5.5. Remark. Since the spaces satisfying the hypotheses of Theorem 5.3 form a hereditary class, we see that a generalized ordered space with a \(G\)-Souslin diagonal must be hereditarily paracompact. Furthermore, (5.4) shows that a generalized ordered space is \(c\)-semistratifiable (and hence paracompact) if it has a quasi-\(G\) diagonal (i.e., if it admits a countable collection \(\mathcal{F} \), as in the proof of (5.4)).

References

[Ma] H. Martin, Topological spaces in which compact sets are uniform Groth, preprint.
[Sc] B. Scott, Toward a product theory for orthocompactness, preprint.

Homogeneity, universality and saturatedness of limit reduced powers (II)

by

B. Węgorz (Wrocław)

Abstract. We give some necessary conditions on the pair \((\mathcal{B}, \mathcal{G}) \), where \(\mathcal{B} \) is an ultrafilter on \(I \) and \(\mathcal{G} \) is a filter on \(I \times I \), which imply that for every structure \(\mathfrak{A} \), the limit ultrapower \(\mathfrak{A}^{\mathcal{B}}/\mathcal{G} \) is \(\lambda \)-universal (or \(\kappa \)-saturated).

The paper is a continuation of [1]. In § 1, we prove Embedding Theorem which says that every limit ultrapower \(\mathfrak{A}^{\mathcal{B}}/\mathcal{G} \) contains a lot of elementary submodels which are isomorphic to ultrapowers of \(\mathfrak{A} \) reduced by ultrafilters which are obtained in a natural way from \(\mathcal{B} \). The idea of Embedding Theorem (in fact contained in the proof of Theorem 4 in [4]) was suggested to the author by the proof of Wierzejewski's Theorem 1 in [5].

In § 2, we apply Embedding Theorem to give some necessary combinatorial conditions on the pair \((\mathcal{B}, \mathcal{G}) \) which imply that for every structure \(\mathfrak{A} \), the limit ultrapower \(\mathfrak{A}^{\mathcal{B}}/\mathcal{G} \) is \(\kappa \)-universal (or \(\kappa \)-saturated).

The author is deeply indebted to L. Pacholski and J. Wierzejewski for a lot of very stimulating discussions which helped to formulate and prove the results presented below.

§ 1. Embedding Theorem. Let \(\mathcal{B} \) be a filter on \(I \) and \(\mathcal{G} \) an equivalence relation on \(I \). Let \(I/\mathcal{G} = \{ I_J : J \in \mathcal{G} \} \). For every \(\mathcal{F} \in \mathcal{P}(J) \) defined by: \(X \in \mathcal{F} \) if and only if \(\bigcup J \in \mathcal{F} \) called the \(\mathcal{F} \)-image of \(\mathcal{B} \) and is denoted by \(\mathcal{B}/\mathcal{F} \). It is easy to see that if \(J \in \mathcal{G} \) is a filter on \(I \), we can say that \(X \in \mathcal{G} \)-composable if there is \(Y \in \mathcal{J} \) such that \(X = \bigcup J \). Let \(\mathcal{F} \) be a filter on \(I \times I \), then the family of all \(\mathcal{G} \)-composable sets for \(\mathcal{F} \in \mathcal{G} \) we call the family of \(\mathcal{G} \)-composable sets. This family coincides with \(2 \mathcal{G} \).
EMBEDDING THEOREM. Let \mathcal{B} be a filter on I and let \mathcal{F} be a filter on $I \times I$. Assume that $\mathcal{F} = \mathcal{B}$ is an equivalence relation on I. Put $I|q = \{j \in I : j \leq q\}$ and $\mathcal{E} = \mathcal{B}|q$.

Then:

(i) there is an isomorphism $F: \mathcal{B}|q \to \mathcal{B}|q'$,

(ii) if $f : A^0|q \cong eq(q) \geq 0$, then $\bigcap I|q \in Rng(F)$,

(iii) if \mathcal{F} is an ultrafilter then F is an elementary embedding of $\mathcal{B}|q \to \mathcal{B}|q'$.

