Infinitary stationary logic and abelian groups

by

Paul C. Eklof * (Irvine, Ca.) and Alan H. Mekler ** (Ottawa, Ontario)

Abstract. Necessary and sufficient conditions are given for abelian groups which are L_{ω_2}-free to be equivalent with respect to certain "filter logics" obtained by adding to L_{ω_α} a second-order "almost all" quantifier. Examples and constructions are given of equivalent non-isomorphic groups.

0. Introduction. In this paper we investigate the properties of abelian groups which are expressible in various logics, $L_{\omega_2}^\alpha (\mathfrak{a})$, obtained by adding to L_{ω_α} a second-order quantifier "\mathfrak{a}-s." The semantics of the quantifier depends on the choice of a stationary subset E of κ; given E we interpret "\mathfrak{a}-s" as meaning — roughly — "for a set of small subsets s which, modulo a non-stationary set, contains E". (This is made precise in section 2.) In particular for $E = \kappa$, "\mathfrak{a}-s" means "for a closed unbounded set of small sets s".

This paper may be considered as a sequel to [2]. In that paper the abelian groups are characterized which are L_{ω_α}-equivalent to a free group; these are called the strongly κ-free groups (Theorem 1.1). Assuming $V = L$ (or with no additional set theoretic hypothesis for $\kappa = \alpha_{\kappa+1}$, $\kappa < \theta$) it may be shown that for most regular κ there are strongly κ-free groups of cardinality κ which are not free (Theorem 1.5). In this paper we consider languages stronger than L_{ω_α} which distinguish between strongly κ-free groups. In particular we show (assuming $V = L$ or for $\kappa = \alpha_{\kappa+1}$) that there is a sentence of $L_{\omega_2}^\alpha (\mathfrak{a})$ which picks out the free group among all abelian groups of cardinality κ if and only if E contains a closed unbounded set (Theorems 2.2 and 3.6).

In general, we give necessary and sufficient conditions for two strongly κ-free groups of cardinality κ to satisfy the same sentences of $L_{\omega_2}^\alpha (\mathfrak{a})$ (Theorem 3.4). (Of relevance here is an invariant of such groups (introduced in [6]): we associate to any κ-free group A a stationary set $\Gamma (A)$ (or more precisely an equivalence class of stationary sets — see Section 1)). Moreover, we characterize algebraically the...
pairs of strongly κ-free groups A and B which satisfy the same sentences of $L_{\kappa,\kappa}(\text{aa})$ for every \mathcal{E} (Theorem 4.5) and we show — assuming $\mathcal{V} = L$ — how to construct non-trivial such pairs (Corollary 5.2).^{(1)}

Throughout the paper we shall make use of the following conventions and terminology: (i) "group" always means "abelian group"; (ii) $|A|$ denotes the cardinality of a set or group; (iii) if A is a group and λ is a cardinal, A^{λ} denotes the direct sum of λ copies of A; (iv) κ is a cardinal is an initial ordinal and an ordinal is identified with the set of its predecessors; thus, $\kappa^+ = \omega_\kappa = \{\nu \mid \nu < \omega_\kappa\}$; (v) κ will always denote a regular uncountable cardinal.

1. Almost free groups. We begin by reviewing some terminology and some results dealing with groups which are "close" to being free (see [2] and [3]).

A group A is said to be κ-free if every subgroup of A of cardinality $< \kappa$ is free. A subgroup B of a κ-free group is said to be κ-pure in A if $|A/B|$ is κ-free i.e., B is a direct summand of every extension of \mathcal{C} in B such that $|\mathcal{C}| < \kappa$. We say that A is strongly κ-free if A is κ-free and every subset of A of cardinality $< \kappa$ is contained in a κ-pure subgroup of A of cardinality $< \kappa$. The property of being strongly κ-free has model-theoretic significance:

1.1. THEOREM [2]. A is strongly κ-free if and only if A is $L_{\kappa,\kappa}$-equivalent to a free group.

1.2. DEFINITION. A κ-filtration of A is an increasing chain $A = \{A_\nu, \nu < \kappa\}$ of subgroups of A satisfying for all $\nu < \kappa$:

(i) $|A_\nu| < \kappa$;

(ii) $A = \bigcup A_\nu$; and

(iii) if ν is a limit ordinal, $A_\nu = \bigcup A_\xi$.

1.3. LEMMA. (a) A is κ-free of cardinality κ if only if A has a κ-filtration by free groups. In this case we can choose a κ-filtration A such that

(iv) if A_ν is not κ-pure in A, then $A_{\nu+1} = A \cup A_\nu$ is not free.

(b) A is strongly κ-free if and only if A has a κ-filtration A satisfying (i)-(iv) and

(v) $A_{\kappa+1}$ is κ-pure in A for all $\nu < \kappa$.

Proof. Given $A = \{A_\nu, \nu < \kappa\}$ free (resp. strongly κ-free) of cardinality κ we simply construct by transfinite induction a continuous increasing chain A so that $A_\nu < A_{\nu+1}$, for $0 < \nu < \kappa$. If A_ν is not κ-pure in A, then by definition of κ-purity we can choose $A_{\nu+1}$ so that $A_{\nu+1}/A_\nu$ is not free. If A is strongly κ-free, then by definition we can choose $A_{\nu+1}$ so that $A_{\nu+1}$ is κ-pure in A.

From now on, if A is a κ-free group of cardinality κ and we write $A = \bigcup A_\nu$ we mean that $A = \{A_\nu, \nu < \kappa\}$ is a κ-filtration of A satisfying (iv). Moreover, if A is strongly κ-free, we assume that (v) holds.

