Contents of Volume 139, Number 1

V. C. Nall and E. J. Vought, Partial confluence of maps onto graphs and inverse limits of single graphs .. 1–7
D. H. Fremlin, On the average of inner and outer measures .. 9–15
M. Frantz, On Sierpiński’s nonmeasurable set .. 17–22
R. Caution, Las funciones continuas y las funciones integrables al sentido de Riemann como subespacios de L^p .. 23–36
R. Pol, A converse to a theorem of K. Kuratowski on parametrizations of compacta on the Cantor set .. 37–47
H. Kato, Excessive homeomorphisms and indecomposability .. 49–57
T. Natkaniec, On compositions and products of almost continuous functions .. 59–74

The FUNDAMENTA MATHEMATICA publishes papers devoted to Set Theory, Topology, Mathematical Logic and Foundations, Real Functions, Measure and Integration, Abstract Algebra.

Each volume consists of three separate issues.

Manuscripts and editorial correspondence should be addressed to:

FUNDAMENTA MATHEMATICA
Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

Papers for publication should be submitted in two typewritten (double spaced) copies and contain a short abstract. A complete list of all handwritten symbols with indications for the printer should be enclosed. Special typeset should be indicated according to the following code: script letters—by encircling the typod Roman letter in black, German letters—by typing the Roman equivalent and underlining in green, boldface letters—by straight black underlining. The authors will receive 50 reprints of their articles.

The publishers would like to encourage submission of manuscripts written in TeX. On acceptance of their papers, authors should send discs (preferably PC) plus relevant details to the above address, or transmit the file by electronic mail to: edimpan@peln.

Correspondence concerning subscriptions, library exchange and back numbers should be sent to:

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

© Copyright by Instytut Matematyczny PAN, Warszawa 1991

Published by PWN Polish Scientific Publishers
ISBN 83-01-10591-7 ISSN 0016-2736

Wrocławskaja Druckarnia Naukowa

Partial confluence of maps onto graphs and inverse limits of single graphs

by

V. C. Nall (Richmond, Va.) and Eldon J. Vought (Chico, Cal.)

Abstract. P(M) is the smallest integer such that if X is any continuum, f is any map from X onto M, and K is any subcontinuum of M, then there are P(M) or fewer continua in X the union of whose images under f is K. A formula is given for P(G) when G is a graph. In addition, an affirmative answer is given to a question of Hagopian who asked if an aposyndetic continuum that is the inverse limit of a single graph is locally connected.

1. Introduction. A general problem for a continuum M is to find the smallest integer P(M) such that if X is any continuum, f is any map from X onto M, and K is any subcontinuum of M, then there are P(M) or fewer continua in X the union of whose images under f is K. For example, class[M] is the set of all continua M for which P(M) = I, and if M is a simple closed curve or a simple triod, P(M) = 2. The first author has shown [7, Theorem II.2] if M is a continuum that, for some integer n, contains an n-od but no (n + 1)-od, n > 1, then P(M) < |n(n−1)|. One purpose of this paper is to show that if M is a graph, P(M) ≤ |n−1|. More precisely, P(M) = |n−1| where t(M) is the number of points in M of order 1.

A second purpose is to answer a question of Charles Hagopian who asked if an aposyndetic continuum that is the inverse limit of a single graph is locally connected. It is proved here that if X is semi-aposyndetic and is the inverse limit of continua for which there is an integer n such that no factor contains an n-od, then X is a graph.

2. Partial confluence of maps onto graphs. A continuum is a compact connected metric space (with metric g). A continuum M is an n-od, where n is an integer greater than 1, if M contains a subcontinuum K, called the core of the n-od, such that $M \setminus K$ has n components. If M is a continuum, let n(M) be the largest integer (if it exists) such that M contains an n(M)-od. A map is a continuous function. If f is a map from a continuum X onto a continuum Y, then a subcontinuum K of Y is an w_f-set if there is a continuum K' in X such that $f(K') = K$. A subcontinuum J of a subcontinuum K of Y is a maximal w_f-set in K if J is a w_f-set, and J is not a proper subcontinuum of a w_f-set which is contained in K. The map f is n-partially confluent if every subcontinuum of Y is the union of n or fewer w_f-sets. For the continuum M let P(M) be the largest integer such
that there is a map f from a continuum onto M that is not $(P(M) - 1)$-partially confluent. Note that $P(M)$ is the smallest integer such that for every map of a continuum onto M, every subcontinuum of M is the union of $P(M)$ or fewer w_f-sets.