Proof. Let $g \in A^0$. Let us define a function $F_0 : A^0 \to A^0|q'$ by $F_0(g)(i) = q$ and $g(j) = q$ for all $i \leq j$. Set $X = \{i \in I : g(i) = g(j)\}$. Then $X = \bigcap I|q \in Rng(F)$. But then $F_0(g)(i) = F_0(g)(j) \in \mathcal{B}|q'$, consequently we have $F_0(g) = F_0(q) \geq 0$. Thus, we can define a function F from $A^0 \to A^0|q'$ by the condition: $F[g] = \bigcap I|q \in Rng(F)$.

Let $\phi = \phi(x_1, \ldots, x_j)$ be an atomic formula. Then the following statements are pairwise equivalent:

$\mathcal{B}|q \models \forall[j] \phi[j_1, \ldots, j_x]$,

$\bigcap I|q \in Rng(F)$,

$\mathcal{B}|q \models \forall[j] \phi[j_1, \ldots, j_x] \Rightarrow F_0(q) \models \forall[j] \phi[j_1, \ldots, j_x]$.

So, F is an isomorphism, which proves (i).

To check (ii), it suffices to notice that if \mathcal{F} is an ultrafilter, then \mathcal{E} is also an ultrafilter and the statements from (i) are equivalent for arbitrary formula ϕ.

It remains to prove (iii). Let $f : A^0|q \cong eq(q) \geq 0$. Then, for each $i \in I$, the function f is constant on $I|q$. Consequently, we can define a function $g : A^0 \to A^0|q$ by $g(j) = f(i)$ for all $i \leq j$. But then we have $F_0(g) = f$, so $\bigcap I|q \in Rng(F)$. Q.E.D.

EXAMPLE 1. The assumptions of maximality of \mathcal{F} in clause (iii) cannot be removed. Indeed, let \mathcal{F} be the two-elements Boolean algebra, let \mathcal{B} be the Fréchet filter on ω and \mathcal{E} be the filter on $\omega \times \omega$ generated by all the equivalence relations \equiv on ω such that ω / \equiv is finite. Then for any equivalence relation \equiv in \mathcal{E}, the embedding F from (i) of Embedding Theorem is not elementary.

COROLLARY 1. Let \mathcal{B} be a filter on I and let \mathcal{F} be an x-complete filter on $I \times I$. Let $\bigcap I|q \in A^0|q$, for all $q \leq \alpha$. Then there is an equivalence relation \equiv in \mathcal{B} such that there is an isomorphism $F : \mathcal{B}|q \cong \mathcal{B}|q'$, where $\bigcap I|q = \{i \in I : j \leq q\}$ and $\bigcap \mathcal{B}|q \cong \bigcap \mathcal{B}|q'$, for all $q \leq \alpha$. Moreover, \mathcal{F} is an ultrafilter if F is an elementary embedding.

Proof. Let $\exists q (q \equiv x)$, for all $q \leq \alpha$. Since \mathcal{F} is x-complete, we have $q = \bigcap q \in \mathcal{F}$. Consequently, by Embedding Theorem, for $\bigcap I|q = \{i \in I : j \leq q\}$ and $\bigcap \mathcal{B}|q$, we have an isomorphism $F : \mathcal{B}|q \cong \mathcal{B}|q'$, which is an elementary embedding when \mathcal{E} is an ultrafilter. Finally, by (ii), we have $F_0(q) \in Rng(F)$, because of $\mathcal{B}|q \models F_0(q)$, for all $q \leq \alpha$. \square

Remark. The condition of x-completeness of \mathcal{E} in Corollary 1 is not necessary (see Example 2). To define a weaker condition which gives the thesis of Corollary 1, we need some auxiliary notions.

DEFINITION. Let \mathcal{B} be a filter on I and let \mathcal{F} be a filter on $I \times I$. Let $(\mathcal{B}^n)_{n\in\mathbb{N}}$ be a sequence of equivalence relations from \mathcal{F}. Then an equivalence relation q on $I \times I$ is a β-lower bound of $(\mathcal{B}^n)_{n\in\mathbb{N}}$ if and only if there is a sequence $(\mathcal{B}^n)_{n\in\mathbb{N}}$ of \mathcal{F}-composable elements of \mathcal{B} such that for each $\xi < \kappa$ we have

$\mathcal{B} \cap (X_1 \times X_2) \subseteq X_1 \times X_2$.

