d'une fonction de point.

Théorème sur l'intégration par parties.

§ 5. Le théorème qui va être établi est d'application constante non seulement dans le calcul des intégrales élémentaires (où l'intégrale de Lebesgue est d'ailleurs superficiale), mais aussi dans bien des chapitres de l'Analyse où l'intégrale lebesguienne est un instrument tout à fait essentiel. Or, comme ce théorème concerne les fonctions de point sur la droite, c. à. d. dont les intégrales sont des fonctions d'intervalle linéaire, l'intégrale y sera regardée comme une fonction de variable réelle.

Théorème 15 (sur l'intégration par parties). Si dans un intervalle \([a, b] \) la fonction \(F(x) \) est absolument continue et la fonction \(g(x) \) est sommable, la fonction \(F(x) \cdot g(x) \) y est également sommable et, en posant \(G(x) = \int_a^x g(t) \, dt \) où \(a \leq x \leq b \), on a

\[
(5.1) \quad \int_a^b F(x) \cdot g(x) \, dx = F(b) \cdot G(b) - \int_a^b G(x) \cdot F'(x) \, dx.
\]

Démonstration. Comme produit de la fonction sommable \(F(x) \) et de la fonction continue \(G(x) \), la fonction \(F(x) \cdot G(x) \) est sommable (voir § 4, p. 66). Comme produit de deux fonctions absolument continues, la fonction \(F(x) \cdot G(x) \) est absolument continue (v. Chap. I, § 14, p. 19). La fonction \(H(x) = F(x) \cdot G(x) - \int_a^x G(t) \cdot F'(t) \, dt \)
est donc aussi absolument continue. Par dérivation, on a que

\[
H'(x) = F(x) \cdot G'(x) = F(x) \cdot g(x), \quad \text{d'où} \quad \int_a^b F(x) g(x) \, dx =
\]

\[
= H(b) - H(a) = H(b) - H(a) = \int_a^b F(x) g(x) \, dx, \quad \text{c. q. f. d.}
\]

La formule (5.1) sera étendue (voir Chap. X) d'une part aux fonctions \(g(x) \) intégrables dans le sens de M. Denjoy et d'autre part, par substitution de l'intégrale de Riemann-Stieltjes à celle de Lebesgue, aux fonctions arbitraires \(F(x) \) à variation bornée.

Intégrales multiples. Théorème de Fubini.

§ 6. Si \(Q_{m+n} \), \(Q_m \) et \(Q_n \) où \(m > 1 \) et \(n > 1 \) désignant respectivement les cubes \([a_1, b_1; a_2, b_2; \ldots; a_m, b_m; \ldots; a_{m+n}, b_{m+n}] \) dans l'espace \(R_{m+n} \), \([a_1, b_1; a_2, b_2; \ldots; a_m, b_m]\) dans l'espace \(R_m \) et enfin le cube \([a_{m+1}, b_{m+1}; a_{m+2}, b_{m+2}; \ldots; a_{m+n}, b_{m+n}] \) dans l'espace \(R_n \), soit \(f(x_1, x_2, \ldots, x_{m+n}) \) une fonction continue de point définie dans le cube \(Q_{m+n} \). En fixant les valeurs \(x_1, x_2, \ldots, x_m \) de \(m \) premières coordonnées, qui forment un point du cube \(Q_m \), la fonction \(f \) est donc une fonction continue de \(n \) dernières coordonnées, c. à. d. une fonction continue de point dans le cube \(Q_n \), et admet par conséquent une intégrale qui s'étend sur \(Q_n \) tout entier. Posons

\[
h(x_1, x_2, \ldots, x_m) =
\]

\[
(6.1) = \int_{Q_n} f(x_1, x_2, \ldots, x_m, x_{m+1}, \ldots, x_{m+n}) \, dx_{m+1} \, dx_{m+2} \ldots \, dx_{m+n}.
\]

