Subdirect decomposition of distributive quasilattices

by

J. A. Kalman (Auckland)

Following Plonka [3] we define a quasilattice to be a nonempty set with binary operations \(\land \) and \(\lor \) which are idempotent, commutative, and associative, and a distributive quasilattice to be one which obeys the laws

\[
\begin{align*}
(x \land y) \lor z &= (x \land z) \lor (y \land z), \\
(x \lor y) \land z &= (x \lor z) \land (y \lor z).
\end{align*}
\]

It is easily checked that the tables

\[
\begin{array}{c|ccc|cccc}
\land & 0 & 1 & \infty & 0 & 1 & \infty & 1 \\
\hline
0 & 0 & 0 & \infty & 0 & 1 & \infty & 1 \\
1 & 0 & 1 & \infty & 1 & 1 & \infty & 1 \\
\infty & 0 & 1 & \infty & 0 & 1 & \infty & 1 \\
\end{array}
\]

define a distributive quasilattice, \(X \) say. Let \(\mathcal{Q} \) and \(\mathcal{S} \) be the sub-quasilattices of \(X \) with underlying sets \(\{0, 1\} \) and \(\{0, \infty\} \) respectively; \(\mathcal{Q} \) is a lattice, and \(\mathcal{S} \) is essentially a semilattice (it obeys the law \(x \lor y = y \land x \)).

The object of this paper is to prove the following

Theorem. A distributive quasilattice with more than one element is isomorphic to a subdirect product of copies of \(X, \mathcal{Q}, \) and \(\mathcal{S} \).

This extends Birkhoff's subdirect decomposition theorem for distributive lattices ([1], p. 193, Theorem 15, Corollary 1), and also contains a similar theorem for semilattices.

In any quasilattice an identity element for \(\land \) (resp. \(\lor \)) if it exists, is unique, and will be denoted by \(I \) (resp. \(0 \)) (cf. [2]), p. 63, ex. 7, and (2), but note that the free distributive quasilattice with \(O, I \), and one generator has five, not seven, elements.

Lemma. Let \(Q \) be a distributive quasilattice with \(O \) and \(I \). Then, for all \(x \) and \(y \) in \(Q \),

\[
\begin{align*}
(i) & \quad x \land O = O \text{ if and only if } x \lor I = I; \\
(ii) & \quad x \lor y = I \text{ if and only if } x = y = I; \text{ and} \\
(iii) & \quad x \land y \lor O = O \text{ if and only if } x \lor O = y \land O = 0.
\end{align*}
\]
A. J. Kalman

Also, we may define a congruence relation B on Q by setting $x\sim y$ if and only if $x = y$ or $x \land O \neq O$ and $y \land O \neq O$.

Proof. (i) If $x \land O = 0$ then
\[I = 0 \lor I = (x \land y) \land (y \lor I) = (x \lor I) \land I = x \lor I, \]
and dually.

(ii) If $x \land y = I$ then $x = x \land I = x \land (x \land y) = x \land y = I$, and similarly $y = I$. The converse is trivial.

(iii) If $x \land y \land O = 0$, then, by (i), $I = (x \land y) \lor I = (x \lor I) \lor (y \lor I)$, hence $x \lor I = y \lor I = I$ by (ii), and hence $x \land O = y \land O = O$ by (i). The converse is trivial.

B is obviously an equivalence relation, and is selfdual by (i). If $x \land y$, then, by (ii) and its dual, $(x \land z) \land (y \land z)$ and $(x \lor z) \lor (y \lor z)$ for all z. This completes the proof.

Lemma 2. Let Q be a distributive quasi-lattice, and let $a \in Q$. Then

(i) we may define congruence relations C_a, D_a on Q by setting $x \sim y$ if and only if $x \land a = y \land a$, and $x \lor D_a = y$ if and only if $x \lor a = y \lor a$;

(ii) $x \land (x \lor a) = y \land (y \lor a)$ if and only if $x \land a = y \land a$;

(iii) $x \lor (x \land a) = y \lor (y \land a)$ if and only if $x \lor a = y \lor a$.

