Functionals on uniformly closed rings of continuous functions

by

S. Mrówka (Warszawa)

In this paper we are concerned with the following problem: Suppose X is a completely regular space and let E be a linear ring of continuous real-valued functions defined on X which satisfies the following conditions:

1. All constant functions belong to E.

2. E is closed with respect to the uniform convergence (i.e., if (f_n) uniformly converges to f and $f_n \in E$ ($n = 1, 2, \ldots$), then $f \in E$).

Under what conditions imposed on X and E each non-trivial linear multiplicative functional φ defined on E is of the form

$$(\ast) \quad \varphi(f) = f(p_0)$$

where p_0 is a fixed point of X?

We note some results related to this problem:

If E is the ring of all bounded continuous functions on X, then the answer to our problem is positive if and only if X is a compact space (Stone [4]).

If E is the ring of all continuous functions on X then the answer to the problem is positive if and only if X is a Q-space (Hewitt [1], [2]).

The main role in our considerations is played by the evaluation mapping of X into the Tihonov cube build up by means of all members f of E which satisfy the inequality $0 \leq f(p) \leq \bar{1}$ (i.e. denote by E^* the set of all members f of B which satisfy the above inequality and agree that the coordinates of points of the Tihonov cube I^n ($m = \bar{1}$) are enumerated by means of members of E^*). Then the evaluation mapping can be described as a mapping which carries a point $p \in X$ into the point $a \in I^n$ whose fth coordinate is equal to $f(p)$. We denote this evaluation mapping by E_B.

(1) A functional φ is said to be non-trivial provided that φ does not vanish identically.
If each member of a ring R is bounded, then the answer to our problem is rather uninteresting; it is quite similar to that of the above-mentioned Stone result; namely, it is positive if and only if $F_R(X)$ is compact. The more interesting case is the case where R contains possibly many unbounded functions, i.e., where R contains the inverse of each member of R whose each value is different from 0. The answer to our problem in this case is given in Theorem 2.

I. Some properties of the mapping F_R. In this section X denotes a compactly regular space; R denotes a fixed linear ring of real-valued continuous functions defined on X which satisfies the conditions 1* and 2*; $F_R(X)$ denotes the closure of $F_R(X)$ with respect to the Tikhonov cube I^X.

(i) If f is a bounded function in R, then there is a continuous real-valued function h defined on $F_R(X)$, such that $f(p) = h[F_R(p)]$ for each p in X.

Let $f^*(p) = a_f(p) + \beta$, where $a \neq 0$ and β are real numbers chosen in such a way that $0 < f^*(p) < 1$ for each p in X. Then $f^* \in R^*$. Let $h(a) = \frac{1}{a} [p_f(a) - \beta]$, for $a \in F_R(X)$, where $p_f(a)$ denotes the jth coordinate of a. Then h is the required function.

(ii) If h is a continuous real-valued function defined on $F_R(X)$, then the function f defined on X by the equality $f(p) = h[F_R(p)]$ belongs to R.

Let $C = (p_f)_{f \in R^*}$ be the family of all coordinate functions of points in $F_R(X)$. Since $F_R(X)$ is compact and C distinguishes points of $F_R(X)$, by the Stone-Weierstrass approximation theorem for each positive ϵ there exists a polynomial $W(y_1, ..., y_n)$ of real variables $y_1, ..., y_n$ and members $t_1, ..., t_m$ of R^* such that $|h(t) - W(t_1, ..., t_m)| < \epsilon$ for each $t \in F_R(X)$.

By the definition of F_R and f, we obtain $|f(p) - W(t_1, ..., t_m)| < \epsilon$ for each p in X. Since $W(f_1, ..., f_m) \in R$ is closed with respect to the uniform convergence, $f \in R$.

II. Theorem 1. If R is a linear ring of bounded real-valued continuous functions on a completely regular space X satisfying the conditions 1* and 2*, then each non-trivial linear multiplicative functional φ defined on R is of the form \star if and only if $F_R(X)$ is compact.

Proof. Suppose that $F_R(X)$ is compact and let φ be any non-trivial linear multiplicative functional defined on R. Denote by E the ring of all continuous real-valued functions defined on $F_R(X)$. Let h be any member of E, and let us set $\varphi(h) = \varphi(f)$, where f is a function in E satisfying the equality $f(p) = h[F_R(p)]$ (by (ii), $f \in R$). Then φ is a non-trivial linear multiplicative functional on R, whence, by the Stone theorem, there is a point $a \in F_R(X)$ such that $\varphi(a) = h(a_p)$ for each $a \in R$.

