Von Neumann's paradox with translations

M. Laczkovich

Abstract. Let \(I \) and \(J \) be intervals with \(|I| < |J| < 2|I|\). It is shown that there are disjoint decompositions \(I = \bigcup_{i=1}^n A_i, J = \bigcup_{i=1}^n B_i \) and there is a strictly increasing contraction \(f \) from \(I \) into \(J \) such that \(B_i = f(A_i) \) and \(B_i \) is a translated copy of \(A_i \) for \(i = 2, 3, 4 \). This implies that von Neumann's paradox can be realized by using four pieces. Also, an upper estimate is given for the inner Lebesgue measure of the set \(\bigcup_{i=1}^n f(H_i) \), where the sets \(H_i \subseteq \mathbb{R}^d \) are pairwise disjoint and the maps \(f_i: H_i \rightarrow \mathbb{R}^d \) are Lipschitz. Using this estimate, it is proved that von Neumann's paradox cannot be realized by using two pieces and that four pieces can be used only if \(|J| < 2|I|\).

1. Introduction. A subset \(B \) of the real line \(\mathbb{R} \) is called metrically smaller than the set \(A \subseteq \mathbb{R} \) if there is a bijection \(f \) of \(A \) onto \(B \) such that \(|f(x) - f(y)| < |x - y| \) for every \(x, y \in A \). The following theorem (15, p. 115; [11, p. 105]) is known as von Neumann's paradox. Let \(I, J \) be intervals with \(|I| < |J|\). Then there are decompositions \(I = \bigcup_{i=1}^n A_i, J = \bigcup_{i=1}^n B_i \) such that \(B_i \) is metrically smaller than \(A_i \) for every \(i = 1, \ldots, n \). More exactly, von Neumann proves that \(B_i = f_i(A_i) \), where \(f_i \) is a strictly increasing contraction on \(I \) (i = 1, ..., n). A function \(f: A \rightarrow \mathbb{R} \) is a contraction if \(|f(x) - f(y)| < q|x - y| \) holds for every \(x, y \in A \) with a constant \(q < 1 \).

In this paper we present a similar paradoxical decomposition which uses only one contraction and three translations.

Theorem 1. Let \(I, J \) be intervals with \(|J| < 2|I|\). Then there are decompositions
\[I = \bigcup_{i=1}^n A_i, J = \bigcup_{i=1}^n B_i \text{ such that } B_i \text{ is metrically smaller than } A_i \text{ and } B_i \text{ is a translated copy of } A_i \text{ for } i = 2, 3, 4. \]

It is well known that if \(|J| < |I|\) then there are no decompositions \(I = \bigcup_{i=1}^n A_i, J = \bigcup_{i=1}^n B_i \text{ such that } B_i \text{ is congruent to } A_i \text{ for every } i = 1, \ldots, n \), i.e., \(J \) is not equivalent
by finite decomposition to I. This is obvious by the existence of a Banach measure [2, p. 257], but can also be proved effectively, without using the axiom of choice (9, p. 222) or [8, p. 72]. This easily implies that the upper bound on $|J|$ in Theorem 1 is sharp, even if we use more parts to be translated.

Theorem 2. Let I, J be intervals, and suppose that there are decompositions $I = \bigcup_{i=1}^n A_i$, $J = \bigcup_{i=1}^n B_i$ such that B_i is metrically smaller than A_i and B_i is congruent to A_i, for $i = 2, \ldots, n$. Then $|J| < 2|I|$.

Indeed, let $J = [a, b]$ and let $[c, d]$ be the closed convex hull of B_i. Since B_i is metrically smaller than A_i, and diam $A_i \leq |I|$, it is easy to see that $d - c \leq |I|$. Then $[a, c] \cup (d, b)$ is equivalent by finite decomposition to a subset of I, since $[a, c] \cup (d, b) < \bigcup_{i=1}^n B_i \cup \{c\}$ and there are congruences that map B_i into A_i ($i \geq 2$) and c into a point of A_i. This implies that $[a, c + b - d]$ is equivalent by finite decomposition to a subset of I. Hence $c + b - d - a \leq |I|$ and $|J| = b - a \leq d - c + |I| < 2|I|$.$\blacksquare$

Theorem 1 implies that von Neumann's paradox can be realized by four-piece decompositions.

Theorem 3. Let I, J be intervals with $|J| < 2|I|$. Then there are decompositions $I = \bigcup_{i=1}^4 A_i$, $J = \bigcup_{i=1}^4 B_i$ such that B_i is metrically smaller than A_i, for every $i = 1, 2, 3, 4$.

Indeed, we can take an interval J' with $|J| < |J'| < 2|I|$, apply Theorem 1 for the intervals I and J' and then use a contraction which maps J' onto J. We remark that von Neumann's proof requires at least 33 pieces in the decompositions. Obviously, Theorem 3 is much weaker than Theorem 1 and, accordingly, is much easier to prove. In the next section we give an independent proof.

We also show that the upper bound on $|J|$ in Theorem 3 is sharp. This is an immediate corollary of the following, more general theorem. We denote by λ_i and $\tilde{\lambda}_i$ the n-dimensional Lebesgue outer and inner measures, respectively.