A closed unbounded set (or club) in κ is a subset C of κ such that $\sup C = \kappa$ and $\sup \mathcal{E} \in C \cup \{\kappa\}$ whenever $\mathcal{E} \subseteq C$. Let $\mathcal{F}(\mathcal{X})$ be the set of all subsets of κ disjoint from a club; I forms an ideal in $\mathcal{F}(\mathcal{X})$, the Boolean algebra of all subsets of κ. Let $\mathcal{D}(\mathcal{X})$ denote the Boolean algebra $\mathcal{F}(\mathcal{X})/I$. If $E \notin \mathcal{F}(\mathcal{X})$ we let \mathcal{E} denote its image in $\mathcal{D}(\mathcal{X})$: thus $E_\mathcal{E} = E_\mathcal{E}$ if and only if $E_\mathcal{E} \cap C = E_\mathcal{E} \cap C$ for some club C in κ. The greatest element of $\mathcal{D}(\mathcal{X})$ is $1 = \mathcal{E}$ for any club; the least element is $0 = \overline{\mathcal{E}}$. A subset E of κ is called stationary if and only if $E \notin \mathcal{F}(\mathcal{X})$ for all clubs E. We are going to define a map Γ_κ of the set of all κ-free groups of cardinality κ to $\mathcal{D}(\mathcal{X})$. Given an κ-free group of cardinality κ and a κ-filtration $A = \{A_\nu, \nu < \kappa\}$ of \mathcal{A}, let

$$\mathcal{E} = \{\nu < \kappa, A_{\nu+1}/A_\nu \text{ is not free}\} = \{\nu < \kappa, A_\nu \text{ is not } \kappa\text{-pure in } A\}$$

and let $\Gamma_\kappa(A) = \mathcal{E} \in \mathcal{D}(\mathcal{X})$.

1.4. LEMMA. (1) Γ_κ is well-defined; (2) $\Gamma_\kappa(A) = 0$ if and only if A is free; and (3) if $\Gamma_\kappa(A) \neq 1$, then A is strongly κ-free.

Proof. See [6], Theorem 2.5, p. 259.

We conclude this section with a summary of some results about the existence of κ-free groups.

1.5. THEOREM. (1) (Shelah [22]) If λ is a singular cardinal and A is λ-free of cardinality λ, then A is free.

(2) (Shelah, Eklof, Mekler, et al) If λ is weakly compact and A is λ-free of cardinality λ, then A is free.

(3) (Shelah) It is consistent with ZFC that every 2^{th}-free group is free (assuming the consistency of the existence of a supercompact cardinal).

(4) (Gregory [11]) Assuming $\mathcal{V} = L$, there exists for every regular non-weakly compact κ a strongly κ-free group of cardinality κ which is not free.

(5) (Eklof [3]) If there is a κ-free group of cardinality κ which is not free, then there is a strongly κ-free group of cardinality κ which is not free.

(6) (Mekler [19]) If there is a strongly κ-free group of cardinality κ which is not free, then for every $E \subseteq \Gamma_\kappa(A)$, there exists an A with $\Gamma_\kappa(A) = E$.

(7) (Mekler [20]) For every $\mathcal{E} \subseteq \omega$ and every $E \subseteq D(\omega_{\kappa+1})$, there exists an A with $\Gamma_\kappa(\mathcal{A}) = E$.

(8) (Mekler [20]) Assuming $\mathcal{V} = L$, for successor cardinals κ and $E \subseteq D(\mathcal{X})$, there exists an A such that $\Gamma(A) = E$ if and only if $E \subseteq 1 - \mathcal{W}$ where $\mathcal{W} = \{\nu \mid \text{ cf}(\nu) \text{ is weakly compact}\}$.

For additional results on Γ, see [20]. Recently Shelah has proved that GCH implies not every κ_{th}-free group (of cardinality κ_{th}) is free.

Part (6) is weaker than the result claimed in Theorem 2.7 (2) of [6]. This is because the hypothesis that the group A be strongly κ-free is needed for the con-
struction used in the proof of Lemma 1.3, p. 326 of [19]. (For the same reason Theorem 1.1 of [19] should read "there exists a strongly \(\kappa\)-free non-free group of cardinality \(\kappa\), then there exist 2\(\ast\) strongly \(\kappa\)-free groups of cardinality \(\kappa\)." We do not know if Theorem 1.1 of [19] is true as stated, although we suspect it is.)

For the purposes of some constructions used in later sections to exhibit some examples we shall outline some of the ideas involved in the proof of part (7), which will appear in a forthcoming paper [20]. (The simple proof claimed in Corollary 2.8 of [6] does not work, because of the error mentioned above.) The case \(n = 1\) is quite elementary and well-known and does not require the following machinery. Thus the reader who so desires can skip the following and in the later examples consider only the case \(n = 1\).

1.6. Definition (Hill [12]). Define by induction on \(n \in \omega\) a class \(\mathcal{R}_n\) of torsion-free groups of cardinality \(<\omega_n\). Let \(\mathcal{R}_0 = \{\text{all countable torsion-free groups}\}\). For \(n \geq 0\), \(\mathcal{R}_{n+1}\) is the class of all groups \(A\) which have an \(\omega_{n+1}\)-filtration \(\{A_i | i < \omega_{n+1}\}\) such that for all \(i < \omega_{n+1}\) and \(A_{i+1}/A_i\) belongs to \(\mathcal{R}_n\).