Or, on sait déjà Cauchy que pour des fonctions continues l'intégrale dans le cube \(Q_{m+n} \) peut être ramenée aux deux intégrations consécutives dans les cubes \(Q_m \) et \(Q_n \) respectivement. On a notamment

\[
(6.2) = \int_{Q_{m+n}} f(x_1, x_2, \ldots, x_m) \, dx_{m+1} \ldots \, dx_{m+n} = \int_{Q_m} \int_{Q_n} h(x_1, x_2, \ldots, x_m) dx_1 \, dx_2 \ldots \, dx_m,
\]

où la fonction \(h \) est donnée par la formule (6.1). Par l'itération de ce procédé on peut donc ramener toute intégrale dans un cube \(n \)-dimensionnel à \(n \) intégrales consécutives sur des segments de droite.

Étant donné l'importance de cette propriété des intégrales spatiales de fonctions continues et le rôle qu'elle a joué dans les
applications, la question a dû s'imposer lors de l'introduction de
l'intégrale de Lebesgue si ce théorème de l'Analyse classique
est susceptible d'une extension à des fonctions sommables quel-
conques.

La réponse est affirmative, mais elle exige quelques restrictions.
La fonction f peut notamment être sommable dans le cube $Q_{m+1,n}$
sans que la fonction $f(x_1, x_2, ..., x_m, x_{m+1}, ..., x_{m+n})$, considérée pour
les m premières coordonnées fixes comme une fonction de point
de Q_n, soit sommable, ou même seulement mesurable dans Q_n.
Par suite, la fonction h peut ne pas se trouver définie par la
formule (6.1) pour certains points $(x_1^0, x_2^0, ..., x_n^0)$ du cube Q_m.

Cependant, on prouve que l'ensemble des points exceptionnels
$(x_1^0, x_2^0, ..., x_n^0) \in Q_m$, pour lesquels la fonction f n'est pas sommable
en Q_n, constitue dans Q_m un sous-ensemble de mesure nulle
(bien entendu, dans le sens de la mesure m-dimensionnelle),
de sorte que la formule (6.1) définit la fonction h presque partout
et, comme on l'a prouvé sans peine, cela suffit pour que l'intégrale
multiple figurant au membre droit de la formule (6.2) se trouve
aussi définie. Reste à montrer que l'intégalité (6.2) est encore
vraie dans ces conditions: ce résultat important, établi par M.
Lebesgue [1] pour les fonctions mesurables bornées et étendu
par M. G. Fubini [1] aux fonctions sommables, est connu sous
le nom du théorème de Fubini sur l'intégrale multiple.

Nous allons démontrer ce théorème, en posant $m = n = 1$,
{l'extension à des m et n naturels quelconques étant immédiate.

§ 7. Soit Q le rectangle $[a_1, b_1] \times [a_2, b_2]$, situé sur le plan.
Etant donnée une fonction sommable $f(x, y)$ définie dans Q, nous
dirons qu'elle jouit de la propriété (F), lorsque les deux conditions
suivantes sont satisfaites:

1° Pour presque toutes les valeurs de x de l'intervalle $[a_1, b_1]$,
la fonction $f(x, y)$, considérée comme fonction de y dans l'intervalle
$[a_2, b_2]$, est sommable dans $[a_2, b_2]$.

2° La fonction $h(x)$ donnée par la formule $h(x) = \int_{a_2}^{b_2} f(x, y) \, dy$,
donc définie presque partout dans $[a_1, b_1]$, remplit l'égalité

$$ \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, dx \, dy = \int_{a_1}^{b_1} h(x) \, dx. $$

Nous allons montrer que toute fonction $f(x, y)$ sommable
dans Q jouit de la propriété (F). Pour plus de clarté, notre raison-
nement sera subdivisé en plusieurs lemmes.

Lemme 1. Toute combinaison linéaire à coefficients constants
d'un nombre fini des fonctions qui jouissent de la propriété (F) jouit
egalement de la propriété (F).

C'est une conséquence immédiate du th. 2, p. 62.

Lemme 2. Étant donnée une suite monotone $(f_n(x, y))$ de fonc-
tions convergente partout dans Q vers une fonction sommable $f(x, y)$,
si les fonctions f_n jouissent de la propriété (F), la fonction f en
jouit également.