Theorem 4. Let A_1, A_2, \ldots be a finite or infinite sequence of pairwise disjoint subsets of \mathbb{R}^n, and let, for every $i, f_i : A_i \to \mathbb{R}^n$ be a Lipschitz function with Lipschitz constant λ_i. Then

$$\lambda_i(J(f(A_i))) \leq M \lambda_i(J(A_i)),$$

where

$$M = \max \left(\sum_{i=1}^n M_i^i, \sup_i M_i^i \right).$$

Now suppose that I, J are intervals and there are decompositions $I = \bigcup_{i=1}^n A_i$, $J = \bigcup_{i=1}^n B_i$ such that each B_i is metrically smaller than A_i. Then $B_i = f_i(A_i)$, where f_i is a Lipschitz function with Lipschitz constant λ_i. Hence, by Theorem 4,

$$|J| = \lambda_i(J) \leq 4\lambda_i(I) = 2|I|.$$

Also, if one of the maps is a contraction then the inequality is strict, since then there exists $q < 1$ such that

$$|J| \leq \lambda_i(I) = q|I| \leq 2|I|.$$

Taking $M_1 = M_2 = 1$ in Theorem 4 we obtain the following corollary.

Theorem 5. Let A_1, A_2 be disjoint subsets of \mathbb{R} and let $f_i : A_i \to \mathbb{R}$ be maps such that $|f_i(x) - f_i(y)| \leq |x - y|$ ($x, y \in A_i, i = 1, 2$). Then

$$\lambda_i(f_i(A_1)) \leq \lambda_i(A_1).$$

In particular, von Neumann's paradox cannot be realized using two-piece decompositions. We do not know, however, if a three-piece von Neumann paradox exists.

We shall use the following notation. We denote by $C = C \cup \{\infty\}$ the closed complex plane. By a linear fractional transformation we mean a function $g(x) = \frac{a x + b}{c x + d} (x \in C)$, where $a, b, c, d \in C$ and $ad - bc \neq 0$. The set of all linear fractional transformations is denoted by L. Each $g \in L$ is a permutation of C (i.e., a bijection of C onto itself), and under the operation of composition L forms a group. The unit element of L (the identity map on C) will be denoted by g_0. If the coefficients of $g \in L$ are real, then g is also a permutation of the extended reals $\mathbb{R} = C \cup \{\infty\}$. (Note that \mathbb{R} contains only one infinite element.) We denote by L_1 the set of linear fractional transformations $g(x) = \frac{a x + b}{c x + d}$ with $ad - bc = 1$. Then L_1 is a subgroup of L. The composition of the maps α and β will be denoted by $\alpha \beta$, so that $\alpha \beta(x) = \alpha(\beta(x))$. By a decomposition we mean a union of pairwise disjoint sets.

2. **Proof of Theorem 3.** The proof is based on the following theorem of Robinson ([7, p. 254]; [11, p. 46]). Suppose that $\alpha, \beta, \gamma, \delta$ are independent rotations of the unit sphere S (i.e., they are free generators of a free subgroup of the group of rotations of S). Then there is a decomposition $S = \bigcup_{i=1}^4 S_i$ such that

$$\alpha(S_i \cup S_5) = S_1, \quad \beta(S_1 \cup S_3) = S_2, \quad \gamma(S_3 \cup S_4) = S_3, \quad \delta(S_4 \cup S_4) = S_4.$$

In the next lemma we transform this decomposition into \mathbb{R} and from that we infer a four-piece von Neumann paradox.

Lemma 1. Suppose that the real numbers $a_k, b_k, c_k, d_k (k = 1, 2, 3, 4)$ are algebraically independent over the rationals and let $a_k(x) = \frac{a_k x + b_k}{c_k x + d_k} (k = 1, 2, 3, 4).$
Then there is a decomposition $\mathcal{R} = \bigcup_{k=1}^{4} H_k$ such that

1. $a_1(H_1 \cup H_2) = H_1$, \hspace{1cm} $a_2(H_1 \cup H_2) = H_2$, \hspace{1cm} $a_3(H_3 \cup H_4) = H_3$, \hspace{1cm} $a_4(H_3 \cup H_4) = H_4$.

Proof. The transformations a_1, a_2, a_3, a_4 generate a free subgroup of L (see [5, p. 107]).

Let

$$A_k = a_k + i b_k, \hspace{1cm} B_k = c_k + i d_k, \hspace{1cm} C_k = -c_k + i d_k, \hspace{1cm} D_k = c_k - i d_k \hspace{1cm} (k = 1, 2, 3, 4).$$

Then the system of numbers $A_k, B_k, C_k, D_k (k = 1, 2, 3, 4)$ is algebraically independent over Q. Indeed, each of the numbers a_k, b_k, c_k, d_k is algebraically dependent on this system. Hence if this were algebraically dependent over Q then the degree of transcendance of the system $a_k, b_k, c_k, d_k (k = 1, 2, 3, 4)$ would be less than 16 which is impossible [10, p. 201]. Therefore there is a field automorphism ϕ of C such that

$$\phi(a_k) = A_k, \hspace{1cm} \phi(b_k) = B_k, \hspace{1cm} \phi(c_k) = C_k, \hspace{1cm} \phi(d_k) = D_k \hspace{1cm} (k = 1, 2, 3, 4).$$

We define $\phi(\infty) = \infty$.