A subcontinuum A of a continuum X is a free arc in X if A is an arc such that the boundary of A is contained in the set of endpoints of A. A continuum G is a graph if it is the union of a finite number of free arcs. For a graph G, let $e(G)$ be the number of edges of G, $v(G)$ the number of points of order one in G, called terminal points, and $v(G)$ the number of vertices of G (here, a point of order one is not a vertex). Let $\beta(G)$ be the first Betti number for G. A spanning tree for G is an acyclic subcontinuum of G that contains all of the vertices and terminal points of G, and whose edges are edges of G. If H is a spanning tree, $\beta(H) = \beta(G)/H = e(G) - e(H) = e(G) - ([G] + v(G)) + 1 [1, Theorem 1, p. 36]. If K is a subcontinuum of G, a component of $G \setminus K$ whose closure is an arc with both endpoints in K or a simple closed curve with one point in K is a chord of K. Clearly, every spanning tree has $\beta(G)$ chords. The following lemma is probably well known, but the proof is short, and is included here for completeness.

Lemma 1. If G is a graph, then every finite collection of points of order two in G that does not separate G is contained in a collection of $(p(G) + 1)$ points of order two in G that does not separate G, and every collection of $\beta(G) + 1$ points of order two in G separates G.

Proof. Let x_1, \ldots, x_n be a finite collection of points of order two in G that does not separate G, and such that the addition of any point to this collection yields a collection that does separate G. For each j, let J_j be the interior of the edge of G that contains x_j. Then $H = G \setminus \bigcup J_j$ is acyclic, since every arc of order two in H separates H. Therefore, H is a spanning tree for G, and $\beta(G) = e(G) - e(H) = \gamma$.

Theorem 1. If G is a graph, then $\beta(G) = \beta(\gamma) + \gamma$.

Proof. Let D be an (γ)-od in G with core K. It follows that K must contain each vertex of G of order greater than two. For if it did not contain a vertex, then K could be extended by an arc to a continuum K' which contains that vertex, and is the core of an (γ)-od in G.

Each component of $G \setminus K$ is either a chord of K or an arc, one of whose endpoints is a terminal point of G. Each of the latter type of component contains exactly one component of $D \setminus K$, and each chord of K contains exactly two components of $D \setminus K$. A collection of points consisting of one element from each chord of K does not separate G. So, by Lemma 1, the maximum number of chords of K is $\beta(G)$. Thus $\gamma(G) \leq \beta(G) + \gamma(G)$.

On the other hand, G must contain a spanning tree (see the proof of Lemma 1), and the spanning tree minus the interiors of the edges of G that contain the terminal points of G is the core of a (γ)-od. Thus, $\gamma(G) = \beta(\gamma) + \gamma(G)$.

Lemma 2. Let f be a map of a continuum X onto the continuum M. Let K be a subcontinuum of M, and C_1 and C_2 be disjoint nonempty closed subsets of K such that $Bd(K) = C_1 \cup C_2$. Then there exists a connected set A that is either a w_f-set in K, or the union of two w_f-sets in K, such that $A \cap C_i \neq \emptyset$ and $A \not\subset C_i$. Moreover, if no w_f-set in K intersects C_1 and C_2, then there is a component of $M \setminus K$ whose closure intersects C_1 and C_2.