Let p_0 be any point of X with $F_R(p_0) = a_q$. If f is any member of R, then there is an $h \in E$ such that $f(p) = h[F_R(p)]$ for each p in X. We have $\varphi(f) = \varphi(h) = h(a_p) = h[F_R(p_0)] = f(p_0)$, whence φ is of the form \star.

Conversely, suppose that $F_R(X)$ is not compact. Then $E = E_0 \neq F_R(X)$; let a_q be any point of $E = F_R(X)$. Let us set $\varphi(f) = h(a_q)$ for any f in R, where h is a continuous function on $F_R(X)$ such that $f(p) = h[F_R(p)]$ for each p in X. Then φ is a non-trivial linear multiplicative functional on R. If p_0 is any point of X, then there is a continuous function h on $F_R(X)$ with $h(a_p) = 0$ and $h(a_q) = 1$, where $a_q \in F_R(p_0)$. By (ii), there is a member h in R such that $f(p) = h[F_R(p)]$ for each p in X. We have $\varphi(f) = 0$ and $f(p_0) = 1$ and it follows that φ is not of the form \star.

III. In the sequel the following definition is needed: a subset P of a topological space S is said to be Q-closed (in S) provided that for each point $p \in S \\

S_P$ there is a G_{δ}-set which contains p and is disjoint from P.

If S is a completely regular space, then we have the following:

(iii) A set $P \subseteq S$ is Q-closed in S if and only if for each $p \in S \setminus P$ there is a continuous real-valued function f on S such that $f(p) = 0$ and $f(q) \neq 0$ for each $q \in P$.

The simple proof of (iii) can be left to the reader.

We are interested in the case where a space is Q-closed in a certain compactification of itself.

(iv) If bS and $b'S$ are compactifications of a completely regular space S, $bS \subseteq b'S$ (i.e., there is a continuous mapping F of bS onto $b'S$ such that $F(p) = p$ for each p in S) and S is Q-closed in bS, then S is Q-closed in $b'S$.

Indeed, if $p \in b'S \setminus S$, then $q = F(p) \in bS \setminus S$, whence there is a G_{δ}-set $C \subseteq b'S$ which contains q and is disjoint from bS. Then $F^{-1}(C)$ is a G_{δ}-set in $b'S$ which contains p and is disjoint from S.

(*) This definition was introduced in [3].

(1) This can be proved in the following way: suppose $q = F(p) \in S$. Then p and q are distinct points of bS, whence there exists a neighboured U of p with $q \not\in bS \cup U$ (the bar indicates the closure with respect to S). Since S is dense in bS, $p \in S \cup U$ (the bar indicates the closure with respect to S). On the other hand, if $F(S \cap U) = S \cup U$, and since F is continuous, $q = F(p) \in F(S \cap U) = S \cup U$ (the bar indicates the closure with respect to S) and this leads to a contradiction.

6*
The extreme case is explained by the following:
(v) A space S is Q-closed in βS if and only if S is a Q-space.
This statement is given in [3].
(vi) A space S is Q-closed in each of its compactifications if and only if S is a Lindelöf space; i.e., each open covering of S contains a countable subcovering.

Suppose that S is a Lindelöf space. Let bS be a compactification of S and let $p_0 \in bS \backslash S$. For each $p \in S$ there is a neighbourhood U_p of p such that $p_0 \not\in \overline{U_p}$. Since $(U_p)_{p \in S}$ is an open covering of S, there is a countable covering U_{p_0}, U_{p_1}, \ldots of S. Then $G = \bigcap_{n} (bS \backslash U_{p_n})$ is a G_δ-set in bS which contains p_0 and is disjoint from S.

Conversely, suppose that S is not a Lindelöf space. Then there is a family $U = \{U_a\}_{a \in A}$ of open subsets of βS which covers S and such that no countable subfamily of U covers S. Let $H = \beta S \backslash \bigcup\{U_a : a \in A\}$ and let bS be the compactification of S which is obtained from βS by the identification of all points of H to a single point; denote this point by p_0. Suppose that there is a G_δ-set $G_i \subset bS$ which contains p_0 and is disjoint from S. Let $F = bS \backslash G$. Then $S \subset F \subset \bigcup\{U_a : a \in A\}$. But F, being an F_σ-set in a compact space, can be covered by a countable infinity of sets U_a. This leads to a contradiction, whence it is not Q-closed in bS.

An immediate consequence of (vi) is the following:
(vii) A locally compact space is Q-closed in its minimal one-point compactification if and only if it is a Lindelöf space.

IV. In this section we shall consider the cases of rings containing unbounded functions. We assume the following condition:
3° If $f \in R$ and $(p) \neq 0$ for each $p \in X$, then $1/f \in R$.