Let

$$\beta_k(x) = \frac{A_k x + B_k}{C_k x + D_k} \hspace{1cm} (k = 1, 2, 3, 4).$$

Since $D_k = \overline{A_k}$ and $C_k = -\overline{B_k}$, each β_k represents a rotation of the Riemann sphere S through the stereographic projection. That is, if $\pi: S \to \mathbb{C}$ is the stereographic projection then $\beta_k = \pi^{-1} \beta_k \pi$ is a rotation of S for every $k = 1, 2, 3, 4$ [8, p. 55].

We have for every $x \in \mathbb{C}$ and $k = 1, 2, 3, 4$

$$\beta_k \phi(x) = \frac{A_k \phi(x) + B_k}{C_k \phi(x) + D_k} = \frac{\phi(a_k) x + \phi(b_k)}{\phi(c_k) x + \phi(d_k)} = \phi(\beta_k(x)) \hspace{1cm} \text{hence} \hspace{1cm} \beta_k = \phi \beta_k \phi^{-1} \hspace{1cm} \text{and} \hspace{1cm} \phi_k = \phi^{-1} \beta_k \phi^{-1} \hspace{1cm} \text{is a rotation of S for every $k = 1, 2, 3, 4$.}

This shows that the rotations ϕ_k are independent, because if $a_1^{n_1} ... a_4^{n_4} = \beta \in \mathcal{R}$ and $n_1, ..., n_4 \in \mathbb{Z}$ then $a_1^{n_1} ... a_4^{n_4}$ is a rotation of S. Therefore, by Robinson's theorem, there is a decomposition $S = \bigcup_{k=1}^{4} S_k$ such that

$$a_1(S_1 \cup S_2) = S_1, \hspace{1cm} a_2(S_1 \cup S_2) = S_2, \hspace{1cm} a_3(S_3 \cup S_4) = S_3, \hspace{1cm} a_4(S_3 \cup S_4) = S_4.$$

We put

$$H_k = (\phi^{-1} \pi(S_k)) \cap \mathcal{R} \hspace{1cm} (k = 1, 2, 3, 4).$$

Using the facts that all the maps involved are bijections and $a_k(\mathcal{R}) = (\mathcal{R}$, it is easy to check that (1) holds.

Now we turn to the proof of Theorem 3. Let I, J be intervals with $|J| < |2J|$. We may assume that $J = [0, 2]$. Let $\varepsilon > 0$ be fixed such that $|I| > \frac{1 + 2 \varepsilon}{1 - \varepsilon}$. Then there are algebraically independent real numbers $a_k, b_k, c_k, d_k (k = 1, 2, 3, 4)$ such that the functions $\alpha_k(x) = \frac{a_k x + b_k}{c_k x + d_k}$ have the following properties:

$$|\alpha_k(x) - 1| < \varepsilon \hspace{1cm} (x \in [0, 1], \hspace{1cm} k = 1, 2, 3, 4), \hspace{1cm} \text{and} \hspace{1cm} \alpha_k([0, 1]) \subset \alpha_k([0, 1]) \subset [-1, 1 + \varepsilon] \hspace{1cm} (k = 2, 3, 4).$$

(One has to choose a_2 and d_2 close to 1, b_2 and c_2 close to zero. Also, the coefficients of a_1 have to be chosen first such that $[0, 1] \subset \text{int} \{a_1([0, 1])\}$ and then we pick the coefficients of a_2, a_3, a_4.)

By Lemma 1, there is a decomposition $\mathcal{R} = \bigcup H_k$ such that (1) holds. Let β denote the translation $\beta(x) = x + 1$.

We define

$$g(x) = \begin{cases} x \text{ if } x \in (H_1 \cup H_2) \cap [0, 1], \\ \beta(x) \text{ if } x \in (H_1 \cup H_2) \cap [1, 2], \\ \beta^{-1}(x) \text{ if } x \in (H_3 \cup H_4) \cap [1, 2], \\ \beta^{-1}(x) \text{ if } x \in (H_3 \cup H_4) \cap [2, 3]. \end{cases}$$

Then g is a one-to-one map from $[0, 2]$ into $\alpha_1([0, 1])$. Let $h(x) = \alpha_1^{-1}(x)$ for $x \in \alpha_1([0, 1])$; then h is a one-to-one map from $\alpha_1([0, 1])$ into I. By Banach's theorem [1] there is a decomposition $J = P \cup Q$ such that

$$\gamma(x) = \begin{cases} g(x) \text{ if } x \in P, \\ h^{-1}(x) \text{ if } x \in Q. \end{cases}$$

is a bijection from J onto $\alpha_1([0, 1])$. Let

$$B_1 = (H_1 \cup H_2) \cap [0, 1], \hspace{1cm} B_2 = (H_1 \cup H_2) \cap [1, 2], \hspace{1cm} B_3 = (H_3 \cup H_4) \cap [0, 1], \hspace{1cm} B_4 = (H_3 \cup H_4) \cap [1, 2].$$

Then $J = \bigcup B_k$ is a decomposition. Also, $\gamma(x) = a_k(x)$ for $x \in B_k$ and $k = 1, 3$ and $\gamma(x) = \beta^{-1}(x)$ for $x \in B_2$ and $k = 2, 4$.