Proof. For $i = 1, 2$, let A_i be the set of all points x in K such that there is a continuum in X whose image contains x, lies in K, and intersects C_i. Note that A_1 and A_2 are nonempty closed subsets whose union is K. Let y be an element of $A_1 \cap A_2$. Then there exist w_f-sets Y_1 and Y_2 such that $y \in Y_1 \cap Y_2$, and $Y_1 \cap C_i \neq \emptyset \neq Y_2 \cap C_2$, so $A_1 = Y_1 \cup Y_2$ is the required set (it is possible that Y_1 or Y_2 might intersect both C_1 and C_2).

Suppose the closure of no component of $M \setminus K$ intersects C_1 and C_2. Then $M \setminus K = Q_1 \cup Q_2$, a separation, such that $\cl(Q_1) \cap K = C_1$ and $\cl(Q_2) \cap K = C_2$. Let B be a subcontinuum of X irreducible between $f^{-1}(C_1)$ and $f^{-1}(C_2)$. Then B is a w_f-set in K intersecting C_1 and C_2.

Lemma 3. If K is a subgraph of a graph G, and E_1, \ldots, E_n are arcs such that both endpoints of each arc in K are in G, and rest of the arc is in $G \setminus K$, and no one of the arcs is contained in the union of the others, then there exist points a_1, a_2, \ldots, a_n such that for $1 \leq i \leq n$, $a_i \in E_i$ and $\bigcup_{i=1}^{n} \{a_i\}$ does not separate G.

Proof. Let E_i be a free open arc lying in E_i, such that $E_1 \cap \bigcup_{i=2}^{n} E_i = \emptyset$, and let a_i be a point in E_i. Then $G \setminus \{a_i\}$ is connected. Suppose for $1 \leq i \leq n$, points a_1, \ldots, a_i and arcs E_1, \ldots, E_i have been selected so that $a_i \in E_i$, $1 \leq i \leq k$, $E_i \cap \bigcup_{j=1}^{i-1} E_j = \emptyset$ for $1 \leq i \leq k$ and $1 \leq j \leq n$, and $\bigcup_{i=1}^{n} \{a_i\}$ does not separate G. Let E_{k+1} be a free open arc lying in E_{k+1} such that $E_{k+1} \cap \bigcup_{i=1}^{k} a_i = \emptyset$, and let $a_{k+1} \in E_{k+1}$. Since $E_1 \cap \bigcup_{i=2}^{n} E_i = \emptyset$, $(G \setminus \{a_1, \ldots, a_k, a_{k+1}\}) = G \setminus \{a_1, \ldots, a_k\}$ is connected. By induction $G \setminus \{a_1, \ldots, a_k\}$ is connected, where each point $a_i \in E_i$ for $1 \leq i \leq n$.

Theorem 2. If G is the graph then $\beta(G) = 3(\beta(G) + \gamma(G)) - 1$.

Proof. Suppose f is a map from a continuum onto G. Let K be a subcontinuum of G such that K is acyclic, each boundary point of G is a point of order two in G, and K does not contain a terminal point of G. In this case, G is irreducible about its boundary B. Since $|B| \leq n(G)$, it follows from Theorem 1 that $|B| \leq 3(\gamma(G) + \gamma)$.

According to Lemma 2, if $B \neq \emptyset$, there is a point b_{k+1} in $B \setminus \{a_i\}$ and w_f-sets E_1 and E_2 in K such that $E_1 \cap \{a_1, \ldots, a_k, b_{k+1}\} = \emptyset$. Then $G \setminus \{a_1, \ldots, a_k, b_{k+1}\}$ is a maximal collection of points in B that contains b_{k+1}, and is contained in the union of a collection $S = \{E_1, \ldots, E_{k+1}\}$ of w_f-sets in K such that $\bigcup S$ is connected. Note that if no w_f-set in K contains b_{k+1} and another point of B, then S may be empty. Also, note that no w_f-set in K contains a point of $\{a_i\}$ and a point of $B \setminus \{a_i\}$.