Démonstration. Admettons que la suite (f_n) soit non dé-
croissante (le passage au cas opposé s'opérant par le seul chan-
gement du signe). Chacune des fonctions $h_n(x) = \int_{a_2}^{b_2} f_n(x, y) \, dy$
étant donnée par définition presque partout dans $[a_1, b_1]$, la suite
(h_n) entière s'y trouve aussi définie en tout x, sauf au plus
dans un ensemble A de mesure linéaire nulle, et elle est monotone
devant décroissante (donc convergente) en tout x où elle est définie.
Or, on a pour tout n naturel

$$ \int_{a_1}^{b_1} h_n(x) \, dx = \int_{a_2}^{b_2} \int_{a_2}^{b_2} f_n(x, y) \, dx \, dy < \int_{a_1}^{b_1} f(x, y) \, dx \, dy, $$

ce qui implique

$$ \int_{a_1}^{b_1} h(x) \, dx = \lim_{n \to \infty} \int_{a_1}^{b_1} h_n(x) \, dx = \lim_{n \to \infty} \int_{a_2}^{b_2} f_n(x, y) \, dx \, dy = \int_{a_2}^{b_2} \int_{a_2}^{b_2} f(x, y) \, dx \, dy. $$

L'ensemble B des valeurs de x où $h(x) = +\infty$ étant en vertu
du th. 5, p. 63, de mesure nulle, la suite des fonctions $(h_n(x))$ se
trouve à la fois définie et bornée supérieurement par le nombre
fini $h(x)$ en tout point de $[a_1, b_1]$, sauf dans les points de l'ensemble
$A + B$ de mesure nulle. En vertu du théorème de Lebesgue, cité
tout à l'heure, on a par conséquent pour tout \(x \in [a_i, b_i] - (A + B) \), donc encore presque partout dans l'intervalle \([a_i, b_i]\), l'égalité
\[
h(x) = \lim_{n \to b_i} h_n(x) = \lim_{n \to b_i} \int_{a_i}^{b_i} f_n(x, y) \, dy = \int_{a_i}^{b_i} f(x, y) \, dy.
\]
Vu l'égalité (7.1), on en conclut immédiatement que la fonction \(f \) possède la propriété \((F)\), c. q. f. d.

Lemme 3. La fonction caractéristique \(c_E(x, y) \) d'un ensemble \(G \) quelconque \(E \subset Q \) joue de la propriété \((F)\).

Démonstration. Nous allons l'établir, en partant des ensembles \(G \) très particuliers et en progressant consécutivement jusqu'aux ensembles \(G \) les plus généraux. Admettons donc que

1° \(E \) est formé d'un nombre fini des segments parallèles aux axes des coordonnées. On a dans ce cas \(|E| = 0 \), d'où selon le th. 8, p. 64, \(\int_Q c_E(x, y) \, dx \, dy = 0 \). D'autre part, la fonction \(c_E(x, y) \), considérée comme fonction de la variable \(y \), est une fonction caractéristique d'un ensemble vide ou composé d'un nombre fini des points, sauf pour un ensemble fini des valeurs de \(x \). L'intégrale \(h(x) = \int_{a_i}^{b_i} c_E(x, y) \, dy \) existe donc partout et elle est nulle, sauf tout au plus pour un ensemble fini des valeurs de \(x \). Par conséquent \(\int_{a_i}^{b_i} h(x) \, dx = 0 = \int_{Q} c_E(x, y) \, dx \, dy \).

2° \(E \) est l'intérieur d'un rectangle \([a_1, b_1; a_2, b_2]\) situé dans \(Q \). Selon le th. 8, p. 64, on a donc \(\int_Q c_E(x, y) \, dx \, dy = |E| = (b_1 - a_1)(b_2 - a_2) \).