Let γ be a linear function such that $\gamma(\alpha_1((0, 1])) = I$. Since $|I| > \frac{1 + 2 \varepsilon}{1 - \varepsilon}$ and $|\alpha_1([0, 1])| < 1 + 2 \varepsilon$, we have $|\gamma'| > \frac{1}{1 - \varepsilon}$. Then γx is a bijection between J and I.

Let $A_k = \gamma x(B_k)$ \hspace{1cm} (k = 1, 2, 3, 4), \hspace{1cm} $f_k = \gamma x^{-1}(k = 1, 3)$, \hspace{1cm} and \hspace{1cm} $f_k = \gamma x f_k^{-1}$ \hspace{1cm} (k = 2, 4), then $f_k(A_k) = B_k$ \hspace{1cm} (k = 1, 2, 3, 4). Since $|\gamma(x)| > \frac{1}{1 - \varepsilon} = 1$ for every $x \in [0, 1]$, we have $0 < f_k(x) < 1$ for every $x \in I$, and hence each f_k is a contraction. This completes the proof.
3. Proof of Theorem 1. The idea of the proof is that we find a linear fractional transformation a_1 and translations a_2, a_3, a_4 such that a decomposition theorem similar to Lemma 1 holds. Unfortunately, the complete analogue of Lemma 1 cannot hold. Indeed, if $R = \cup H_i$ is a decomposition such that (i) is satisfied then $a_2 \cdot H_i \cap H_j = H_k$ and $a_3 \cdot H_i \cap H_j = H_k$. However, if a_2 and a_3 are translations then $a_2 \cdot a_3 = a_4$, and hence $H_i \cap H_j = \emptyset$. Therefore, $H_i \cap H_j = \emptyset$ and $H_i = a_i(R) = R$, $H_j = a_j(R) = R$, which is impossible. Therefore we have to replace Lemma 1 by a weaker statement.

Lemma 2. Let the real numbers a, c, d, e be algebraically independent over the rationals and put $b = \frac{ad - 1}{c}$. Let $a, b \in L_1$ be defined by $a(x) = \frac{ax + b}{cx + d}$ and $b(x) = x + e$. Then there are decompositions $R = X_1 \cup X_2$ and $R = X_3 \cup X_4$ of X such that the sets $a(X_1), b(X_2), X_3, b^2(X_2)$ are pairwise disjoint.

This is an immediate consequence of Lemmas 3 and 4 below. In the proof of Lemma 3 (which is a variant of [11, Theorem 4, p. 30]) we use an idea of Robinson. He observed that in a free group of rotations of S, the subgroup of those rotations which leave a given point fixed is commutative and hence it is cyclic. Unfortunately, two linear fractional transformations do not necessarily commute if they have a common fixed point. They do commute, however, if they have two common fixed points. What we have to prove in Lemma 4 is that, in the group generated by a and b, if two elements have a common fixed point, then they have two common fixed points.

Let X be a non-empty set and let S_X denote the group of permutations of X. We say that a subgroup $G \subseteq S_X$ is locally commutative if every two elements of G have a common fixed point then they commute.

Lemma 3. Let X be a non-empty set, let the group $G \subseteq S_X$ be locally commutative, and suppose that G is freely generated by the elements $a, b \in G$. Then there are decompositions $X = X_1 \cup X_2$ and $X = X_3 \cup X_4$ such that the sets $a(X_1), b(X_2), X_3$ and $b^2(X_2)$ are pairwise disjoint.

Proof. Let a denote the unit element of G (the identity map on X). Every $r \in G, r \neq 1$ has a unique representation $r = a_1^{\lambda_1} \ldots a_n^{\lambda_n}$, where the exponents are integers, $k_1 \neq 0$ for $i = 2, \ldots, n$ and $n_1 \neq 0$ for $i = 1, \ldots, p$. This will be called the canonical representation of r. The number $|k_1| + |n_1| + \ldots + |k_2| + |n_2|$ is the length of the representation. Putting $x \sim y$ if $y = r(x)$ for some $r \in G$, we define an equivalence relation on X. Let E be an arbitrary equivalence class. Since $E = E$ for every $r \in G$, it is enough to prove that there are decompositions $E = E_1 \cup E_2$ and $E = E_3 \cup E_4$ such that the sets $a(E_1), b(E_2), E_3$ and $b^2(E_2)$ are pairwise disjoint.

Suppose first that, for every $x \in E$ and $r \in G$, (i) $r(x) \neq x$.