If for every sequence $(\mathcal{B}^n)_{n\in\mathbb{N}}$ of elements of \mathcal{F} there is a β-lower bound of $(\mathcal{B}^n)_{n\in\mathbb{N}}$ in \mathcal{F} then we say that the pair $(\mathcal{B}, \mathcal{F})$ is x-closed.

THEOREM 1. Let \mathcal{B} be a filter on I and let \mathcal{F} be a filter on $I \times I$ such that \mathcal{B} is x-closed. Then if $(\mathcal{B}^n)_{n\in\mathbb{N}}$ is a sequence of elements of \mathcal{F}, then there exists an equivalence relation $q \in \mathcal{B}$ such that $\mathcal{B}^n \cap (X_1 \times X_2) \subseteq X_1 \times X_2$, for all $n \in \mathbb{N}$. Moreover, if \mathcal{F} is an ultrafilter then F is an elementary embedding.

Proof. Let $q_0 = eq(q_0)$, for $\xi < \kappa$. Consider the sequence $(\mathcal{B}^n)_{n\in\mathbb{N}}$ of elements of \mathcal{F}. By our assumptions there is a β-lower bound of $(\mathcal{B}^n)_{n\in\mathbb{N}}$ in \mathcal{F}, say q. Thus there is a sequence $(\mathcal{B}^n)_{n\in\mathbb{N}}$ of \mathcal{F}-composable elements of \mathcal{B} such that $\mathcal{B}^n \cap (X_1 \times X_2) \subseteq X_1 \times X_2$, for all $n \in \mathbb{N}$. Take $\bigcap \mathcal{B}^n = \{i \in I : j \leq q\}$ and $\mathcal{F} = \mathcal{B}|q$. Then by embedding theorem there is an isomorphism $F : \mathcal{B}|q \cong \mathcal{B}|q'$ which is an elementary embedding when \mathcal{E} is an ultrafilter. It remains to prove that $\bigcap \mathcal{B}^n \in Rng(F)$, for all $n \in \mathbb{N}$. For every $\xi < \kappa$, let ϕ be a function defined in such a way that $\phi_1 : X_1 \to X_1$ and $\phi_2 : X_2 \to X_2$. Of course, by the construction, we have $\phi_1 = f_1$ (mod \mathcal{E}). Since $\phi_2 \in \mathcal{B}|q$ by Embedding Theorem, we have $\phi_2 \in Rng(F)$, for all $\xi < \kappa$, and consequently $\bigcap \mathcal{B}^n \in Rng(F)$, for all $n \in \mathbb{N}$. Q.E.D.

EXAMPLE 2. Let I be the set of all positive rationals and let \mathcal{B} be a filter on I such that for each $\alpha \in I$, the set $\{x \in I : x \leq \alpha\}$ is in \mathcal{B}. For each strictly increasing sequence $\psi = (\psi_n)_{n\in\mathbb{N}}$ of rationals without any accumulation point such that $\psi_0 = 0$, define $q_\psi = \bigcap \mathcal{B}|\psi$, if and only if there is some $n \in \mathbb{N}$ such that $\psi_n \leq \alpha < \psi_{n+1}$. Let G be the filter on $I \times I$ generated by all q_ψ. Then G is not α-complete.

On the other hand, for each sequence $(\mathcal{B}^n)_{n\in\mathbb{N}}$ of elements of \mathcal{F} there is a β-lower bound of $(\mathcal{B}^n)_{n\in\mathbb{N}}$ in \mathcal{F}. Thus the pair $(\mathcal{B}, \mathcal{F})$ is α-closed. Consequently the assumptions of Theorem 1, even in the countable case are weaker than those in Corollary 1.

We have also the following converse theorem.

