Closed retraction of Euclidean spaces

by

Krzysztof Nowiński (Warszawa)

Abstract. The problem of the characterization of the images of the Euclidean spaces under closed retraction is studied. The c-retract of the space X is defined as the image of X under some closed retraction. The following theorems are proved:

Theorem 1. Every compact c-retract E of E^n is the c-retract of E^n.

Theorem 2. For every non-compact c-retract R of E^n, $R^n(a,b) = 0$ for $m = 1, \ldots, n-1$ and if $R \neq E^n$ then $R^n(a,b) = 0$. ($R^n(a,b)$ denotes the m-th Čech cohomology group of X and aX denotes the one-point (Alexandrov) compactification of X).

Theorem 3. The retract R of the Euclidean plane R^2 is the c-retract of R^2 if and only if it does not disconnect R^2.

The main purpose of this paper is to apply some methods investigated in [6] to the study of closed retraction. The paper gives some results about closed retractions of Euclidean spaces, particularly a complete characterization of all subsets R of the Euclidean plane R^2 for which there exists a closed retraction $r: R^2 \to R$.

All notions and notations which are not defined here are taken from [1] and [2].

Definition. The c-retract of the space X is the subset of X which is the image of X under some closed retraction.

Proposition. Let R be a compact retract of E^n for some n. Then R is the c-retract of E^n.

Proof. The set R is an absolute retract in the sense of [1], Sec. V. 1. On the other hand, $R \subset E^n(0,r)$ for some positive r. (We denote by O the element $(0, \ldots, 0)$ of E^n). We denote by $R(r)$ the sphere obtained by matching to a point the set $E^n(0,r)$. It is clear that $R(r)$ is a compact metric space and the quotient mapping $\pi: E^n \to R$ is closed (see [6]).

Proposition 1. Simultaneously there exists a retraction $r: R(\infty) \to \bar{R}$ which is closed since $R(r)$ is compact. The composition $r = r_0 \circ \pi$ is the desired closed retraction.

We denote by $R_1^n(\infty)$ the nth Čech cohomology group with integer coefficients of the space X. We can now prove the first main result of this paper.

1 — Fundamenta Mathematicae LXXXV
THEOREM. For every non-compact c-retract of E^n, $H^n(\alpha R) = 0$ for $i < n - 1$ and if $R \neq F^n$ then $H^n(\alpha R) = 0$.

Proof. If $n = 1$, there is nothing to prove. Suppose now that $n > 1$, then, by (6), Corollary to Theorem 7, we have $\gamma F^n = \alpha F^n \neq S^n$. The closed retraction $\tau: F^n \rightarrow R$ can be extended to $\gamma: F^n \rightarrow \gamma R$. (It is possible by (5), Theorem 4.) The mapping γ is an epimorphism and hence $\gamma F^n \rightarrow \gamma R$, which means that $\gamma F^n = \alpha F^n$. We can therefore obtain a mapping $\tau: S^n \rightarrow \alpha F^n$ as the composition of the homeomorphism $\tau: S^n \rightarrow \alpha F^n$ and the mapping γ. Let $j: \alpha R \rightarrow S^n$ be the extension of the identity map of R into F^n. Since $\gamma j = \alpha F^n$, the mapping $j^{*+1}n$ = αF^n is the identity on $H^n(\alpha R)$ for every m. So $m: H^n(\alpha R) \rightarrow H^n(S^n)$ is a monomorphism, and since $H^n(S^n) = 0$ for $0 < m < n - 1$, the groups $H^n(\alpha R)$ must vanish for $m > n - 1$.

On the other hand, assuming that $R \neq F^n$, we can easily check that αR is a proper subset of S^n and hence $H^n(\alpha R) = 0$.

Corollary. If $1 < k < n$, then F^n cannot be a c-retract of E^n.

Proof. $\alpha F^n = S^n$, hence $H^n(\alpha F^n) = 0$ and it remains to apply Theorem 1.

In the case $n = 2$ we prove the following

LEMMA 1. If R is a c-retract of F^2, then R does not disconnect F^2.