According to Lemma 2, if $B \neq \emptyset$, there is a point b_{k+1} in $B \setminus \{a_i\}$ and w_f-sets E_1 and E_2 in K such that $E_1 \cap \{a_1, \ldots, a_k, b_{k+1}\} = \emptyset$. Then $G \setminus \{a_1, \ldots, a_k, b_{k+1}\}$ is a maximal collection of points in $B \setminus \{a_i\}$, that contains b_{k+1}, and is contained in the union of a collection $S = \{E_1, \ldots, E_{k+1}\}$ of w_f-sets in K such that $\bigcup S$ is connected.

Suppose $a_i \notin \{a_i\}$, where $\{a_i\}$ is contained in B, and a_i have been defined for $1 \leq i \leq k$, let $v = \sum_{i=1}^{k} x(i)$, and suppose $B \cup \{a_i\} \neq \emptyset$. By Lemma 2, there is a point b_{k+1} in
Suppose K is any subcontinuum of G. Then K is the limit of a sequence $\{K_n\}_{n=1}^\infty$ of subcontinua of G such that for each i, K_i is acyclic, the boundary points of K_i have order two, and K_i is the union of $n = 3\beta(G) + (t(G) - 1)$ or fewer w_j-sets. So for each positive integer i, there exist w_j-sets Q_1, \ldots, Q_i such that $K_i = \bigcup_{j=1}^i Q_j$. Choosing subsequences if necessary, assume that $\{Q_j\}_{j=1}^\infty$ converges to a continuum Q_i for $1 \leq j \leq n$. Clearly Q_j is a w_j-set for $1 \leq j \leq n$, and $\bigcup_{j=1}^i Q_j$ is contained in K. To see that $\bigcup_{j=1}^i Q_j = K$, let x be an element of K. For every positive integer i, there exists $y_i \in K_i$ such that $\lim y_i = y$. For every positive integer i, there exists an integer $a(i)$, $1 \leq a(i) \leq n$, such that $y_i \in Q_{a(i)}$. There is an integer α, $1 \leq \alpha \leq n$, such that $a(i) = \alpha$ for infinitely many α. Without loss of generality assume that $a(i) = \alpha$ for all the α. Then $y_i \in Q_{\alpha}$ for all α, and $\lim y_i = \lim y_{\alpha} = y_{\alpha}$ which is contained in $\bigcup_{j=1}^i Q_j$. Hence K is the union of $n = 3\beta(G) + (t(G) - 1)$ or fewer w_j-sets.

Let K be an acyclic subcontinuum of G such that K contains all the vertices of G, the boundary points of K have order two, and K does not contain any of the terminal points of G. We will produce a map f from a continuum onto G such that K is not the union of fewer than $3\beta(G) + (t(G) - 1)$ or fewer w_j-sets.

By an end arc of K is meant an arc in K which contains a terminal point of K and is contained in a free arc of K. If $\beta(G) \neq 0$, there are $\beta(G)$ pairs of end arcs, (a_i, b_i), (a_i, b_i), $1 \leq i \leq \beta(G)$, where a_i and b_i are terminal points of K, and there is an arc $[a_i, b_i]$ in the closure of G. Note that if $\beta(G) = 0$, then there are an arc a_i, b_i in the closure of G. For each end arc (a_i, b_i) of K, let x_i be a point in the interior of $[a_i, b_i]$. For each x_i from 2 to $\beta(G)$, let $f(x_i)$ be an arc in $K \cup [a_i, b_i]$, which is irreducible from x_i to a_i and does not intersect (a_i, b_i). Note that $[a_i, b_i]$ must contain (a_i, b_i). Let $f(a_i)$ be an arc in $K \cup [a_i, b_i]$ which is irreducible from a_i to b_i and does not contain b_i.

If $(t(G) - 1)(t(G) - 1) = \beta(G) + (t(G) - 1)$ and $i \neq 1$, let $f(b_i)$ be an arc in $K \cup [a_i, b_i]$ which is irreducible from b_i to x_i and which does not intersect (a_i, b_i).