1.7. Theorem (Hill-Mekler). Let \(E\) be a stationary subset of \(\kappa_{<\kappa}\) consisting only of limit ordinals. Let \(\Phi\) be any function from \(E\) into \(\mathcal{R}_n\). Then there is a strongly \(\omega_{n+1}\)-free group \(A\) of cardinality \(\omega_{n+1}\) with an \(\omega_{n+1}\)-filtration \(A = \{A_i | i < \omega_{n+1}\}\) such that \(A_i \in \mathcal{R}_n\), pure in \(A\) if \(i \in E\); and \(A_{n+1}/A_n \cong \Phi(i)\) if \(i \in E\).

2. Stationary logic. We now introduce a class of languages, stronger than \(L_{\omega_{<\kappa}}\), using which we can differentiate between the strongly \(\kappa\)-free groups, which are all \(L_{\omega_{<\kappa}}\)-equivalent.

First we define the syntax of our language \(L_{\omega_{<\kappa}}(\kappa)\) — the same for all \(\kappa\). The non-logical symbols of \(L_{\omega_{<\kappa}}(\kappa)\) are those of the language of abelian groups (a binary function symbol + and a constant symbol 0) plus a countable number of unary predicate symbols \(s_0, s_1, s_2, \ldots\). Then \(L_{\omega_{<\kappa}}(\kappa)\) is the smallest class of formulas containing the atomic formulas and closed under the formation rules of \(L_{\omega_{<\kappa}}\), negation, conjunction and disjunction over arbitrary sets of formulas; quantification over sets of variables of cardinality \(<\kappa\) plus the additional rule:

If \(\phi\) is a formula of \(L_{\omega_{<\kappa}}(\kappa)\), then so is \(\exists s_0.\phi\). Let state \(s_p\) be an abbreviation for \(\exists s_0.\phi\). (See [1] and [16], where \(L_{\omega_1}(\kappa)\) and \(L_{\omega_2}(\kappa)\) are studied in general and in detail. The idea of studying such languages was first suggested in [3].)

We shall define a semantics for \(L_{\omega_{<\kappa}}(\kappa)\) only for groups \(A\), of cardinality \(\kappa\). Fix a \(\kappa\)-filtration \(\{A_i | i < \kappa\}\) of \(A\). If \(\varphi(v_0, \ldots, v_n)\) is a formula of \(L_{\omega_{<\kappa}}(\kappa)\) — whose free first and second order variables are \(v_1, \ldots, v_n\) — we define

\[A \models \varphi[a_1, \ldots, a_n; v_1, \ldots, v_n] \]

by induction on formulas. If \(\varphi = \exists s_0.\psi\), then \(A \models \varphi[a, v]\) if and only if \(a \in A\).

For other atomic formulas and for the cases of negation, conjunction and quantification of first order variables the definition is the usual one. If \(\psi\) is of the form \(\exists s_0.\psi\), then we define

\[A \models \psi[a_1, \ldots, a_n; v_1, \ldots, v_n] \]

if and only if \(\{v_0 < \kappa : A \models \psi[a_1, \ldots, a_n; v_0, v_1, \ldots, v_n]\} \subseteq \mathcal{R}_{\kappa}\). (Compare [1], § 8.3.)

It is easy to check that for sentences \(\theta\) of \(L_{\omega_{<\kappa}}(\kappa)\), the definition of \(A \models \theta\) is independent of the choice of the \(\kappa\)-filtration, since any two \(\kappa\)-filtrations of \(A\) agree on a cub. Notice that \(L_{\omega_{<\kappa}}(\kappa)\) has the same strength as \(L_{\omega_{<\kappa}}\).

2.1. Example. (1) Let \(\delta\) be the sentence

\[\forall x \exists y (x < y \land \exists z (y < z \land \neg z < x)) \]

which is a sentence of \(L_{\omega_{<\kappa}}(\kappa)\) since the clause "\(z < x\)" is not free" can be replaced by a formula of \(L_{\omega_{<\kappa}}\) (namely, the disjunction of the descriptions of all non-free groups of cardinality \(<\kappa\)). Then

\[A \models \delta \quad \text{if and only if} \quad \Gamma(A) \models \delta \]

(2) Let \(\theta\) be the sentence

\[\forall x \exists y (x < y \land \exists z (y < z \land \neg z < x)) \]

Then \(A \models \theta\) if and only if \(\Delta(A) \models \theta\). In the special case of \(E = 1\) we obtain, by Lemma 1.4:

2.2. Theorem. There is a sentence \(\theta\) of \(L_{\omega_{<\kappa}}(\kappa)\) such that for any group \(A\) of cardinality \(\kappa\), \(A \models \theta\) if and only if \(A\) is free.

We shall see later (3.6 and 3.7) that these examples are best possible. In particular, for any \(E \neq 1\), the property of being free is not expressible in \(L_{\omega_{<\kappa}}(\kappa)\).

2.3. Example (See [5]). Let \(C\) be any group of cardinality \(<\kappa\). Let \(\psi_C\) be the following sentence of \(L_{\omega_{<\kappa}}(\kappa)\)

\[\forall x \exists y (x < y \land \exists z (y < z \land \neg z < x)) \]

Then, assuming \(V = L\), for any group \(A\) of cardinality \(\kappa\), \(A \models \psi_C\) if and only if \(\text{Ext}(A, C) = 0\). Moreover in general there is no sentence of \(L_{\omega_{<\kappa}}\) which expresses the property of \(A\) that \(\text{Ext}(A, C) = 0\).