We shall prove some elementary properties of such rings (in (vii)-(viii)) R is a fixed linear ring of continuous functions on a fixed space X satisfying the conditions $1°$-$3°$.

(viii) If $f \in R$, then $|f| \in R$.

At first, suppose that f is a bounded function. Then one can assume without loss of generality that $|f(p)| < \frac{1}{2}$ for each $p \in X$. We have $|f| = \sqrt{1 - (1 - |f|)^2}$, whence $|f|$ can be written as the sum of a uniformly convergent series of polynomials with respect to f. Thus, by $2°$, $|f| \in R$.

Now, suppose that f is an arbitrary function in R. Let $f_1 = f / (1 + |f|)$.

Then f_1 is a bounded function, and, by $3°$, $f_1 \in R$. Consequently $|f_1| \in R$ and $|f| = |f_1| (1 + f_1) \in R$.

If $f, g \in R$, then $\max\{f, g\} \in R$ and $\min\{f, g\} \in R$.

This follows from (viii) and the formulas:
$$\max\{f, g\} = \frac{f + g + \sqrt{|f - g|^2}}{2}, \quad \min\{f, g\} = \frac{f + g - \sqrt{|f - g|^2}}{2}.$$

(x) Each member f of R can be written as the difference of two non-negative members of R.
In fact, $f = f^* - f^-$, where $f^* = \max\{f, 0\}$, $f^- = -\min\{f, 0\}$.

(xi) Each member f of R can be written in the form $f = 1/f_1 - 1/f_2$, where f_1 and f_2 are bounded positive functions in R.

Indeed, let
$$f_1 = \frac{1}{f + 1}; \quad f_2 = \frac{1}{f + 1},$$

where f^* and f^- have the same meaning as in the proof of (x).

(xii) For each f in R there is a continuous function h defined on $\overline{F_R(X)}$ such that $f(p) = h(F_R(p))$ for each $p \in X$.

In view of (x), compact one can assume that f is a non-negative function.

Then, by $3°$, $g = (f + 1)/f \in R^*$ (see the definition of the mapping F_R given at the beginning of this paper). Let
$$h(a) = \frac{1 - p_0(a)}{p_0(a)},$$

where $p_0(a)$ denotes the gth coordinate of a point $a \in F_R(X)$. Then h is the required function (this function is well-defined on $\overline{F_R(X)}$, since the gth coordinate of the point $a \in F_R(X)$ lies in the interval $0 < t \leq 1$).

Theorem 2. If R is a linear ring of continuous real-valued functions defined on a topological space X which satisfies the conditions $1°$-$3°$, then each non-trivial linear multiplicative functional φ defined on R is of the form (x) if and only if $\overline{F_R(X)}$ is Q-closed in $F_R(X)$.

Proof. Suppose that $F_R(X)$ is Q-closed in $F_R(X)$ and let φ be a non-trivial linear multiplicative functional defined on X. Denote by B_i the ring of all continuous functions defined on $F_R(X)$. In virtue of (i) and (ii) a one-to-one correspondence can be established between bounded members of B_i and all members of B_i; corresponding functions $f, h \in R_i$, $h \in R_i$ satisfy the equality $f(p) = h(F_R(p))$ for each $p \in X$. Let us set $\varphi_i(h) = \varphi(h)$. Then φ_i is a non-trivial linear multiplicative functional defined on R_i. Since $F_R(X)$ is compact, there is a point $a_\infty \in F_R(X)$ such that $\varphi_i(a_\infty) = h(a_\infty)$ for each $h \in R_i$. We shall show that $a_\infty \in F_R(X)$.
Indeed, if \(a_0 \in \mathcal{F}_R(X) \setminus \mathcal{F}_b(X) \), then, by (iii), there is a continuous function \(h \) defined on \(\mathcal{F}_R(X) \) such that \(h(a_0) = 0 \) and \(h(x) \neq 0 \) for each \(x \) in \(\mathcal{F}_b(X) \). Let \(f \) be the function in \(R \) which corresponds to \(h \). Then \(f(p) \neq 0 \) for each \(p \) in \(X \), whence, by 3°, \(1/f \in \mathcal{B}_R \), and it follows that \(\varphi(f) \neq 0 \). On the other hand, \(\varphi(f) = \varphi(h) = h(a_0) = 0 \), and this leads to a contradiction.

Now, let \(p_0 \) be any point in \(X \) with \(\mathcal{F}_b(p_0) = a_0 \). Using (i) and the definition of the functional \(\varphi_1 \), one can easily show that \(\varphi(f) = f(p_0) \) for each bounded function \(f \) in \(R \). Using (xi) we infer that the above equality holds true for each function \(f \) in \(R \). Thus the first part of our theorem is proved.