Let F be a simple fan which consists of $2\beta(G) + (t(G) - 1)$ or fewer w_j-sets. Define the map f from F onto G as follows. For $1 \leq j \leq \beta(G) + (t(G) - 1)$, map one leg of F one-to-one onto K, sending x_i to x_i. For $1 \leq j \leq \beta(G) + (t(G) - 1)$, map one leg of F onto K, sending x_i to x_i. Note that each map F onto K, $1 \leq j \leq \beta(G) + (t(G) - 1)$, contains exactly two w_j-sets which is maximal in K, and each F, $1 \leq j \leq \beta(G) + (t(G) - 1)$, contains exactly two w_j-sets which are maximal in K. Observe also that these $2\beta(G) + (t(G) - 1)$ or fewer w_j-sets are all necessary in order for their union to be K. Therefore, K is the union of fewer than $3\beta(G) + (t(G) - 1)$ or fewer w_j-sets. So $P(G) = 3\beta(G) + (t(G) - 1)$.

Since $\beta(G) = \beta(G) - (\beta(G) + (t(G) - 1) - 1)\beta(G) = 3\beta(G) + (t(G) - 1)$, $P(G) = 3\beta(G) + (t(G) - 1)$ is a formula which makes $P(G)$ trivial to compute. Also, from Theorem 1 it follows that $\beta(G) = 3\beta(G) + (t(G) - 1)$. If $(G) = 0$, then $P(G) = \beta(G) - 1$, and in general, $P(G) = \beta(G) - 1$, which suggests the following question.

QUESTION 1. Is there a continuum X such that $P(X) > 3\beta(X) - 1$?

The next theorem will allow us to consider $P(X)$ for a larger collection of continua.

THEOREM 3. Suppose X is a positive integer, and the continuum $X = \lim X_{n=1}^\infty$, where each $\lim X_{n=1}^\infty$ is a continuum such that $P(X_{n=1}^\infty) \leq n$. Then $P(X) \leq n$.

Proof. For each positive integer i there is a map g_i from X onto some \mathbb{X}_i, such that $\text{diam}(g_i^{-1}(g_i(x))) \leq 1/i$ for each x in X. (4, Lemma 1.162, p. 167) Let f be a map from the continuum X onto G, and let L be a subcontinuum of X. Since g_i is n-partially confluent, for each positive integer i there is a collection K_i, ..., K_n, $i \leq n$, in X such that $\bigcup_{j=1}^i g_i^{-1}(K_j) = g_i(L)$. Let $L = f(K)$ for each j, $1 \leq j \leq n$. Choosing subsequences if necessary, assume that for each j, $1 \leq j \leq n$, the sequence $(g_i^{-1}(K_j))_{n=1}^\infty$ converges to a continuum L_j in X, and the sequence $(K_j)_{n=1}^\infty$ converges to a continuum K_j in X. It follows that $f(K_j) = L_j$ for each j, $1 \leq j \leq n$.

If x is a point in L, there is a map f from the positive integers into the integers from 1 to n, and a sequence of points $\{K_{n=1}^\infty\}_{n=1}^\infty$ such that $K_0 = \lim K_{n=1}^\infty$, and $g_i(\lim K_{n=1}^\infty) = g_i(x)$ for each positive integer i. There is a j, $1 \leq j \leq n$, such that $a_j = f$ for infinitely many f. Choosing subsequences if necessary, assume that $a_j = f$ for each positive integer i. Then $g_i^{-1}(K_j)_{n=1}^\infty$ converges to a point p_j in K_j, and $f(p_j) = \lim f(\lim K_{n=1}^\infty) = x$ since $\text{diam}(g_i^{-1}(g_i(x))) \leq 1/i$ for each positive integer i. So $x \in L_j$. We have shown that $L = \bigcup_{j=1}^i L_j$, and since each L_j is a w_j-set, L is the union of n w_j-sets.
If X is the inverse limit of a single graph, define $P^*(X)$ to be the minimum of \{ $P(G)$ | G is a graph and X is the inverse limit of G \}. According to Theorem 3, $P(X) \leq P^*(X)$. For example, if M is the Ingram continuum [2, p. 100] then M is the inverse limit of a simple triod, X is not the inverse limit of an arc [2, Theorem 3, p. 106], and M is in class W [3, Theorem 1, p. 190]. So $P^*(M) = 2$ and $P(M) = 1$.