Proof. (i) is easily verified. To prove (ii), we note first that if $x \land (x \lor a) = x \land (y \lor a)$ then
\[x \land (x \lor a) = x \land (y \lor a) = y \land (y \lor a), \]
whence $x \lor a = y \lor a$, moreover the condition $x \land (x \lor a) = x \lor (y \lor a)$ is equivalent to its dual, hence, by duality, $x \lor (x \lor a) = y \lor (y \lor a) = y \lor a$.

Conversely, if $x \land (y \lor a) = y \land (y \lor a)$, then
\[x \lor a = (x \lor a) \land (x \lor a) = (x \land (x \lor a)) \lor a = (y \land (y \lor a)) \lor a = y \lor a, \]
whence $x \land (x \lor a) = y \land (y \lor a)$ is equivalent to its dual, hence, by duality, $x \lor (x \lor a) = y \lor (y \lor a)$.

Theorem 1. Let Q be a subdirectly irreducible distributive quasi-lattice. Then

(i) Q possesses elements O and I (not necessarily distinct); and

(ii) $a \land O = 0$ if and only if $a \sim O$ or $a \sim I$.

Proof. (i) Let $C = \{a \in Q : a \land O \neq O\}$. Then if $x \land y$ we have $x \land y$, i.e., $x \land y = y \land x$ and $x \land y = y \land x$, hence $x = y$. Thus $C = O$. Since Q is subdirectly irreducible it follows that $C_a = O$ for some a in Q, and $a = I$ by Lemma 2 (iii). Dually, Q has an O.

(ii) If $a \land O = 0$ then $C_a \lor D_a = 0$; for
\[x = x \lor O = x \lor (a \land O) = (x \land a) \lor (x \lor O) = x \lor (x \lor a) \]
for all x, and hence, by Lemma 2 (ii), if $x \land (x \lor a) = y \land (y \lor a)$, then $x = y$. Since Q is subdirectly irreducible, it follows that $C_a = O$ or $D_a = O$ and hence, by Lemma 2 (iii), that $a = O$ or $a = I$. The converse of (ii) is trivial.

Lemma 3. A subdirectly irreducible distributive quasi-lattice Q with more than one element is isomorphic to K_2 or $\langle \rangle$.

Proof. Let $P = (x \in Q : x \sim O \neq O) = Q \setminus \{0, I\}$ (cf. Lemma 3 (ii)). If $P = 0$ then $Q \cong \langle \rangle$. Suppose therefore that $P \neq 0$ and let $B = B \cap (\{0, I\} \lor \{a \land a, a \lor a\})$, where B is defined as in Lemma 1. We show that $B = O$.

We wish to prove that if $x \lor y$ then $x = y$, and we may assume that $x \in P$ and $y \in P$ for otherwise $x = y$ since SYB. But then $x \land (x \lor D_x) = y \land (y \lor D_y)$, and hence, by Lemma 1 (ii), $x \land (x \lor D_x) = y \land (y \lor D_y)$, i.e., $x = y \land (y \lor D_y)$, whence $y \land x = x$. Similarly, by Lemma 1 (ii), $x \land (x \lor D_x) = y \land (y \lor D_y)$, and thus $x = y$. This proves that $B = O$, and, since $C_a \neq O$ and $D_a \neq O$ for all a in P by Lemma 3 (iii), it follows, since Q is subdirectly irreducible, that $B = O$. Hence P has just one element, and $Q \cong \langle \rangle$ or $Q \cong \langle \rangle$ according as $O = I$ or $O \neq I$.

The theorem stated in the first paragraph follows from Lemma 4 and Birkhoff's general subdirect decomposition theorem ([1], p. 195, Theorem 13).