D'autre part l'intégrale \(h(x) = \int_{a_i}^{b_i} c_E(x, y) \, dy \) existe pour tout \(x \) et l'on a
\[
h(x) = \begin{cases} 0, & \text{si } a_i \leq x < a_1 \text{ ou } b_1 < x < a_2, \\ \beta_i - a_i, & \text{si } a_i < x < b_1, \end{cases}
\]
d'où selon le th. 8, p. 64, \(h(x) \, dx = (\beta_i - a_i)(b_2 - a_2) = \int_{Q} c_E(x, y) \, dx \, dy \).

3° \(E \) est une figure élémentaire. Par conséquent, on peut considérer \(E \) comme somme finie d'intervalles (rectangles) n'émi-

piétant pas les uns sur les autres, donc aussi comme somme finie et disjointe de leurs intérieurs et des segments formant leurs frontières. La fonction caractéristique de \(E \) est en conséquence une somme finie des fonctions jouissant en vertu de 1° et de 2° de la propriété \((F)\). En vertu du lemme 1 elle en jouit donc également.

4° \(E \) est un ensemble ouvert. Or, tout ensemble ouvert étant la limite d'une suite ascendant de figures, sa fonction caractéristique est la limite de la suite non décroissante de leurs fonctions caractéristiques. En vertu du lemme 2 et de 3° elle jouit donc de la propriété \((F)\).

5° \(E \) est un ensemble \(G \) arbitraire. Tout ensemble \(G \) étant la limite d'une suite descendante d'ensembles ouverts, sa fonction caractéristique est la limite de la suite non croissante de leurs fonctions caractéristiques. En vertu du lemme 2 et de 4° elle jouit donc de la propriété \((F)\), c. q. f. d.

Lemme 4. Tout ensemble de mesure plane nulle est de mesure linéaire nulle sur presque toute droite parallèle aux axes des coordonnées.

Démonstration. En vertu du th. 11, Chap. II, § 6, on peut admettre que l'ensemble donné \(E \) de mesure plane nulle soit un \(G_2 \). Le lemme 3 donne donc \(\int_{a_i}^{b_i} \left[\int_Q c_E(x, y) \, dy \right] \, dx = \int_Q c_E(x, y) \, dx \, dy = |E| = 0 \).

Par conséquent, selon le th. 4, p. 62, l'égalité \(\int_{a_i}^{b_i} c_E(x, y) \, dy = 0 \) se présente pour presque toutes les valeurs de \(x \), ce qui exprime selon le th. 8, p. 64, le fait que l'ensemble des points de \(E \) situés sur presque toute droite parallèle à l'axe des \(y \) est de mesure linéaire nulle. La démonstration pour les droites parallèles à l'axe des \(x \) est symétrique.

Lemme 5. La fonction caractéristique de tout ensemble mesurable possède la propriété \((F)\).

Démonstration. Admettons d'abord que l'ensemble mesurable \(E \subset Q \) soit de mesure plane nulle. La fonction \(c_E(x, y) \) est donc, en raison du lemme 4, fonction caractéristique d'un ensemble de mesure linéaire nulle sur presque toute droite parallèle à l'axe des \(y \), de sorte que pour presque toutes les valeurs de \(x \) l'inté-
Chapitre IV. Intégrale de Lebesgue.

grale \(h(x) = \int_{a_1}^{b_1} c(x, y) \, dy \) existe et s'annule, d'où \(\int_{a_1}^{b_1} h(x) \, dx = 0 = |E| = \int_{a_1}^{b_1} c(x, y) \, dx \, dy \). La fonction caractéristique d'un ensemble de mesure nulle possède donc la propriété (F).

Ceci établi, soit \(E \subset Q \) un ensemble mesurable quelconque. En vertu du th. 11, Chap. II, § 6, il existe donc un ensemble \(H \) qui est un \(\mathcal{Q}_2 \) tel que \(E \subset H \) et \(|H - E| = 0 \). Par conséquent la fonction \(c_{H-E}(x, y) \) possède la propriété (F) et en vertu du lemme 4 il en est de même de la fonction \(c_H(x, y) \); or, on en conclut aussitôt d'après le lemme 1 qu'il en est encore de même de la fonction \(c_E = c_H - c_{H-E} \).