Let an element $x \in E$ be chosen. Then for every $x \in E$ there is a unique $r_x \in G$ such that $r_x(x) = x$. The elements of the sets E_i will be selected according to the values of k_1 and n_1 in the canonical representation of r_x. We put the element x into E_1 if $k_1 = 0$ and $n_1 \neq 0$, into E_2 if $r_x = 1$ or $k_1 \neq 0$, into E_3 if $k_1 = 0$ and $n_1 < 0$, and into E_4 if $r_x = 1$, or $k_1 = 0$, or $k_1 = 0$ and $n_1 > 0$. It is easy to check that $E = E_1 \cup E_2 = E_3 \cup E_4$. If $x \in e(E_2)$, then the canonical representation of r_x has $k_1 = 1$. Also, if $x \in b(E_3)$ then we have $k_1 = 0$ and $n_1 = 1$, if $x \in E_3$ then $k_1 = 0$ and $n_1 < 0$ and, finally, if $x \in b^2(E_2)$ then $k_1 = 0$ and $n_1 > 2$. This proves that $a(E_1), b(E_2), E_3$ and $b^2(E_2)$ are pairwise disjoint.

Suppose now that $g(u) = x$ for some $u \in E$ and $g \in G, g \neq 1$. Then for every $x \in E$ we have a fixed point of some $r \in G, r \neq 1$. Indeed, if $x = d(u)$ then $dg^{-1}(x) = x$.

By assumption, each group $G_u = \{ s \in G : s(x) = x \}$ is commutative. Also, as subgroups of the free group G, they are free [4, p. 96]. Therefore G_u is cyclic for every $x \in E$. Let b_x denote one of the generators of G_u. Let $s \in E$ be such that s_x has the smallest length among the elements $s_x, (x \in E)$, and put $s = s_x$. Then the canonical representation of s is such that the product st does not cancel. Because if it did then one of the elements $s{s_x}^{-1}, a{s_x}^{-1} a, b{s_x}^{-1} b, b^{-1} s$ would have smaller length than that of s which is impossible since they are (one of) the generators of the groups $G_u, G_{u-1}, G_{u-2}, G_{u-3}$, respectively. For every $x \in E$ there is an $r \in G$ such that $x = r(x)$. This is not true since $r^2(x) = r(x) = x$ for every x. However, we can select an r such that $x = r(x)$ and the product r_x does not cancel. Indeed, if $x = r(x)$ then r_x will have this property for n large enough, since it ends with the same factor as s. Having selected r_x for every $x \in E$, we define the sets $E_i (i = 1, 2, 3, 4)$ in the same way as above. Then obviously $E = E_1 \cup E_2 = E_3 \cup E_4$. We prove that $a(E_1) \cap b(E_2) = \emptyset$. Suppose that $a(x_1) = b(x_2)$ for some $x_1 \in E_1$ and $x_2 \in E_2$. Then $a(x_2) = b(x_2)$ and hence $b(x_2)$ is from some integer n and thus x_2 generates G_u. This implies that $b(x) = br_x(x) = x$ for some integer n and thus $a(x) = br_x(x) = x$. Suppose that $n \geq 0$. Since $r_x u$ does not cancel, the canonical representation of the right hand side begins with a b, while that of $a(x)$ begins with an a, which is impossible. If $n \leq 0$ then we write $a(x) = x$ and get the same contradiction. Similar arguments show that $a(E_1), b(E_2), E_3$ and $b^2(E_2)$ are pairwise disjoint.
see that each of A, B, C, D can be written in the form of $P \in C$, where $P \in \mathbb{Z}[a, c, d, e]$ and k is a non-negative integer. Let $g = a^k \beta^n \ldots a^k \beta^n$, where k_1, n_1 are integers, $k_1 \neq 0$ if $i = 2, \ldots, p$ and $n_1 \neq 0$ for $i = 1, \ldots, p - 1$ if $p > 1$, and $k_1 \neq 0$ or $n_1 \neq 0$ if $p = 1$. Let $q(x) = \frac{Ax + B}{Cx + D}$ as before. We show that $C = 0$ implies $p = 1$ and $q = \beta^n$. Indeed, if $C = 0$ then this must be an identity since a, c, d, e are algebraically independent over Q. That is, for every $x \in L_1$ and for every translation $\delta(x) = x + u$, the map $\gamma^u \beta^v \ldots \gamma^u \beta^v$ is of the form $\frac{A'x + B'}{C'x + D'}$, where $A'x + B' = 1$. In particular, the absolute value of this function at x tends to infinity, as $x \to \infty$. Let $\omega(x) = \frac{1}{x}$ and $\delta(x) = x + 2$. Putting $\gamma = \omega \delta_0$, we obtain $\frac{1}{x} = \omega \delta_0$ for every $k \in \mathbb{Z}$, and hence

$$\gamma^u \beta^v \ldots \gamma^u \beta^v = \omega \delta_0 \omega \delta_0 \ldots \omega \delta_0.$$

Now it is easy to check that if $p > 1$ or $p = 1$ and $k_1 \neq 0$ then the value of the right-hand side at x has a finite limit as $x \to \infty$. (This argument is due to von Neumann [5, p. 107].) This contradiction shows that $C = 0$ implies $q = \beta^n$ indeed.