2.4. Remark. In the case \(E = 1\) we can extend the definition of the semantics of \(L_{\omega_{<\kappa}}(\kappa)\) to groups of arbitrary cardinality by analogy with the definition of the semantics of \(L_{\omega_{<\kappa}}(\kappa)\) (cf. [1]). Thus \(A \models \varphi\) if and only if \(\{s | s \in s_p \land \varphi(s)\} \in \mathcal{R}_{\kappa}\). If \(\varphi\) is a closed unbounded subset of \(\mathcal{R}_{\kappa}(A)\) the set of subsets of \(A\) of cardinality \(<\kappa\).

Theorems 3.2 and 3.4 extend in a natural way to this setting.

3. \(E\)-equivalence of groups. Let us say that two groups of cardinality \(\kappa\) are \(E\)-equivalent if they satisfy the same sentences of \(L_{\omega_{<\kappa}}(\kappa)\). We shall generalize the idea of Examples 2.1 (1) and (2) in order to give necessary and sufficient conditions for two strongly \(\kappa\)-free groups of cardinality \(\kappa\) to be \(E\)-equivalent. We begin with a back-and-forth criterion for \(E\)-equivalence, due to Makowsky.
3.1. Definition. Let \(A \) and \(B \) be groups of cardinality \(\kappa \). Fix \(\kappa \)-filtrations \(A = \bigcup_{v \prec \kappa} A_v, \ B = \bigcup_{v \prec \kappa} B_v \) of the groups. A partial isomorphism from \(A \) to \(B \) is a pair \((f, \sigma)\) consisting of:

(i) an isomorphism \(f : A_v \to B_v \) for some \(v, \tau \prec \kappa \),

(ii) a bijection \(\sigma : X \to Y \), where \(X, \ Y \) are finite subsets of \(\kappa \), satisfying: for every \(\mu \in X \), if \(\mu \in \sigma(X) \), then \(f(A_\mu) = B_{\sigma(\mu)} \).

We write \((f, \sigma) \equiv (f', \sigma') \) if \(\forall f \prec f' \) and \(\sigma \equiv \sigma' \).

3.2. Theorem [Makowsky [17]]. If \(A \) and \(B \) are groups of cardinality \(\kappa \), \(A \) is \(\mathcal{E} \)-equivalent to \(B \) if and only if there is a set \(I \) of partial isomorphisms from \(A \) to \(B \) satisfying

(1) For every subset \(Z \) of \(A \) (resp. \(B \)) of cardinality \(< \kappa \) and every \((f, \sigma) \in I \)

there is \((f', \sigma') \in I \) such that \((f, \sigma) \equiv (f', \sigma') \) and \(Z \not\subseteq \text{dom } f' \) (resp. \(Z \not\subseteq \text{codom } f' \)).

(2) For every \(S \in \mathbb{B}^Z \) and every \((f, \sigma) \in I \)

there exists \(S' \in \mathbb{B}^Z \) such that for every \(\mu \in S \) there exists \(\mu' \in S' \) such that \((f, \sigma \cup \{ (\mu, \mu') \}) \in I \).

(3) For every \(S' \in \mathbb{B}^Z \) and every \((f, \sigma) \in I \)

there exists \(S \in \mathbb{B}^Z \) such that for every \(\mu \in S \) there exists \(\mu' \in S' \) such that \((f, \sigma \cup \{ (\mu, \mu') \}) \in I \).

We shall prove this implication using Theorem 3.2. Since \(\kappa = \lambda^+ \) is a successor cardinal, we may assume that the \(\kappa \)-filtrations are chosen so that

(1) for every \(v < \kappa \), \(A_v = A_v \oplus A_v \oplus A_v \oplus A_v \oplus A_v \) such that \(A_v \oplus A_v \oplus A_v \oplus A_v \oplus A_v \) for every \(\mu \prec \tau + 1 \), and similarly for \(A_v \).

Let \(I \) consist of all partial isomorphisms \((f, \sigma)\) such that \(f : A_{v+1} \to B_{v+1} \) for some \(\sigma \), \(\tau \prec \kappa \), and for all \(\mu \not\in \text{dom } \sigma \), \(A_{v+1} \oplus A_v \oplus B_{v+1} \oplus A_{v+1} \oplus B_{v+1} \).

Let us first verify 3.2(2) (and by symmetry 3.2(2)). Given \((f, \sigma) \in I \), where \(f : A_{v+1} \to B_{v+1} \) and given \(S \in \mathbb{B}^Z \) let \(C \) be a cub such that \(E \cap C \subseteq S \cap C \). Let \(\mathcal{E} \) be the closure of \(\{A_{v+1} \oplus A_v \mid \mu \in E \cap C, \mu \prec \tau + 1 \} \) under isomorphism and \(\cong \). By hypothesis, \(\{ \mu < \kappa \} \) belongs to \(\mathbb{B}^Z \).

So let

\[S' = \{ \mu \in E \mid \mu \prec \tau + 1 \) and \(B_{v+1} \oplus B_{v+1} \] \]

which also belongs to \(\mathbb{B}^Z \). By definition of \(S' \), for every \(\mu' \in S' \) there is a \(\mu \prec \tau + 1 \) such that

\[B_{v+1} \oplus B_{v+1} \oplus A_{v+1} \oplus A_{v+1} \oplus B_{v+1} \]

for some free group \(F \) of \(0 \leq \lambda \). But then by assumption (a),

\[B_{v+1} \oplus B_{v+1} \oplus A_{v+1} \oplus A_{v+1} \oplus B_{v+1} \]

Hence \((f, \sigma \cup \{ (\mu, \mu') \}) \in I \).