Lemme 6. Toute fonction \(f(x, y) \) sommable dans le rectangle \(Q \) jouit de la propriété (F).

Démonstration. Toute fonction sommable étant en raison du th. 13, p. 66, différence de deux fonctions sommables non négatives, la démonstration se réduit au cas où la fonction \(f \) donnée est non négative et par suite du th. 20, Chap. II, § 6, le lemme 2 permet aussitôt de pousser cette réduction à n'envisager que le cas où la fonction \(f \) prend seulement un nombre fini des valeurs \(v_1, v_2, \ldots, v_r \) respectivement dans les ensembles \(E_{v_1}, E_{v_2}, \ldots, E_{v_r} \). Or, on a dans ce dernier cas \(f = v_1 c_{E_{v_1}} + v_2 c_{E_{v_2}} + \ldots + v_r c_{E_{v_r}} \) et en vertu des lemmes 1 et 5, la fonction \(f \) jouit alors de la propriété (F).

L'ensemble, y compris les raisonnements qui précèdent étant tout à fait symétrique, le lemme 6 a pour conséquence immédiate le théorème suivant:

Théorème 16 (de Fubini). Pour toute fonction \(f(x, y) \) superficiellement sommable dans un rectangle \(Q = [a_1, b_1] \times [a_2, b_2] \) les intégrales

\[
\int_Q f(x, y) \, dx \text{ et } \int_Q f(x, y) \, dy
\]

existent et pour presque toutes les valeurs de \(x \) et de \(y \) respectivement, et on a

\[
\int_Q \int_{a_1}^{b_1} f(x, y) \, dy \, dx = \int_{a_1}^{b_1} \int_Q f(x, y) \, dx \, dy.
\]

Il est à noter que l'existence des deux dernières intégrales de (7.2) ne permet en général de rien conclure sur l'existence de l'intégrale superficielle

\[
\int_Q f(x, y) \, dx \, dy.
\]

M. W. Sierpiński [4] a montré, en effet, que ces deux intégrales peuvent exister et même être égales pour certaines fonctions \(f(x, y) \) non mesurables, donc sûrement non sommables. La construction repose sur l'exemple (obtenu à l'aide de l'axiome du choix) de M. E. Zermelo d'un ensemble plan non mesurable qui admet exactement un point commun avec toute droite parallèle aux axes. La fonction \(f \) est définie comme fonction caractéristique de cet ensemble.

Mais on peut aussi donner un exemple de la fonction \(f(x, y) \) mesurable dont les deux intégrales en question existent et sont égales, sans que la fonction \(f \) soit sommable dans le rectangle \(Q \). Soient en effet \(Q \) le carré \([0,1] \times [0,1] \) et \(\{Q_n\} \) une suite de carrés contenus dans \(Q \), n'emplissant pas les uns sur les autres et dont les diagonales soient situées sur la diagonale \(y=x \) de \(Q \). Chaque carré \(Q_n \) sera subdivisé en quatre. Enfin, dans l'intérieur d'un couple de carrés opposés, obtenus par la subdivision de \(Q_n \), on posera \(f(x, y) = \frac{1}{|Q_n|} \), dans l'intérieur de l'autre couple \(f(x, y) = -\frac{1}{|Q_n|} \) et partout ailleurs \(f(x, y) = 0 \).

Il est facile de voir que les intégrales \(\int_Q f(x, y) \, dy \) et \(\int_Q f(x, y) \, dx \) existent alors pour toutes les valeurs de \(x \) et de \(y \) respectivement et qu'elles sont nulles.

Il en est donc de même des deux intégrales itérées, qui figurent dans (7.2). Néanmoins, la fonction \(f \) n'est pas sommable dans \(Q \), car dans le cas contraire sa valeur absolue serait en raison du th. 13, p. 66, également sommable et on aurait pour tout \(m \) naturel

\[
\int_Q |f| \, dx \, dy \geq \sum_{n=0}^{\infty} \int_{Q_n} |f| \, dx \, dy = m,
\]

ce qui est évidemment impossible. Cet exemple très simple est dû à M. A. Zygmund.

