Groups in the category of f-manifolds

by

Richard S. Millman (Carbondale, Ill.)

Abstract. A structure on a n-dimensional differentiable manifold given by a tensor field f of type $(1,1)$ and constant rank r which satisfies $f^2 + f = 0$ is called an f-structure. An f-map is a map between f-manifolds whose differential commutes with the f-structure. An f-Lie group is a group in the category of f-manifolds and f-maps.

Theorem A. Every f-Lie group is the quotient of the product of a complex Lie group and a Lie group with trivial f-structure. An f-Lie group is an f-contact Lie group if the kernel of the f as a sub-bundle of the tangent bundle is parallelizable by commuting vector fields.

Theorem B. A compact f-contact Lie group is isomorphic (as a f-group) to a torus.

1. A structure on an n-dimensional differentiable manifold given by a tensor field f of type $(1,1)$ and constant rank r which satisfies $f^2 + f = 0$ is called an f-structure. This notion has been studied by Xano and Ishihara (among others) [4]. An f-structure is integrable if about each point there is a coordinate system in which f has the constant components

$$f = \begin{pmatrix} 0 & -I_p & 0 \\ I_p & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where I_p is the $(p \times p)$ identity matrix $(p = \frac{1}{2}n)$. In [1] it is shown that the integrability of f is equivalent to the vanishing of the Nijenhuis tensor of f.

where X and Y are vector fields on M. We shall write $\chi(M)$ for the set of all vector fields on M, $T_m(M)$ for the tangent space of M at $m \in M$ and $T(M)$ for the tangent bundle of M. For $m \in M$, let

$$(\text{ker} f)_m = \{X \in T_m M | f_m(X) = 0\}$$

and

$$(\text{im} f)_m = \{X \in T_m M | X = f_m Y \text{ for some } Y \in T_m M\}$$.
The proof of the following corollary is immediate since from Proposition 1 the Niijiihuis torsion of a bi-invariant f-structure must vanish at e.

COROLLARY. A bi-invariant f-structure on a Lie group is integrable.

We now prove Theorem A. Let $L_0 = \ker f_0$ and $L_1 = \im f_0$. It is clear from Proposition 1 that both L_0 and L_1 are Lie subalgebras of \tilde{G}. Now if $X = f(Z) \in L_1 \cap L_2$ then $f(Z) = 0$ hence since $f(Z) + f^*(Z) = 0$, $X = f(Z) = 0$ and so $L_1 \cap L_2 = 0$. By dimensions \tilde{G} is therefore the direct sum (as a vector space) of L_1 and L_2. Furthermore if $X = f(Z) \in L_1$ and $Y \in L_2$ then again applying Proposition 1,

$$[X, Y] = f(Z, Y) = [Z, f(Y)] = 0.$$

Thus $\tilde{G} = L_1 \oplus L_2$ as Lie algebras and by standard results of Lie theory we have Theorem A.

3. Before proving Theorem B we need to recall some results of [3].

The kernel of $f, \ker f$, is $\cup (\ker f)_m$ and the image of $f, \im f$, is $\cup (\im f)_m$.

An f-manifold is k-framed if there are $\xi_1, \ldots, \xi_n \in \chi (M)$ such that $\{\xi_1(m), \ldots, \xi_n(m)\}$ forms a basis for $(\ker f)_m$ for all $m \in M$. We write $n = n - r$. If M_1 and M_2 are k-framed f-manifolds then we define an almost complex structure J on $M_1 \times M_2$. We shall denote the k-framing on M_1 by ξ_1, \ldots, ξ_k and the f-structure on M_1 by f_1. If in addition (ξ_1, \ldots, ξ_k) is 0 for all $1 \leq k$, then M_1 is called an f-contact manifold.

The concept of an f-contact manifold generalizes the basic features of almost contact structure to f-manifold of higher multiplicity (i.e. lower rank). In [3, Lemma 2] we have associated to the framing (ξ_1, \ldots, ξ_k) differential forms η_i for $i = 1, 2, j = 1, \ldots, n_0$. We define the almost complex structure J on $M_1 \times M_2$ as follows: if $X_1 \in T_{m_1}M_1, X_2 \in T_{m_2}M_2$ where $p \in M_1, q \in M_2$ then

$$J_{p,q}(X_1, X_2) = \left(f_1(X_1) - \sum \eta_i (X_2) \xi_i(p) \right) + \sum \eta_i (X_1) \xi_i(q) .$$

We also proved the following theorem in [3].

THEOREM. Let M_1 and M_2 be two k-framed f-manifolds of the same rank. If f_1 and f_2 are integrable then the almost complex structure J is integrable then the almost complex structure J is integrable if and only if both M_1 and M_2 are f-contact manifolds.

To prove Theorem B we note that if G is an f-contact Lie group then $G \times G$ is a complex Lie group. (This is essentially showing that the η_i are bi-invariant which follows immediately from the bi-invariance of f_1). Hence if G is compact then $G \times G$ is a compact complex Lie group, hence abelian and the result follows. Theorem B is proven in the special case that f defines a structure of an almost contact manifold in [3].
If we let $G = C \times R$ where C is the complex line (considered as a complex manifold) and R is a Lie group with trivial f-structure and $D = \{(n+in, n) \mid n \text{ is an integer}\}$ then G/D is an f-Lie group which is not the product of a complex Lie group and an f-Lie group with trivial f-structure. (G/D is of course diffeomorphic to $C \times S^1$, but the f-structure on G/D is not the product f-structure of $C \times S^1$). This is the example mentioned in the introduction.

References

Reducing hyperarithmetic sequences

by

Hans Georg Carstens (Hannover)

Abstract. Every a'-sequence is isomorphic to an a^+-sequence. This implies: Every a'-theory T with an a-language has an a^+-model. If T has an infinite normal-model then T has an normal a^+-model.

§ 1. Introduction. If you analyse a mathematical construction to evaluate its complexity e.g. in terms of the hyperarithmetic hierarchy, it is not difficult to get a'-bounds ($a \in O$, O Kleene's system of ordinal notations, $a' = 2^a$) for you can employ recursive processes to describe the construction. If you try to get a^+-bounds (a predicate is a^+-bounded if it is a Boolean combination of Σ^a_0-predicates) you must analyse some tricky constructions often related to wait and see methods.

In this paper we prove a theorem on hyperarithmetic sequences by which in some cases we can avoid this analysis and get an a^+-bound by means of a'-bound. In § 5 examples regarding models and structures will be discussed.

A model is called normal if its universe is the set of natural numbers and the first predicate is the identity. In [3] Hensel and Putnam have shown that every axiomatized consistent theory based on a finite number of predicates which has an infinite model with "=" interpreted as identity, has a normal model in $B^+(1)$, i.e. all predicates are 1^+-bounded. Among its consequences the theorem has an analogue to the Hensel-Putnam result for arbitrary hyperarithmetic theories with a recursive language. We can drop the assumption that the theory must be based on a finite number of predicates, and different to Putnam [5] and Hensel-Putnam [3] the result yields a method which solves Mostowski's problem [4, p. 39] simultaneously for theories with and without identity.

§ 2. The hyperarithmetic hierarchy. Let O be Kleene's system of ordinal notations with the ordering $<_\alpha$, $a' = 2^a$ the successor of a in O, A' the recursive jump of A; we write $A \leq B$ if A is recursive in B. $H_a := O$, $H_{a'} := H_a$ for $a \in O$, $H_{a+} := \{ \langle x, y \rangle : y <_{a} 3 \cdot 5^a \& x \in H_y \}$, where $3 \cdot 5^a$ is a notation of a limit ordinal.