In the verification of 3.2(1) we use the following result of J. Erdős (see [8], p. 196).

3.5. Lemma. If \(F \subseteq H \subseteq K \) are free groups of cardinality \(\kappa \), such that \(F \) is isomorphic to \(F' \) and torsion-free and such that \(|H'| = |H| \), then there is an isomorphism \(H \cong F' \).

Now suppose we are given \(\mathbb{B}^2 \subseteq \mathbb{B} \) of cardinality \(\kappa \). (The case of \(\mathbb{B}^2 \subseteq \mathbb{B} \) is entirely symmetrical.) Choose \(q' \) such that \(Z \subseteq \mathbb{A}_{v+1} \). Given \((f, \sigma) \in I \) where \(f : A_{v+1} \to B_{v+1} \) let \(\mu_1 < \cdots < \mu_\ell \) be all the elements of the domain of \(\sigma \) which are \(\mu \prec \tau + 1 \) and \(\mu' \prec \mu \).

By increasing \(q' \) if necessary we may assume that the rank of \(A_{v+1} \oplus A_{v+1} \) is \(\lambda \). We must show that we can extend \(f \) to \(f' : A_{v+1} \oplus A_{v+1} \) for some \(v' \in \kappa \), such that for \(i = 1, \ldots, r \), \(f'(A_{v+1} \oplus A_{v+1}) = B_{v+1} \).

First we show how to extend \(f \) to \(g : A_{v+1} \to B_{v+1} \).

By property 1.3(v) we have:

\[A_{v+1} = A_{v+1} \oplus A_{v+1} \oplus B_{v+1} \]
for some A, B. Hence

$$A_{\alpha} = A_{\alpha+1} \oplus (A \cap A_{\alpha}); \quad B_{\beta}(\alpha) = B_{\beta+1} \oplus (B \cap B_{\beta}(\alpha)).$$

Therefore

$$A((A \cap A_{\alpha}) \equiv A_{\alpha+1} \oplus A_{\alpha} \equiv B_{\beta}(\alpha) \oplus (B \cap B_{\beta}(\alpha)).$$

Hence by Lemma 3.5 there is an isomorphism $\psi: A \rightarrow B$ such that $\sigma(A \cap A_{\alpha}) \equiv B(\beta \cap B_{\beta}(\alpha))$. Then define g_β to be f on $A_{\alpha+1}$ and φ on A. It should now be clear that in a finite number of steps like that above we can extend f to $g_\beta: A_{\alpha+1} \rightarrow B_{\beta}(\alpha) + 1$.

We can then easily deduce, to the desired f' since for sufficiently large λ we have

$$A_{\alpha} \oplus A_{\lambda} \cong Z^{(x)} \cong B_{\lambda} \oplus B_{\beta}(\lambda).$$

If x is a weakly inaccessible cardinal and A and B are strongly κ-free groups of cardinality κ_x, then for any E in $D(\kappa)$, A is E-equivalent to B if and only if A and B have κ-filtrations, $A = \bigcup \lambda \alpha, \quad B = \bigcup \lambda \beta,$ such that for every $\lambda \in E, A_{\lambda+1} \oplus A_{\lambda} \cong B_{\lambda+1} \oplus B_{\lambda}$. In this case we say A is E-quotient-equivalent to B (cf. section 4).

The proof of sufficiency is like that of the implication $(3) \Rightarrow (1)$ in 3.4. As for necessity, let $\{\alpha, \beta \} \in $ enumerate the cardinals less than κ in increasing order. Filter $A = \bigcup \lambda \alpha$, and $B = \bigcup \lambda \beta,$ so that for all $\lambda, A_{\lambda+1}$ and $B_{\lambda+1}$ are κ-pure, and $A_{\lambda} = |A_{\lambda}| = |B_{\lambda}|$, and

$$A_{\alpha+1} \oplus A_{\beta} \cong \kappa^{[\alpha]} \cong A_{\alpha+1} \oplus A_{\beta}$$

(and similarly for $B_{\alpha+1} \oplus B_{\beta}$). For each group G, let $G(\alpha) = \{\kappa_x: A_{\alpha+1} \cap \alpha \cap G\}$. Then

$$A \cong A_{\alpha} \oplus \kappa^{[\alpha]} \cong A_{\alpha} \oplus A_{\beta}$$

where the conjunction is over all groups G of cardinality $< \kappa$. Let C be a cub such that for all $\alpha \in C \cap E$,

$$B \oplus \alpha \cong (\alpha \oplus B) \cong B_{\beta}(\alpha).$$

Hence for all $\alpha \in C \cap E, B_{\alpha+1} \oplus B \cong B_{\alpha} \oplus B_{\beta}(\alpha)$, since $B_{\alpha} = |A_{\alpha}| = |B_{\alpha}|$. But then it is easy to see, using the properties of the filtration, that $A_{\alpha+1} \oplus A_{\beta} \cong B_{\alpha+1} \oplus B_{\alpha+1}$.

The following corollary should be compared with Example 2.1(2) and Theorem 2.2.

3.6. COROLLARY. Let $E \in D(\kappa)$.

(1) If A and B are strongly κ-free groups of cardinality κ such that $\Gamma(A) \equiv 1 - E$ and $\Gamma(B) \equiv 1 - E$, then A is E-equivalent to B.

(2) Hence, for every $\alpha \in \omega$ and every $E \in D(\omega_{\alpha+1})$ with $E \neq 1$, there is a non-free group A such that A is E-equivalent to a free group.