Proof. If R is compact, then our lemma follows from (1), Theorem V.13.1. Suppose now that R is not compact. The closure of the region in $S^2 = \alpha F^2$ is homeomorphic to αR and $S^2 - \alpha R = F^2 - R$. This means that if $F^2 - R$ is not connected then so is $S^2 - \alpha R$. Applying to the pair $(S^2, \alpha R)$ the Borsuk Theorem (11, Theorem X.13.1), we obtain an essential mapping $f: S^2 \rightarrow S^2$. This means that f is not homotopic to a constant map. Therefore we infer that the Brunkhouski group $\pi_1(\alpha R)$ is not trivial. It remains now to observe that $\pi_1(\alpha R) = H^1(\alpha R)$ (see [3], Theorem II.1.1), hence $H^1(\alpha R) \neq 0$, which is impossible in connection with Theorem 1.

This contradiction ends the proof.

We can now formulate the main theorem of this paper.

THEOREM 2. The retract E of the Euclidean plane E^2 is the c-retract of E^2 if and only if it does not disconnect E^2.

Proof. The necessity of this condition is a consequence of Lemma 1 and, if R is compact, then the condition is sufficient by Proposition 1.

So it remains to prove that if E is a non-compact retract of E^2 and $E^2 - R$ is connected, then E is a c-retract of the plane. To prove this, we formulate and prove four lemmas.

LEMMA 2. Let $J: X \rightarrow Y$ be a continuous mapping and let Y be a T_n-space. If there exists such a covering $A = \{A_i\} \times \alpha I$ of X by compact sets that $f(A) = (f(A_i)_{a\in A}$ is a locally finite collection, then the mapping f is closed.

Proof. Let D be a closed subset of X. The sets $D_i = D \cap \alpha S_i$ are compact for every αS_i and hence the sets $f(D_i)$ are closed in Y. So $f(D) = \bigcup f(D_i)$ is the sum of a locally finite family of closed sets and hence $f(D)$ is closed.

It is easy to check that

(i) $f(\alpha S_i) = \alpha F_i$ for any αS_i,

(ii) if $A = \alpha S_i$ then $f(A) = \alpha F_i$,

(iii) if $A \subset F_i$ then $f(A) \subset F_i$,

(iv) if $\alpha S_i \subset F_i$, then $f(A)$ is the sum of αS_i and all the bounded components of the set $F_i - A$.

LEMMA 3. If Z is a compact subset of the plane not disconnecting F^2, then for every $e > 0$ there exists an $\eta[Z, (e)] > 0$ such that $\eta[F(Z, \eta[Z, e])] \subset F(\eta[Z, e])$.

The proof is an easy modification of the proof of (11, Lemma V.3.2) and will be omitted.

LEMMA 4. If Z is a retract of F^2, then for every e such that $0 < e < s$ only finitely many components W_1, \ldots, W_n of $F^2 - R$ intersect simultaneously S_t and S_r.

Proof. Let us fix one of such components, W_2. It contains an arc l_2 joining S_t and S_r. Now if $W_2 \cap W_3$ then $l_2 \cup W_3$ disconnects F^2 and the components V_1 and V_2 of $F^2 - (l_2 \cup W_3)$ both contain points of R. Denoting by A_2 the set $W_2 \cap S_{r+e}$, we can observe that if $r: E^2 - R$ is the retraction, then $r(A_2) \cap F^2 = \emptyset$. Int fact, if $r(A_2) \subset F^2$, then, since $A_2 \cap V_1 \neq \emptyset$, there exists some arc joining V_2 and V_3, contained in $R \cap F^2$, which contradicts the definition of V_1 and V_2. So there exists a point $a_2 \in (W_2 - r^{-1}(F^2 - P) \cap S_{r+e})$.

Assume now that there exist infinitely many components W_n of F^2 joining S_t and S_r. We can easily repeat the construction of the point a_n and denoting by a the accumulation point of the set $\{a_1, a_2, \ldots\}$ we obtain:

(i) $a \in R$, since $S_{r+e} - R$ is open in S_{r+e} and the points a_2 are from disjoint components of the set $S_{r+e} - R$.

(ii) $r(a) \in Int F^2$, since $r(a) \subset r(A)$ and $r(A) \cap F^2 = \emptyset$.