3. Inverse limits of a single graph. The purpose of this section is to answer a question of Charles Hagopian who asked if an aposyndetic continuum that is the inverse limit of a single graph is locally connected. This question is related to the more general problem of when a one-dimensional aposyndetic continuum is locally connected. For example, it is not known if a one-dimensional unicoherent and mutually aposyndetic continuum is locally connected [see the Problem Book, problem 48]. Since every one-dimensional continuum is the inverse limit of graphs, it is natural to view those continua that are the inverse limits of a single graph as an important subclass of one-dimensional continua.

A map $f : X \rightarrow Y$ is an e-map if e is a positive number such that $f^{-1}(y)$ has diameter less than e for each y in X. A space X is semi-aposyndetic if for each pair of points in X there is a continuum in X that contains one of the points in its interior and does not contain the other point.

Theorem 4. If a continuum X contains an n-od, then there is a positive number e such that if f is an e-map from X onto Y, then Y contains an n-od.

Proof. Suppose C is an n-od with core K in X. Let $\{L_1, \ldots, L_n\}$ be the components of C. For each i, $1 \leq i \leq n$, let x_i be an element of L_i. Let $\delta_i = \min \{d(x_i, K)\}$, and let $\delta_0 = \min_{\delta_i}(d(x_i, \delta_0))$. Let $\epsilon = \min(\delta_i, \delta_0)/2$.

Suppose f is an e-map from X onto Y. For each i, the set $f(L_i \cup K)$ is disjoint from $f(L_i \cup K)$. For each x, the union of the x_i is a continuum in X. Therefore, the continua in $\{f(L_i \cup K)\}_{i=1}^n$ have a point in common and no one of them is contained in the union of the others. The union of this collection contains an n-od [6, Theorem 1].

If a continuum $X = \lim(X_n, f_n)$, then for each positive number e there is an e-map into some X_n [4, Lemma 1.162, p. 167]. So, if there is a positive integer n such that each X_n does not contain an n-od, then X does not contain an n-od.

Theorem 5. A continuum is a graph if and only if it is semi-aposyndetic and does not contain an infinite-od.

Proof. Every hereditarily locally connected continuum that does not contain an infinite-od is a graph [5, Theorem III.1, p. 568]. Suppose the continuum X is semi-aposyndetic and not hereditarily locally connected. Then there is a sequence $\{K_i\}_{i=1}^\infty$ of disjoint continua in X that converges to a nondegenerate continuum K in X. Let x and y be different points in K. Without loss of generality, it can be assumed that there is a continuum J in X that contains x in its interior and does not contain y. There is an integer N such that if $n \leq N$, $K_n \cap J \neq \emptyset$, and $K_n \cup J \neq \emptyset$. Then $J \cup K \cup (\bigcup_{n=N}^\infty K_n)$ is an infinite-od.

The next two theorems follow immediately from Theorems 4 and 5.

Theorem 6. If $X = \lim(X_n, f_n)$ and each X_n is a continuum, X is semi-aposyndetic, and if there is a positive integer n such that each X_n does not contain an n-od, and each X_n is a continuum, then X is a graph.

Since, for a positive integer n, there are only finitely many graphs that do not contain an n-od, if each X_n in the statement of Theorem 6 is a graph that does not contain an n-od, then X is the inverse limit of a single graph. Clearly, if G is a graph, there is an integer n such that G does not contain an n-od.

Theorem 7. If X is the inverse limit of a single graph G, and X is semi-aposyndetic, then X is a graph.

References

DEPARTMENT OF MATHEMATICS
AND COMPUTER SCIENCE
UNIVERSITY OF RICHMOND
Richmond, Virginia 23173, U.S.A.

Received 19 January 1990;
in revised form 12 September 1990