Since either $C \neq 0$ or $q = \beta^n$ with $n_1 \neq 0$ implies that q is not the identity map, we have proved that G is freely generated by a and β.

Now let $q, r, \tau \in G$, $q(x) = \frac{Ax + B}{Cx + D}$, and suppose that q and τ have a common fixed point u. We may assume that neither q nor τ is the identity. Suppose first that $u = \infty$. Then $C = C' = 0$ and hence $q = \beta^n$ and $\tau = \beta^m$. Thus q and τ are translations and then they commute.

Next let u be finite. Then g and τ cannot be translations and hence, by our preceding argument, $C \neq 0$ and $C' \neq 0$. Thus from $q(u) = u$ we obtain

$$u = \frac{A - D - \sqrt{A}}{2C},$$

and the value of \sqrt{A} is chosen appropriately. Similarly, $u = \frac{A' - D' + \sqrt{A'}}{2C'}$, where $A = (D - A)^2 + 4BC = (D - A)^2 + 4AD - 4 = (A + D)^2 - 4$, and $A' = (A' + D')^2 - 4$. This implies that $C' = \sqrt{A - C} \frac{\sqrt{A'}}{\sqrt{A'}} = r \in Q(a, c, d, e)$ and hence, computing r^2, we obtain $\sqrt{A'} \frac{\sqrt{A'}}{\sqrt{A'}} = r \in Q(a, c, d, e)$. Suppose first that $\sqrt{A} \notin Q(a, c, d, e)$. Then $\sqrt{A} = \frac{u}{\sqrt{A}}$, where $u \in Q(a, c, d, e)$. Since

$$u = \frac{A - D - \sqrt{A}}{2C},$$

and c_1 is arbitrary, we obtain that $\frac{c_1}{2} = \frac{c_1}{2} + \frac{c_1}{2}$ for every $c \neq 0$. Hence $A + D = 2c_1 + 2c_1 = 0$. Therefore $A + D = 0$ is impossible. Indeed, $A + D = 0$ would imply $\sqrt{A} = \frac{u}{\sqrt{A}} \in Q(a, c, d, e)$ contradicting the assumption that $\sqrt{A} \notin Q(a, c, d, e)$ are algebraically independent over Q. Therefore $A + D = \pm 2$ and $A = \pm 0$.

Since $C' \sqrt{A} - C \sqrt{A'} \in Q(a, c, d, e)$, $\sqrt{A'} \in Q(a, c, d, e)$ lies in $Q(a, c, d, e)$ and hence $A' = 0$, too. Therefore both q and τ have only one fixed point, u. This, again, implies that they commute. Indeed, let $\lambda(x) = \frac{1}{x}$, and put $\eta = \lambda \lambda^{-1}, \theta = \lambda \lambda^{-1}$. Then the only fixed point of η and δ is ∞ and hence they are translations. Thus η and δ commute, whence η and δ commute as well. This completes the proof of Lemma 4. ■
Now we turn to the proof of Theorem 1. Since the assertion of the
theorem is obvious if \([I] \subset [J]\) (take \(A_1 = I, B_1 = J\) if \([I] \subset [J]\) and \(A_1 = B_1 = \emptyset\) if \([J] \subset [I]\), we may suppose \([I] \subset [J]\). Also, we may assume that \(I = [0, u]\) and
\(J = [0, 2u]\), where \(0 < \frac{u}{2} < u < u\).

We show that there are real numbers \(a, b, c, d\), \(e\) such that \(a, c, d, e\) are
algebraically independent over \(\mathbb{Q}\), \(ad - be = 1\), and the transformations \(x \mapsto \frac{ax + b}{cx + d}\)
and \(y \mapsto x + e\) have the following properties: \(a(0, 0) \in [0, u]\), \(\beta([0, e])
\cup \beta([0, c]) = [0, u]\), and \(0 < (\beta^{-1})(x) < 1\) for every \(x \in [0, u]\).

First we choose \(\delta \in (0, 1)\) such that \(1 > \frac{1-\delta}{\delta} > 0\) and if \(a, d \in (1-\delta, 1+\delta)\) and \(b, c \in (-\delta, \delta)\) then \(\frac{ad - be}{cd} < u\). Next we find \(\eta \in (0, \delta)\) such that if \(a, d \in (1-\eta, 1+\eta)\)
then \(|ad - 1| < \frac{\eta}{2}\). Then we choose \(a, c, d, e\) such that they are
algebraically independent over \(\mathbb{Q}\), and satisfy the inequalities

\[
1 < a < 1 + \frac{\eta}{2} = \delta, \quad e < \frac{e - \delta}{2},
\]

\[
1 - \eta < a < 1 - \frac{\eta}{2}, \quad 1 - \eta < d < 1 - \frac{\eta}{2}, \quad 0 < e < \frac{u - v}{2}.
\]

Then we put \(b = \frac{ad - 1}{e}\) and observe that \(b > 0\) since \(ad - 1 < \left(1 + \frac{\eta}{2}\right)\left(1 - \frac{\eta}{2}\right) - 1 < 0\) and \(e < 0 < 0\), and also \(b < \frac{a}{e}\) for \(|ad - 1| < \frac{\eta}{2}\), and \(|e| > \frac{\delta}{2}\).