The contradiction between (i) and (ii) establishes our lemma.
LEMMA 5. Let R be a non-compact retract of E^3 which does not disconnect the plane and let $(s) = s_1, s_2, \ldots$ be a strictly decreasing sequence of positive real numbers such that $s_i < 1/16$. Then there exists a sequence $(\eta) = \eta_1, \eta_2, \ldots$ of positive reals such that $\mathcal{F}_i(K(R(\eta_i))) \subset K(R(s))$.

Proof. We define inductively the sequence of sets $X_1 \subset X_2 \subset \ldots \subset E^3$ and the sequence of positive real numbers $(\eta) = \eta_1, \eta_2, \ldots$ satisfying the following conditions:

(i) $E^3 \cup K(R(\eta)) \subset X \subset K(R(s)), s_i$;
(ii) $X = \mathcal{F}(X_0)$;
(iii) $X_0 \cap X_1 \subset \text{Int}P_{s_1}^{1/16}$;
(iv) $X_1 \setminus X_0 \subset K(R(\eta_1), \eta_1)$;
(v) $X_i \setminus X_{i+1} \subset K(R(\eta_i+1/16))$

for $n = 1, 2, \ldots$

In the first step we construct the set X_1. Let W_1, \ldots, W_s be the components of $P_{s_1}^{1/16} \cap R$ intersecting both S_{s_1} and S_{s_2}. We select for $i = 1, \ldots, s$ a point $w_i \in W_i$ and we put $\xi_i = \min \{d(w_i, R)\}$. Now, let V_i be the component of $E^3 \setminus (X_{\xi_i} \cup R)$ containing W_i. All bounded sets of the family V_1, \ldots, V_s are contained in some K_N ($N > 3$). We put $\eta_i = \eta_i(w_i, \xi_i)$, where η_i is defined as in Lemma 3. The set $X = X_0 \setminus K(R(\eta), \eta) \cup R$ satisfies the conditions (i), (ii), (iv) and (v) given above, and if we put $X_0 = \emptyset$ then condition (iii) is also satisfied (see Figure).

To verify this, we notice first that $\eta_i < \xi_i < 1/16$. Hence

$K(R(\eta)) \subset K_{s_1} \subset K_{s_1} \cup R$.

on the other hand, if A is a bounded component of $E^3 \setminus K(R(\eta)) \cup R$ then A cannot intersect both S_{s_1} and S_{s_2}, which follows from the definition of η_i. Thus conditions (ii'), (iv) and (v) are satisfied. Condition (ii) is satisfied by the property (i) of the operation \mathcal{F}. Conditions (i) and (v) are also easy to check.

We now assume that we have defined the sets X_1, \ldots, X_{n-1} and the numbers $\eta_1, \ldots, \eta_{n-1}$ satisfying conditions (i)-(v). We define X_n and η_n as follows:

Let W_1, \ldots, W_s be the components of $P_{s_n}^{1/16} \cap R$ joining S_{s_n} and $S_{s_{n+1}}$. As above, we select $w_i \in W_i$ and we put $\xi_i = \min \{d(w_i, X_{n-1})\}$. Now, let $N > s_n + 2$ be such a number that all bounded components of $E^3 \setminus (K(R(\eta_n)) \cup R)$ are contained in K_N. Observe now that only a finite number of the components A_i of $P_{s_n}^{1/16} \setminus X_{n-1}$ intersect both S_{s_n} and $S_{s_{n+1}}$. Using similar arguments as in the proof of Lemma 4 we can check that the number of such components is not greater than the number of the components of $P_{s_{n+1}}^{1/16} \setminus X_{n-1}$ joining $S_{s_{n+1}}$ and $S_{s_{n+2}}$. But every such component contains at least one of the points of R, and so it contains some ball of diameter η_{n+1}, and those balls are mutually disjoint. We select the points $g_i \in A_i$ for every i and we put $\xi_i = \min \{d(g_i, X_{n-1})\}$. We define $\eta_n = \eta(X_{n-1} \setminus K_N, \min(\xi_1, \xi_2, \xi_3))$ and we denote $X_n = X_{n-1} \setminus K_{s_n} \cup R \setminus \mathcal{F}(X_{n-1} \setminus K_{s_n} \cup R)$.