Proof. (1) This is an immediate consequence of 3.4(2) since $\{\alpha \in E(A_{\alpha+1} \cap A_{\alpha}) \} \equiv \kappa^{[\alpha]}$, and contains a free group $\{\alpha \in E \} \oplus B_{\alpha} \oplus B_{\beta} \equiv \kappa^{[\alpha]}$. Therefore $\kappa^{[\alpha]} \oplus \kappa^{[\beta]} \cong \kappa^{[\alpha]} \oplus \kappa^{[\beta]}$.

(2) By Theorem 1.5(7) there is a group A such that $\Gamma(A) \equiv 1 - E$, and by Lemma 1.4(2), A is not free if $E \neq 1$.

The following corollary should be compared with Example 2.1(1).

3.7. COROLLARY. Let $E \in D(\kappa)$.

(1) If A and B are strongly κ-free groups with κ-filtrations $A = \bigcup \lambda \alpha$, and $B = \bigcup \beta \beta$, such that for all $\alpha \in E, A_{\alpha+1} \oplus A_{\alpha} \cong B_{\beta+1} \oplus B_{\beta}$, then A is E-equivalent to B.

(2) Hence, for every $E \in D(\omega_{\alpha+1})$ and every $E_{1}, E_{2} \in D(\omega_{\alpha+1})$ such that $E \equiv E_{1}$ and $E \equiv E_{2}$, there exist strongly κ-free groups A and B such that $\Gamma(A) = E_{1}$, $\Gamma(B) = E_{2}$, and A and B is E-equivalent to E_{2}.

Proof. (1) is an immediate consequence of 3.4(2).

(2) Let H be a ω_{α} group which is not free (see Definition 1.6). By Theorem 1.7 there exist groups $A = \bigcup \lambda \alpha$, and $B = \bigcup \beta \beta$, such that $\Gamma(A) = E_{1}$, $\Gamma(B) = E_{2}$, and for every $\alpha \in \omega_{\alpha+1}$,

$$A_{\alpha+1} \cong \{H \in E_{1} \mid \alpha \in \beta \} \cup \{H \in \beta \mid \alpha \in \beta \}$$

and

$$B_{\alpha+1} \cong \{H \in E_{2} \mid \alpha \in \beta \} \cup \{H \in \beta \mid \alpha \in \beta \}$$

By part (1), A and B are E_{2}-equivalent.
4. Quotient-equivalent groups. We are going to characterize the pairs of strongly \(\kappa \)-free groups of cardinality \(\kappa \) which are \(E \)-equivalent for every \(E \in D(\kappa) \). The following is the algebraic condition which turns out to be what we want.

4.1. Definition (cf. [6]). If \(A \) and \(B \) are strongly \(\kappa \)-free groups of cardinality \(\kappa \), we say that they are quotient-equivalent if there are \(\kappa \)-filtrations \(A = \bigcup A_i, \ B = \bigcup B_i \) such that for every \(v \in A, A_v = A \cap B, \ B_v = B \cap B \), Equivalently, \(A \) and \(B \) are quotient-equivalent if for any \(\kappa \)-filtrations \(A = \bigcup A_i, \ A = \bigcup B_i \) of the groups, there is a cub \(C \) such that for \(v \in C, A_v = A \cap B, \ B_v = B \cap C \). (cf. Definition 3.3). Note that if \(A \) is quotient-equivalent to \(B \), then \(\Gamma(B) = \Gamma(B) \).

4.2. Definition. Let \(\mathfrak{A} \) be a Boolean algebra. Let us say that a subset \(\Sigma \subseteq \mathfrak{A} \) separates points if for any two different elements \(a, \neq c \) \(\mathfrak{A} \) there is a \(a \in \Sigma \) such that either (I) \(c \in a \cap a = 0 (\neq c) \cap a = 0 (i.e., c \in a \cap a = 0 \) and \(c \in a \cap a = 0 \) or vice versa) or (II) \(c \in a \cap a = 0 \) (\(\neq c) \cap a = 0 \), (where \(c \) is the complement of \(a \)). Obviously a dense subset of \(\mathfrak{A} \) separates points. But for any non-trivial \(\mathfrak{A} \) there are non-dense subsets which separate points. Indeed, if \(b \in \mathfrak{A} \cap \{0, 1\} \), then \(\Sigma_a = \{ a \in \mathfrak{A} \mid a \in b \} \) is not dense but separates points.

4.3. Theorem. Let \(A \) and \(B \) be strongly \(\kappa \)-free groups of cardinality \(\kappa \). The following are equivalent.

\(A \) is quotient-equivalent to \(B \).

\(A \) is \(E \)-equivalent to \(B \) for every \(E \in D(\kappa) \).

For some subset \(\Sigma \subseteq \mathfrak{A} \) of \(\kappa \), \(A \) is \(\Sigma \)-equivalent to \(B \) for every \(E \in \Sigma \).

Before proving the theorem, we present a set-theoretic result which we shall need. We are grateful to S. Shelah for supplying us with the following proof.

4.4. Lemma (Shelah). Let \(\kappa \) be regular, \(E \) a stationary subset of \(\kappa \) and \(f \) and \(g \) functions from \(E \) into \(E \) such that for every \(v \in E, f(v) \neq g(v) \). Then there is a stationary set \(E \subseteq E \) such that \(f(v) \neq g(v) \) for all \(v \in E \).