Since \(\alpha(x) = \frac{1}{(cx + d)^2}\) and \(d + c > 1 - \delta > 0\), \(a\) is strictly increasing on
\([0, u]\). Thus \(0 < \alpha(0) = \frac{a}{d}\) and \(\alpha(e) = \frac{a}{e}\) imply \(\alpha([0, e]) \subset [0, u]\). The inclusion
\(\beta([0, e]) \cup \beta([0, c]) = [0, u]\) is obvious by \(e > 0\) and \(u + 2e < u\). Finally,

\[
\alpha^{-1}(x) = -\frac{dx + b}{cx + d}, \quad (\alpha^{-1})^{-1}(x) = (1 - \frac{\alpha(x)}{a^2}).
\]

If \(x > 0\) then \(a - cx > a > 1\), and hence \(0 < \alpha^{-1}(x) < 1\).

By Lemma 2, there are decompositions \(\bar{R} = X_1 \cup X_2\) and \(\bar{R} = X_3 \cup X_4\) such that the sets \(\alpha(X_1), \beta(X_2), X_3\), and \(\beta(X_4)\) are pairwise disjoint. Let \(\gamma\) denote the translation \(\gamma(x) = x + v\). We define

\[
\theta(x) =
\begin{cases}
 x & \text{if } x \in X_1 \cap [0, u],
 \\
 \beta^\alpha(x) & \text{if } x \in X_2 \cap [0, u],
 \\
 \gamma^{-1}(x) & \text{if } x \in \gamma(X_1) \cap (u, 2u],
 \\
 \beta^\gamma(x) & \text{if } x \in \gamma(X_2) \cap (u, 2u].
\end{cases}
\]

Then \(g\) is a one-to-one map from \(J = [0, 2v]\) into \(I = [0, u]\). Since the identity
is a one-to-one map from \(I\) into \(J\), there is a decomposition \(J = P \cup Q\) such that
\(s(x) = \begin{cases} \bar{x}, & x \in P, \\ \gamma(x), & x \in Q \end{cases}\)

is a bijection from \(J\) onto \(I\). Now we put \(B_1 = \gamma(X_1) \cap (v, 2v] \cap Q, B_2 = P \cup
[0, v] \cap Q, B_3 = X_4 \cap [0, v] \cap Q, B_4 = \gamma(X_2) \cap (v, 2v] \cap Q\). Then \(J = \bigcup_{k=1}^4 B_k\)
is a decomposition, \(\lambda(B_k) = \gamma(B_k)\) and \(\gamma\) is a translation on each \(B_i\) \((i = 2, 3, 4)\). Therefore the sets \(A_k = \gamma(B_k) \cap (i = 1, 2, 3, 4)\) and the function \(f = \gamma^{-1}\) satisfy the requirements of Theorem 1.

4. Proof of Theorem 4. For an arbitrary function \(f\) we denote by \(N(f, y)\) the
number of elements (possibly infinite) of the set \(f^{-1}(y)\). It is well known that
if \(A \subset R^4\) is a Borel set and if \(f: A \to R^4\) is a Lipschitz function with Lipschitz
constant \(K\) then the function \(N(f, y)\) is measurable and

\[
\int_{R^4} N(f, y) dy \leq K^4 \lambda(A)
\]

[3, 2.10.11, p. 176]. This is true for Lebesgue measurable sets as well since a Lipschitz
function maps null sets into null sets.

Now let the sets \(A_i, f_i, \) functions \(f_i\) and numbers \(M_i\) and \(M\) be given as in Theorem 4.
Suppose that the statement of the theorem is not true, that is,

\[
\lambda_i(\bigcup_{i=1}^4 A_i) > M \lambda_i(\bigcup_{i=1}^4 A_i).
\]

Then \(\lambda_i(\bigcup_{i=1}^4 A_i) > 0\) since otherwise \(\lambda_i(\bigcup_{i=1}^4 A_i) = 0\). Hence we have \(M < \infty\). There
are measurable sets \(A, B\) such that \(\bigcup_{i=1}^4 A_i \subset A, B \subset \bigcup_{i=1}^4 A_i,\) and \(\lambda(B) < \lambda(A)\). In
particular, \(\lambda(B)\) is finite.

Let \(X_{\alpha}\) denote the family of those measurable
sets \(X \subset A\) of positive measure for which \(Y = \bigcup f_i(A_i \cap X)\) is measurable and \(\lambda(Y) \leq \lambda(BX)\). Let \(X_{\alpha}\) be a maximal disjoint subfamily of \(X_{\alpha}\) and let \(X_0\) be the union of the elements of \(X_{\alpha}\). Then \(X_{\alpha}\)
is countable, and hence \(X_0\) is measurable. Also, either \(X_0 = \emptyset\) or \(\lambda(BX) > 0\) and in both cases, \(Y = \bigcup f_i(A_i \cap X_0)\) is measurable and \(\lambda(Y) = \lambda_0(X_0)\). Then we have

\[
\lambda_0(BX) \geq \lambda_0(B) - \lambda_0(Y) > \lambda_0(A) \lambda_0(X_0) = \lambda_0(A \cap X_0).
\]

Let \(g_i\) be an extension of \(f_i\) to \(R^4\) such that \(g_i\) is a Lipschitz function with
Lipschitz constant \(M_i\) [3, 2.10.43, p. 201], and let \(h_i = g_i|_{X \cap X_0}\).