We now prove that the set X_n satisfies conditions (i)-(v). The first part of (i) and (ii) follow immediately from the definition of X_n. Notice now that all of the bounded components of $E^3 \setminus (X_{n-1} \setminus K_{s_n})$ are contained in $P_{s_{n+1}}^{1/16}$ which follows from the definition of N, ξ_1, and ξ_2. Thus conditions (iii) and (iv) are satisfied. Condition (v) and the second inclusion of (i) are now easy to verify. This finishes the description of the inductive step.

We define $X = \bigcup_{n=1}^s X_n$. The set X satisfies the following conditions:

(iii) $E^3 \setminus K(R(\eta)) \subset \text{Int}P^{1/16}_N$;
(iv) $\mathcal{F}(X) = X = X$.

Condition (vi) follows from (i). The set X is closed as the sum of the locally finite family of closed sets $X_i \cap P^{1/18}_i$. Now, let U be a bounded component of the set $E^3 \setminus X$. So $U \subset K_N$ for some N and since $X \setminus K_N = X_{n+1} \setminus K_N$, we have $U \subset \mathcal{F}(X_{n+1})$, which is impossible as $X_{n+1} = \mathcal{F}(X_{n+1})$.

This finishes the proof of Lemma 5.

We can now return to the proof of Theorem 2.

Let $v: E^3 \to E^3$ be some retraction. If $R = E^3$, then there is nothing to prove; hence we can assume that $R \neq E^3$. We prove that there exists a closed set P satisfying the following conditions:

(i) $P \subset P$;
(ii) $v(P)$ is closed;
(iii) there exists a homeomorphism $h: E^3 \to E^3$ such that $h(P)$ is a closed half-plane.
Let \(\alpha = \alpha_1, \alpha_2, \ldots \) be a sequence of positive numbers such that

(i) \(\alpha_1 < 1/16 \),

(ii) \(a_3 < a_{n+1} \) if \(x, y \in K_{n+1} \) and \(g(x, y) < a_3 \) then \(g(r(x), r(y)) < 1 \).

Such a sequence exists because of the uniform continuity of the mapping \(r \) on every closed ball. The sequence satisfies the assumptions of Lemma 5 and hence there exists a sequence \(\eta_1, \eta_2, \ldots \) such that

\[F(K(R, \eta)) \subseteq K(R, \eta) \]

Let \(\mathcal{C} \) be such a locally finite triangulation of the plane that

(vi) if \(\varphi \in \mathcal{C} \) and \(\varphi \cap \mathcal{F}^l \subseteq K_{n-1} \), then \(\dim \varphi < \eta_3 \),

(vii) if \(\sigma \in \mathcal{C} \) is a two-dimensional closed simplex and \(\sigma \cap R \neq \emptyset \), then \(\inf \sigma \cap R \neq \emptyset \).

We put \(P \) as the sum of all two-dimensional closed simplexes of \(\mathcal{C} \) intersecting \(R \) and let \(P = P(F(P)) \). It follows from the definition of \(\eta_1 \) and \(\mathcal{C} \) that \(P \cap K(R, \eta) \). Let us observe now that \(F(P) \) is a simple closed line. In fact, let us assume that \(a \) is a point of self-intersection of \(F(P) \). This means that \(a \) is the centroid of at least two two-dimensional simplexes of \(\mathcal{C} \) and \((P \cap st(a, \mathcal{C})) \} \} \) is not connected. It can easily be checked, by using \(\eta_2 \) that both components of \(P \cap st(a, \mathcal{C}) \) must contain points from \(R \). Let \(p, q \) be nearest to \(a \) such points. It is clear that \(p \neq q \neq q \). Let \(k = \sigma, p, q, \) and \(l = k \cup r(k) \cap C \). It is clear that the set \(l \) disconnects the plane and that one of the components of \(\mathbb{F}^l \) is bounded and contains some non-void component of \(\mathbb{F}^l \), which is impossible, since \(P = F(P) \).