Proof. There is a stationary set \(E \subseteq E \) such that for all \(\mu, v \in E \), \(f(\mu) < \mu \Rightarrow f(v) \neq v \) and \(g(\mu) < \mu \Rightarrow g(v) < v \). (because if we write \(E \) as the disjoint union of \(4 \)-subsets, then one of them is stationary). There is a cub \(C \) such that for every \(\eta \in C \) and every \(v \in E \), we have \(f(v) < v \) and \(g(v) < v \). By Fodor’s Theorem there is a stationary set \(E \subseteq E \) such that:

(i) if \(f(v) < v \) for all \(v \in E \), then \(f(E) \) is constant; and

(ii) if \(g(v) < v \) for all \(v \in E \), then \(g(E) \) is constant.

Finally, let \(E' = E \cap C \). We claim that if \(v, E \subseteq E \), then \(f(v) \neq g(v) \). Suppose false. Say \(f(v) = g(v) = a \). Then \(\kappa = \max \{v, \eta\} \). Suppose \(v \neq \eta \) since \(E \subseteq E \).

Case 1. \(a < \max \{v, \eta\} \). Say \(\eta = \max \{v, \eta\} \). Then \(g(\eta) = a < \eta \) so by choice of \(E \) and \(E' \), \(g(E') \) is constant. Thus \(g(\eta) = \eta(\eta) \), but this contradicts the fact that \(g(\eta) \neq \eta(\eta) \).

Case 2. \(a > \max \{v, \eta\} \). Say \(\eta > \max \{v, \eta\} \). Then \(\eta \neq v \leq \eta \), since then \(\eta \in C \) and \(f(\eta) > \eta \). A contradiction.

Proof of 4.3. (1) \(\Rightarrow \) (2) follows immediately from Theorem 3.4. (2) \(\Rightarrow \) (3) is trivial. Thus it remains only to prove (3) \(\Rightarrow \) (1). Suppose \(A \subseteq \mathfrak{A} \) is not quotient-equivalent to \(B = \bigcup B_i \). Define functions \(f, \ g : E \to \kappa \) such that for all \(v \in E, f(v) \) (resp. \(g(v) \)) equals the element of \(\kappa \) corresponding to the \(\kappa \)-equivalence class of \(A_{v+1} \), (resp. \(B_{v+1} \)). By Lemma 4.4 there is a stationary subset \(E' \subseteq E \) contained in \(E \) such that for all \(v, \eta \in E', A_{v+1} = B_{v+1} \). Let \(E \) be the closure of \(\{A_{v+1} \mid v \in E' \} \) under \(\leq \) and \(\subseteq \). Let

\(F_0 = \{v \in \kappa \mid A_{v+1}, E \in E \} \) and \(F_1 = \{v \in \kappa \} \).

Then \(F_0 \neq F_1 \) since \(F_0 \cap E^* = F_0 \cap E^* = 0 \). Since \(\Sigma \) separates points there is an \(E \)-equivalence such that either (I) \(F_0 \cap E^* = 0 \) (\(\neq F_1 \cap E^* = 0 \), or (II) \(F_0 \cap E^* = 0 \) \(\neq F_1 \cap E^* = 0 \). Suppose (I) holds. Since \(\{v \in \kappa \mid A_{v+1} \subseteq E \} = F_0 \cap E^* \) and \(\{v \in E^* \mid B_{v+1} \subseteq E \} = F_1 \cap E^* \).

Theorem 3.4 implies that \(A \) is not \(E^* \)-equivalent to \(B \), a contradiction. So (II) must hold. Let \(E' \) be the complement of \(E \). Thus \(\{v \in E^* \mid A_{v+1}, E \subseteq E \} = (1 - F_0) \cap E^* \) and \(\{v \in E^* \mid B_{v+1} \subseteq E \} = (1 - F_1) \cap E^* \) so again by Theorem 3.4 we obtain a contradiction.

4.5. Example. Suppose \(\Sigma \) is a subset of \(D(\omega_{\alpha+1}) \) which does not separate points, i.e., there exist \(F_0, F_1 \in D(\omega_{\alpha+1}) \) such that \(F_0 \neq F_1 \), but for every \(E \in \Sigma \) (I) and (II) do not hold. Let \(k = \omega_{\alpha+1} \). We shall construct strongly \(\kappa \)-free groups \(A \) and \(B \) of cardinality \(\kappa \) which are not quotient-equivalent but which are \(E^* \)-equivalent for every \(E \in \Sigma \). Let \(B = \bigcup B_i \), which is not free. (Theorem 1.7) there are groups \(A = \bigcup A_i, B = \bigcup B_i \) such that \(\Gamma(A) = \Gamma(B) = F_0 \). Let for every \(v \in E \), \(A_{v+1} \subseteq E \) (resp. \(B_{v+1} \subseteq E \)) is either isomorphic to \(H \) or free-depending on whether \(v \in E_0 \) (resp. \(v \in E' \)). Obviously \(A \) is not quotient-equivalent to \(B \) since \(\Gamma(A) \neq \Gamma(B) \). We shall use Theorem 3.4 to prove that \(A \) is \(E^* \)-equivalent to \(B \) for every \(E \in \Sigma \). Fix \(E \in \Sigma \). Given a class \(\mathfrak{X} \) of groups closed under \(\leq \) and \(\subseteq \), let

\(A(\mathfrak{X}) = \{v \in E^* \mid A_{v+1}, E \subseteq E \} \) and \(B(\mathfrak{X}) = \{v \in E^* \mid B_{v+1}, E \subseteq E \} \).