THEOREM 2. Let \mathcal{B} be a filter on I and let \mathcal{F} be a filter on $I \times I$ such that for each structure \mathcal{B} and for each sequence $(\mathcal{B}^n)_{n\in\mathbb{N}}$ of elements of \mathcal{F} there is an equivalence relation $q \in \mathcal{B}$ such that if $\bigcap \mathcal{B}^n = \{i \in I : j \leq q\}$ and $\mathcal{F} = \mathcal{B}|q$, then there is an isomorphism $F : \mathcal{B}|q \cong \mathcal{B}|q'$ with $\bigcap \mathcal{B}^n \in Rng(F)$, for all $n \in \mathbb{N}$. Then the pair $(\mathcal{B}, \mathcal{F})$ is x-closed.
Proof. Let \(\langle q_x \rangle_{x<\alpha} \) be a sequence of elements of \(B \). If \(\vert \alpha \vert = \vert \beta \vert \) then there are functions \(f_x \in A^B \) such that \((q_x)^B = q_x \), for all \(x<\alpha \). Take \(q \in B \) such that if \(q_x = \langle i_j \rangle_{j<\alpha} \) and \(\delta = [q] \) then there is an isomorphism \(F : \mathcal{W}^A \to \mathcal{W}^B \) with \(\mathcal{L}(q) \cong \mathcal{L}(F(q)) \), for all \(x<\alpha \). Then there are functions \(q_x \in A^B \) such that putting \(h_x = F(q) \) we have \(h_x = f_x(\text{mod} \delta) \). Let \(X_x = \{ i \in \{ i : h(i) = f(i) \} \). Of course \(X_x \) is a \(\mathcal{G} \)-compositional element of \(B \). Moreover, if \((i, j) \in q \) and \((i, j) \in X_x \times X_x \) then \((i, j) \in \text{eq}(h) \) because of \(q \approx \text{eq}(h) \). Since \(h_x = F(q) \) and \(X_x \in X_x \), we have \((i, j) \in q_x \). Whence \(q \approx \langle X_x \times X_x \rangle = q_x \cap (X_x \times X_x) \), for all \(x<\alpha \) which shows that \(q \) is a \(B \)-lower bound of \(\langle q_x \rangle_{x<\alpha} \). Q.E.D.

§ 2. Applications to the universality and saturatedness. To use Embedding Theorem to the universality and saturatedness of limit ultrapowers we need the following facts:

FACT I (Keisler [2], Theorem 1.4). An ultrafilter \(D \) on \(I \) is \(\kappa^* \)-good if and only if for every structure \(A \), the ultrapower \(A^D \) is \(\kappa^* \)-saturated.

FACT II (Keisler [2], Theorem 1.5). An ultrafilter \(D \) on \(I \) is \((\kappa, \alpha, \delta) \)-regular if and only if for every structure \(A \), the ultrapower \(A^D \) is \(\kappa^* \)-universal.

FACT III. The following three conditions for an ultrafilter \(D \) on \(I \) are equivalent:

(a) \(D \) is \(\alpha \)-complete.
(b) \(D \) is \((\alpha, \alpha, \delta) \)-regular.
(c) \(D \) is \(\alpha \)-incomplete.

FACT IV. If for every \(\lambda \leq \kappa \) and every sequence \(\langle i_x \rangle_{x<\lambda} \) of elements of \(B \) there is an \(\gamma \)-saturated model \(\mathcal{A} \) and an elementary embedding \(F : \mathcal{A} \to \mathcal{M} \), with \(\mathcal{L} \), then \(\mathcal{M}^D \) is \(\kappa^* \)-universal.

Now these facts together with Embedding Theorem yield the following theorems:

THEOREM A. Let \(D \) be an ultrafilter on \(I \) such that for some \(\mathcal{Q} \in \mathcal{F} \), the \(\mathcal{Q} \)-image of \(B \) is \((\alpha, \alpha, \delta) \)-universal. Then the ultrapower \(A^D \) is \(\alpha \)-saturated.

Proof. Let us remark that if \([\mathcal{F}]^D \) is \((\alpha, \alpha, \delta) \)-regular then for every \(q \in B \) there is \(q \approx [\mathcal{F}]^D \) such that \(q \in B \) and \(\mathcal{F}^D \) is also \((\alpha, \alpha, \delta) \)-regular. In fact, we can take \(q = [\mathcal{F}]^D \) and \(\mathcal{F}^D \).

Now put \(B = [\mathcal{Q}]^D \). It is well known (see [1], Theorem 3.1) that there is a set \(I \) and an ultrafilter \(D \) on \(I \) such that for some filter \(\mathcal{F} \) on \(I \times I \), we have \(B = \mathcal{F}^D \). On the other hand it is easy to see that \(B \) is not \(\alpha \)-saturated, for, there is a countable increasing sequence of elements of \(B \) of which \(\mathcal{Q} \) is cofinal in \(B \). Thus, in Theorem A, we cannot replace \(\alpha \) by \(\alpha \).