We now prove that \(P \) does not disconnect the plane. Assuming the contrary, we denote by \(U, V \), the components of \(\mathbb{F}^l \). Since \(\mathbb{F}^l \) is connected, there exists an arc \(\gamma \) joining \(U \) and \(V \), disjoint with \(R \). Let \(\varepsilon > 0 \) be such a number that \(K([0, \varepsilon]) \cap R = \emptyset \). We can easily check, using similar arguments as above, that \(l \) disconnects \(P \) and both components of \(P \) \(\cap \gamma \) are unbounded. Let \(K \) be such an integer that \(\eta_2 < \eta_2 \) and \(l \subseteq K_{\gamma} \). Denoting by \(K, L \), the two unbounded components of \(P \) \(\cap \gamma \) we obtain that \(K_{\gamma} \cap L \neq \emptyset \). Moreover, \(P \cap (K_{\gamma} \cap L)
eq 0 \). Let \(x \) be an element of \(P \), \(y \in (K_{\gamma} \cap L) \). Let \(x \in K_{\gamma} \cap L \) and \(y \in C \) be the definition of \(P \), that there exist \(x, y \in K_{\gamma} \cap L \) such that \(g(x, y) < \eta_2 \), \(p, x \in C \). Hence \(R \cap K \neq \emptyset \) \(\cap L \) and, since \(R \cap l = \emptyset \), \(R \) is not connected. This contradiction finishes the proof of the fact that \(\mathbb{F}^l \) is connected.

We now fix a one-dimensional simplex \(\alpha_1 = \alpha_2 \in \mathcal{C} \) and we define a homeomorphical embedding \(f: \mathbb{E}^{l} \to F(P) \) as follows:

Let \(f([0, 1]) \) be a linear mapping onto \(\alpha_1 \). Assume now that we have defined the mapping \(f \) on the segment \([k, 1]\) and let \(a_k = f(k) \) and \(a_1 = f(1) \) be the endpoints of the broken line \(f([k, 1]) \). It is clear that there exist two one-dimensional simplexes \(\alpha_1 \) and \(\alpha_2 \) from \(F(P) \(\cap \) (k, 1) \) such that \(\alpha_2 \in \alpha_1 \), \(\alpha_1 \in \alpha_1 \). We can extend \(f \) over \([k, 1] \), \(l(1, l+1) \), putting on the segments \([k-1, k] \) and \([l, l+1] \) the uniquely defined linear maps onto \(\alpha_1 \) and \(\alpha_2 \), respectively. Since the triangulation \(\mathcal{C} \) is locally finite, the mapping \(f \) is closed on \([k, 1] \), \(l(1, l+1) \) and hence it can be extended to \(\mathcal{C} \). \(\gamma \mathbb{F}^l \to \gamma \mathbb{F}^l = \alpha_1 \mathbb{F}^l \) (see [8], Theorem 4). It is easy to check that \(\gamma \mathcal{C} = \alpha_2 \mathbb{F}^l \), for \(\mathcal{C} = \gamma \mathbb{F}^l \), \(\gamma \mathcal{C} = \alpha_2 \mathbb{F}^l \), which is an extension of \(f \).

We now prove that \(F(\mathbb{E}) = F(P) \). In fact, if \(f(\mathbb{E}) \) is not then we can repeat this construction for some \(\mathcal{C} \subseteq F(P) \) obtaining the embedding \(f: \mathbb{E} \to F(P) \). It is then easy to verify that \(F(P) \) disconnects the plane into at least three components, which is impossible, since both \(P \) and \(\mathbb{F}^l \) are connected. We can now apply ([5], Theorem 9, 9.1) to obtain a homeomorphism \(\gamma: \mathbb{F}^l \to \mathbb{F}^l \) such that \(G(\mathbb{E}) = \mathcal{C} \) and \(G(\mathbb{F}) = \mathbb{F}^l \) is the equator of the sphere. It is clear that \(G(\mathbb{F}) = \mathbb{F}^l \) is the closed half-plane \(\mathbb{E} \times [0, \infty] \). We now denote by \(s \) the retraction of \(\mathbb{E} \) on \(P \) obtained by the composition \(G \circ s \circ G \), where \(s: \mathbb{E} \to \mathbb{E} \times [0, \infty] \) is a closed retraction defined by \(s(x, y) = (s, |y|) \). We now prove that \(P = s \) is the desired closed retraction. It follows from the definition of \(s \), \(s(\mathbb{E} \cap P_{\infty}) \subseteq P_{\infty} \) and hence the family \(s \) and the mapping \(r \) satisfy the assumptions of Lemma 2 and thus the mapping \(r \) \(\mathcal{C} \) is closed. \(P \) is a closed retraction as the superposition of two closed retractions and the proof of Theorem 2 is finished.

References

Reçu par le Redaction le 10. 7. 1972