On peut donner aussi des exemples d'une fonction mesurable dont les deux intégrales itérées existent et sont égales, mais qui n'est sommable dans aucun rectangle. Enfin, un exemple intéressant en rapport avec le théorème de Fubini a été donné par M. G. Fichtenholz [1].

Or, on a le th. suivant de M. L. Tonelli [2]:

Théorème 17. Pour toute fonction \(f(x, y) \) mesurable et partout non négative dans \(Q \) l'existence d'une quelconque des trois intégrales figurant dans l'égalité (7.2) entraîne l'existence des deux autres.

Démonstration. L'existence de l'intégrale \(h(x) = \int_{a_1}^{b_1} f(x, y) \, dy \) pour presque toute valeur de \(x \) et la sommabilité de \(h(x) \) dans \([a_1, b_1] \) étant admises, posons pour tout \(n \) naturel

\[
f_n(x, y) = \begin{cases} f(x, y), & \text{lorsque } f(x, y) < n \\ n, & \text{lorsque } f(x, y) \geq n \end{cases}
\]
Comme mesurable et bornée, chacune des fonctions f_n ainsi définies est d'après le th. 12, p. 66, sommable dans Q. En vertu du th. de Fubini on a donc

$$\int \int_{Q} f_n(x, y) \, dx \, dy = \int \left[\int_{a_i}^{b_i} f_n(x, y) \, dy \right] dx \leq \int_{a}^{b} h(x) \, dx < +\infty.$$

Les fonctions f_n forment donc une suite monotone non décroissante, convergente vers f et dont la suite des intégrales est bornée. Il en résulte en vertu du th. 6, p. 63, que la fonction f est sommable dans le rectangle Q, c. q. f. d.

\textbf{*Applications. Longueur d'un arc de courbe.}

\textbf{§ 8. Théorème 18.} La longueur $L(I_o)$ de toute courbe C donnée par les équations $x = x(t)$ et $y = y(t)$ et rectifiable dans l'intervalle $I_o = [a, b]$ satisait à l'inégalité

$$L(I_o) \geq \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt$$

et, pour que l'on ait l'égalité

$$L(I_o) = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt,$$

il faut et il suffit que les deux fonctions $x(t)$ et $y(t)$ soient absolument continues dans I_o.

\textit{Démonstration.} En vertu du th. 7, p. 64, on a

$$L(I_o) = \int_{a}^{b} L(t) \, dt + S(L, I_o) \geq \int_{a}^{b} L(t) \, dt,$$

la condition nécessaire et suffisante pour que cette relation devienne égalité, s'exprimant par la formule $S(L, I_o) = 0$. Or, la fonction des singularités $S(L, I)$ étant toujours non négative, cette condition équivaut à ce que $S(L, I)$ s'annule identiquement pour tout intervalle $I \subset I_o$, ce qui équivaut à son tour à la continuité absolue de la fonction $L(t)$ dans I_o, donc, en vertu du th. 9, Chap. III, § 8, à la continuité absolue des deux fonctions $x(t)$ et $y(t)$ à la fois.

D'autre part, selon le th. 10, Chap. III, § 8, on a presque partout $L(t) = \sqrt{[x'(t)]^2 + [y'(t)]^2}$. L'inégalité (8.3) équivaut donc à (8.1), ce qui achève la démonstration.

Le théorème qui précède, dû à M. S. Tonelli [1], a complété un résultat antérieur de M. Lebesgue et a constitué en même temps une des premières applications de la nouvelle méthode d'intégration. Les méthodes anciennes ne permettaient de déduire la formule (8.2) que dans des hypothèses spéciales concernant les dérivées $x'(t)$ et $y'(t)$, p. ex. dans l'hypothèse que ces dérivées existent partout et sont continues. Or, l'intégrale de Lebesgue a donné le moyen non seulement de généraliser cette formule, mais aussi d'établir une simple condition nécessaire et suffisante pour qu'elle soit vérifiée.