Conversely, suppose that \(\mathcal{F}_b(X) \) is not \(Q \)-closed in \(\mathcal{F}_R(X) \). Then, by (iii), there is a point \(a_0 \in \mathcal{F}_R(X) \setminus \mathcal{F}_b(X) \) such that for each continuous function \(h \) defined on \(\mathcal{F}_R(X) \) which is strictly positive on \(\mathcal{F}_b(X) \), we have \(h(a_0) > 0 \). Let \(f \) be any member of \(R \). By (xii), there is a continuous function \(h \) defined on \(\mathcal{F}_R(X) \) such that \(f(p) = h(\mathcal{F}_b(p)) \) for each \(p \) in \(X \). We shall show that \(h \) admits a continuous extension over \(\mathcal{F}_b(X) \cup \{a_0\} \). In fact, let

\[
f = \frac{1}{f_1} - \frac{1}{f_2},
\]

where \(f_1, f_2 \) are bounded positive functions in \(R \). By (i), there are continuous functions \(h_1, h_2 \) defined on \(\mathcal{F}_R(X) \) such that \(f_1(p) = h_1(\mathcal{F}_b(p)) \) for each \(p \) in \(X \) (\(i = 1, 2 \)). Since \(h_i \) (\(i = 1, 2 \)) are strictly positive on \(\mathcal{F}_b(X) \) and \(h(a_0) > 0 \) (\(i = 1, 2 \)), it follows that the function \(\frac{1}{f_1} - \frac{1}{f_2} \) is continuous on \(\mathcal{F}_b(X) \cup \{a_0\} \) and clearly it is an extension of \(h \).

Let us set \(\varphi(f) = h^*(a_0) \), where \(h^* \) is the continuous extension of \(h \) over \(\mathcal{F}_b(X) \cup \{a_0\} \). Then \(\varphi \) is a non-trivial linear multiplicative functional defined on \(R \). Using (iii), it is easy to show that \(\varphi \) is not of the form (ii).

V. Consequences of Theorem 2.

Theorem 3. If \(X \) is a Lindelöf space and \(R \) is any linear ring of continuous functions defined on \(X \) satisfying the conditions 1°-3°, then each non-trivial linear multiplicative functional \(\varphi \) defined on \(R \) is of the form (ii).

Conversely, if \(X \) is not a Lindelöf space, then there is a linear ring \(R \) of continuous functions on \(X \) satisfying the conditions 1°-3° and a non-trivial linear multiplicative functional \(\varphi \) defined on \(R \) which is not of the form (ii).

Proof. If \(X \) is a Lindelöf space, then each continuous image of \(X \) is a Lindelöf space and a Lindelöf space is \(Q \)-closed in each of its compactifications (clearly \(\mathcal{F}_R(X) \) is a compactification on \(\mathcal{F}_R(X) \)).

Conversely, if \(X \) is not a Lindelöf space, then there is a compactification \(kX \) of \(X \) such that \(X \) is not \(Q \)-closed in \(kX \). Let \(R \) be the least ring satisfying the conditions 1°-3° that contains all functions on \(X \) which admit a continuous extension over \(kX \). Then \(R \) is a homeomorphism and \(\mathcal{F}_R \) can be extended to a continuous mapping of \(kX \) onto \(\mathcal{F}_R(X) \). It follows that \(\mathcal{F}_R(X) \) is not \(Q \)-closed in \(\mathcal{F}_R(X) \).

Theorem 4. If \(R_1, R_2 \) are linear rings of continuous functions on \(X \) satisfying the conditions 1°-3°, \(R_1 \) distinguishes points and closed sets \(^4\) and \(R_1 \subset R_2 \), then if each non-trivial linear multiplicative functional \(\varphi \) on \(R_1 \) is of the form (ii), the same holds true for the ring \(R_2 \).

Proof. The mappings \(\mathcal{F}_R \) and \(\mathcal{F}_B \) are homeomorphisms, whence \(\mathcal{F}_R(X) \) and \(\mathcal{F}_B(X) \) can be regarded as compactifications of \(X \). One can easily verify that \(\mathcal{F}_R(X) \subset \mathcal{F}_B(X) \), whence the statement of the theorem follows directly from Theorem 2 and (iv).

References

\(^4\) I.e. for each closed set \(A \subset X \) and each point \(p \in X \setminus A \) there is a \(f \) in \(R \) with \(f(p) \neq f(A) \).

INSTITUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 4.11.1957