Since \(B \cdot Y_0 \subset \bigcup f_i(A_i \cap X_0) = \bigcup_i h_i(A_i \cap X_0)\), we have \(\sum y \lambda_i(h_i, y) \geq 1\) for every \(y \in B \cdot Y_0\). On the other hand,

\[
\sum_{\bar{y} \cdot 4} \sum y \lambda_i(h_i, y) \leq \sum_{\bar{y} \cdot 4} \sum y \lambda_i(h_i, y) \leq \sum_{\bar{y} \cdot 4} M \lambda_i(h_i, A \cap X_0) + 2 \lambda_0(B \cdot Y_0) \leq 2 \lambda_0(B \cdot Y_0) < 2 \lambda_0(B \cdot Y_0),
\]

This contradicts the fact that \(\lambda_0(BX) \geq \lambda_0(B) - \lambda_0(Y) > \lambda_0(A) \lambda_0(X_0) = \lambda_0(A \cap X_0)\).
and hence $\sum_i N(h_i, y) \leqslant 1$ on a positive measure subset of $B \setminus Y_0$. This implies that there is a k and there is a closed set $C \subset B \setminus Y_0$ such that $\lambda_\infty(C) > 0$ and for every $y \in C$ we have

$$N(h_i, y) = \begin{cases} 1 & \text{if } i = k, \\ 0 & \text{if } i \neq k. \end{cases}$$

We put $D = h_k^{-1}(C)$. Then D is measurable, and $\lambda_\infty(D) > 0$ since $\lambda_\infty(D) = 0$ would imply $\lambda_\infty(C) = \lambda_\infty(h_k(D)) = 0$.

We prove that $D \subset A \setminus X_0$. Obviously, $D \subset A \setminus X_0$ since $A \setminus X_0$ is the domain of h_k. Let $x \in D$ and suppose that $x \notin A \setminus X_0$. Since $h_k(x) \in C \subset B \setminus Y_0 \subset \bigcup h_i(A \setminus X_0)$, we have $h_k(x) = h_i(x_1)$ with some $x_1 \in A \setminus X_0$. If $i = k$ then $x_1 = x_k \in A \setminus X_0$, and hence $x \notin x_1$. Thus $N(h_k, h_k(x)) \geqslant 2$ which is impossible since $h_k(x) \in C$. If $i \neq k$, then we get $N(h_k, h_k(x)) \geqslant 1$ which also contradicts $h_k(x) \in C$.

Therefore $D \subset A \setminus X_0$ and, consequently, $D \cap A_i = \emptyset$ for $i \neq k$. This implies that $\int f(A_i \cap D) = f_k(D) = h_k(D) = C$, where C is measurable and

$$0 < \lambda_\infty(C) \leqslant M^* \lambda_\infty(D) \leqslant M \lambda_\infty(D).$$

In other words, $D \in N$. However, $D \cap X_0 = \emptyset$, and hence D is disjoint from the elements of \mathcal{X} which contradicts the maximality of \mathcal{X}. This contradiction completes the proof.

References

Received 3 September 1985; in revised form 11 February 1987

An atriodic tree-like continuum with positive span which admits a monotone mapping to a chainable continuum

by

James F. Davis (Richmond, Va.) and W. T. Ingram (Houston, Tex.)

Abstract. In this paper an example of an atriodic tree-like continuum with positive span is constructed. It is shown that there is a monotone mapping of this continuum onto a chainable continuum such that the only nondegenerate point inverse under the mapping is an arc.

1. Introduction. The following problems appear in the University of Houston Mathematics Problem Book. The first was raised by Howard Cook, the second by Cook and J. B. Fugate.

PROBLEM 92. If M is a continuum with positive span such that each of its proper subcontinua has span zero, does every nondegenerate, monotone, continuous image of M have positive span?

PROBLEM 105. Suppose M is an atriodic 1-dimensional continuum and G is an upper semi-continuous collection of continua filling up M such that M/G and every element of G are chainable. Is M chainable?

These problems also appeared as problems 163 and 15, respectively, in [9]. Several partial positive results concerning these problems have appeared ([2] and [8] for instance).

In this paper we construct an example which answers both questions in the negative. The example is constructed as an inverse limit of simple triods with a single bonding map and has positive span. It is similar in this respect to the examples constructed in [4, 5]. The inspiration for this example was an example of an attractor of a discrete dynamical system presented by Michael Barge at the 1985 Spring Topology Conference at the University of Southwestern Louisiana [1]. However, this example is not the example he discussed.

1 The first author was partially supported by a grant from the University of Richmond Faculty Research Committee.