THEOREM B. Let \(D \) be an ultrafilter on \(I \) and let \(\mathcal{Q} \) be a filter on \(I \times I \). Let \(\mathcal{F} \) be a structure such that \(\mathcal{F} \not= \mathcal{W}^D \). Then \(\mathcal{F} \) is not \(\alpha \)-saturated.

(i) If \(\mathcal{F} \) is \(\alpha \)-saturated then \(\mathcal{W}^D \) is \(\alpha \)-saturated.

(ii) If \(\mathcal{F} \) is \(\alpha \)-saturated then \(\mathcal{W}^D \) is \(\alpha \)-saturated without any assumption on \(\mathcal{F} \).

Proof. Since \(\mathcal{F} \not= \mathcal{W}^D \), there is a function \(f \in A^D \) which is not constant on any set from \(D \). Take \(q = \text{eq}(f) \). Then for each \(q \approx q \), the filter \([\mathcal{F}]^D \) is nonprincipal.

If \([\mathcal{F}]^D \) is not \(\alpha \)-complete then \([\mathcal{F}]^D \) is \((\alpha, \alpha, \delta) \)-regular by Fact III and we can get the theses of Theorem B from Theorem A.

So, suppose that for no \(q \approx q \), \(q \approx [\mathcal{F}]^D \) the filter \([\mathcal{F}]^D \) is \((\alpha, \alpha, \delta) \)-regular. Then both \([\mathcal{F}]^D \) and \([\mathcal{F}]^D \) must be measurable and we need the assumption of (0).

Let \(\langle \mathcal{F}_n \rangle_{n<\omega} \) be a finite sequence of elements of \(A^D \). Let \(q^* = \mathcal{Q} \times q \cap \ldots \cap q_{n-1} \) where \(q_n = \text{eq}(f_n) \), \(n = 0, \ldots, m-1 \). Then \([\mathcal{F}]^D \) is \((\alpha, \alpha, \delta) \)-complete ultrafilter on \(I \). By Ultrafilter Theorem for \(\alpha \)-complete ultrafilters \(A^D \) is \(\alpha \)-saturated if and only if \(B \) is \(\alpha \)-saturated. Consequently, by Embedding Theorem we have an elementary embedding \(F : \mathcal{W}^D \to \mathcal{W}^D \), with \(\mathcal{L}(q) \cong \mathcal{L}(F) \), for all \(n<\kappa \). Thus, by Fact IV, we see that \(\mathcal{W}^D \) is \(\alpha \)-saturated. Q.E.D.

Remark. Theorem B is closely related to a theorem of Wierzejewski ([5], Theorem 2) that if \(B \) is an \(\alpha \)-homogeneous then \(\mathcal{W}^D \) is \(\alpha \)-homogeneous but in Theorem B, for the nonmeasurable case, we have a stronger thesis without any assumption on \(\mathcal{F} \).

EXAMPLE. Let \(D \) be filters from Example 1, and let \(\mathcal{F} \) be the ring of integers. Then it is easy to check that \(\mathcal{W}^D \) is not \(\alpha \)-saturated. Consequently, in Theorem A and B we cannot omit the assumption that \(D \) is maximal.

THEOREM C. Let \(D \) be an ultrafilter on \(I \) and let \(\mathcal{Q} \) be a filter on \(I \times I \). Then there exists \(q \in B \) such that \(\mathcal{Q} \approx [\mathcal{Q}]^D \) if and only if for every structure \(A \), the ultrapower \(A^D \) is \(\kappa^* \)-universal.

Proof. Suppose there is \(q \in B \) such that \(\mathcal{Q} \approx [\mathcal{Q}]^D \). Then, by Fact II, the ultrapower \(A^D \) is \(\kappa^* \)-universal. By Embedding Theorem there is an elementary embedding \(F : A^D \to A^D \). Consequently \(A^D \) is \(\kappa^* \)-universal as an elementary extension of \(A^D \).

The converse implication follows in the same way as in Keisler's proof of Fact II (see [2]).
Remark. After we had the result that the existence of $g \in \mathcal{G}$ such that \mathcal{G}/g is (α, α)-regular implies the π'-universality of $\mathbb{W}_0^\alpha\mathcal{G}$, L. Pacholski has drawn our attention that the condition above is also sufficient for the π'-universality of $\mathbb{W}_0^\alpha\mathcal{G}$ and that the Keisler's proof from [2] works also in our case.

Theorem D. Suppose \mathcal{G} is an ultrafilter on $[1, \infty)$ and \mathcal{F} a filter on $[1, \infty)$ such that the pair $(\mathcal{G}, \mathcal{F})$ is x'-closed. Suppose that for every $\xi \in \mathcal{G}$ there is $\eta \leq \xi$ such that \mathcal{G}/η is x'-good. Then for every structure \mathcal{M}, the limit ultrapower $\mathbb{W}_0^\alpha\mathcal{G}$ is x'-saturated.

Proof. Let $(\bigcup_{\xi < \eta} G, G)$ be a sequence of elements of $\mathbb{W}_0^\alpha\mathcal{G}$. From Theorem 1, it follows that there is a relation $g \in \mathcal{G}$ such that if $\xi \in \mathcal{G}/g = \{ \gamma \in \mathcal{F} : \gamma \leq \xi \}$ then there is an elementary embedding $\mathcal{M} \rightarrow \mathbb{W}_0^\alpha\mathcal{G}$ with $\bigcup_{\xi < \eta} G = \text{Rag}(\mathcal{F})$, for all $\xi < \eta$. From our hypotheses we can additionally assume that \mathcal{G}/g is x'-good. Then, by Fact I, $\mathbb{W}_0^\alpha\mathcal{G}$ is x'-saturated. Thus the result follows from Fact IV.

Remark. L. Pacholski has informed me that he has a combinatorial condition on a pair $(\mathcal{G}, \mathcal{F})$ which is equivalent to the statement: "for every \mathcal{M} the limit ultrapower $\mathbb{W}_0^\alpha\mathcal{G}$ is x'-saturated". For more informations see [3].

References

Accepté par la Réduction le 15. 1. 1975

The irreducibility of continua which are the inverse limit of a collection of Hausdorff arcs

by

Michel Smith (Atlanta, Georgia)

Abstract. Consider the space which is the inverse limit of a collection of generalized (non metric) arcs over a linearly ordered index set. Such a space is a hereditarily unicoherent ariodic Hausdorff continuum. It is shown that every indecomposable subcontinuum of the space is irreducible between some two points. A necessary and sufficient condition in order for a subcontinuum of the space to be indecomposable is stated. Further it is shown that the space must be a generalized arc if it is not the inverse limit over a countable subset of the index set. Thus it follows that the space must be an irreducible continuum.

Introduction. In this work a continuum is a closed connected subset of a Hausdorff space and an arc is a compact continuum which has only two non-cut points. It is known that if M is a nondegenerate compact ariodic hereditarily unicoherent continuum and every nondegenerate indecomposable subcontinuum of M is irreducible between some two points then M is irreducible between some two points. (See M. H. Profitt [4] for a stronger result.) Suppose S is the inverse limit of a collection of Hausdorff arcs over a linearly ordered index set. Then S is a compact ariodic hereditarily unicoherent continuum. In this paper we show that every nondegenerate indecomposable subcontinuum of S is irreducible between some two points. Further we show that if S is not an arc then it must be the inverse limit of a collection of arcs over a countable index set (this result has also been independently discovered by G. R. Gordh and S. Mardesić). Also a necessary and sufficient condition in order for a subcontinuum of S to be indecomposable is stated.

Following are some definitions used in this paper. For theorems concerning inverse limits the reader should consult Ellenberg and Sieradski [1], and for theorems concerning arcs the reader should consult Hocking and Young [2], and R. L. Moore [3].

Definition. Suppose M is an arc and 0 and 1 are the two non-cut points of M. Then the statement that M is ordered from 0 to 1 means that if x and y are two points of M then $x < y$ (or x precedes y) if and only if $x \neq y$ and it is true that $y = 1$ or $M - y$ is the sum of two mutually separated sets, one containing 0 and x and the other y.