If \(H \subseteq \mathfrak{X} \), then \(A(\mathfrak{X}) = E^* \subseteq B(\mathfrak{X}) = E^* \) so 3.4 (2) holds. If \(H \subseteq \mathfrak{X} \), then
4.6. Corollary. \(\Sigma \subseteq D(\alpha_{+1})\) separates points if and only if whenever \(A\) and \(B\) are strongly \(\alpha_{+1}\)-free groups of cardinality \(\alpha_{+1}\), which are \(E\)-equivalent for all \(E \in L\), then \(\Gamma(A) = \Gamma(B)\). **

We could have defined a language \(L_{\omega}(\omega)(\alpha)\) in which we introduce a new quantifier \(\omega\) for each \(\in D(\alpha)\); thus a formula of \(L_{\omega}(\omega)(\alpha)\) may involve infinitely many different quantifiers of the form \(\omega\). The semantics of \(\omega\) is defined just as before. The following result shows that we do not obtain, at least in our setting, any additional strength by doing so.

4.7. Theorem. Let \(A\) and \(B\) be strongly \(\omega\)-free groups of cardinality \(\omega\). The following are equivalent:

(1) \(A\) is \(E\)-equivalent to \(B\) for all \(E \in D(\alpha)\);

(2) \(A\) and \(B\) satisfy the same sentences of \(L_{\omega}(\omega)(\alpha)\).

Proof. (2) \(\Rightarrow\) (1) is trivial. Now suppose (1) holds; so by 4.3 \(A\) and \(B\) have \(\omega\)-filtrations \(A = \bigcup A\) and \(B = \bigcup B\), such that for all \(\sigma \in \omega\), \(A_{\sigma} \supseteq A_{\sigma+1} \supseteq B_{\sigma} \supseteq B_{\sigma+1}\). There is an obvious back-and-forth criterion for \(L_{\omega}(\omega)(\alpha)\); namely, we require a set \(I\) of partial isomorphisms \((f, \sigma)\) as in 3.1 — which satisfies 3.2(1) and for every \(E \in D(\alpha)\) satisfies 3.2(2) and 2.1. But inspection of the proof of Theorem 3.4 shows that we have such an \(I\), namely the set of all partial isomorphisms \((f, \sigma)\) such that \(\sigma\) is the identity on its domain. **

5. The construction of quotient-equivalent groups. We shall show, under the assumption of the axiom of constructibility, the existence of many quotient-equivalent non-isomorphic groups. Recently Shelah has shown how to construct such groups in ZFC. However we do not know if the theorem from which we derive our result as a corollary is provable in ZFC.

In our proof we shall make use of the terminology and methods of the solution of the Whitehead Problem in L (see [21], or [A]).

5.1. Theorem. (\(V = L\)) Let \(A\) be a \(\omega\)-free group of cardinality \(\omega\) and \(G\) a group of cardinality \(\omega\) such that \(\text{Ext}(A, G) \neq 0\). There are \(2^{\omega}\) different groups \(B_i\) (\(i < \omega\)) such that there is a short exact sequence

\[
0 \to G \to B_i \to A \to 0
\]

(\(\ast\))

Before proving the theorem let us derive two corollaries.

5.2. Corollary. (\(V = L\)) Let \(A\) be a strongly \(\omega\)-free group of cardinality \(\omega\) which is not free. Then there are \(2^{\omega}\) different strongly \(\omega\)-free groups \(B_i\) (\(i < \omega\)) of cardinality \(\omega\) such that each \(B_i\) is \(E\)-equivalent to \(A\) for all \(E \in D(\alpha)\).

Proof. Let \(A = \bigcup A\) be a \(\omega\)-filtration of \(A\). We apply 5.1 with \(G = Z\). Assuming \(V = L\), we have that \(A\) not free implies \(\text{Ext}(A, Z) \neq 0\) ([22]. For any short

exact sequence (\(\ast\)) define a \(\omega\)-filtration of \(B_i\) by \(B_{\nu} = \nu^{-1}(A)\). Then it is clear that \(B_{i+1}/B_i \cong A_{i+1}/A_{i}\), so \(B_i\) is quotient-equivalent to \(A\). **

We also have the following immediate corollary (see [13], [14], [15], [19] for various versions) which is not a theorem of ZFC. (The method of proof of 5.1 is a generalization of the method used to prove 5.3.)

5.3. Corollary. (\(V = L\)) If \(A\) is a \(\omega\)-free group of cardinality \(\omega\) and \(G\) a group of cardinality \(\omega\), then either \(\text{Ext}(A, G) = 0\) or \(|\text{Ext}(A, G)| = 2^{\omega}\). **

Proof of 5.1. Given \(A\) and \(G\) as in the hypotheses, fix a \(\omega\)-filtration \(A = \bigcup A\), of \(A\) such that either \(|\text{Ext}(A_{\omega+1}, A_{\omega})| \neq 0\) or \(|\text{Ext}(A_{\omega+1}, A_{\omega})| = 0\) for all \(\omega \in \omega + 1\). If we let

\[
E = \{\nu \mid \text{Ext}(A_{\nu+1}, A_{\nu}) \neq 0\}
\]

then \(E\) is stationary in \(\omega\) (Theorem 2.1 of [5]). We can write \(E\) as a disjoint union, \(E = \bigcup E_i\), of stationary subsets of \(\omega\) ([24]).

We claim that there are \(2^{\omega}\) pairwise non-isomorphic pairs \((B_i, \epsilon_i)\) such that

(5.1.1)

There is a short exact sequence (\(\ast\)) and, moreover, such that; \(B_i = \sigma \times G\) as sets; \(\sigma\): \(B \to A\) is a projection on \(A\); and \(\epsilon_i\) is defined by \(\epsilon_i(\sigma) = (0, x)\).

(by an isomorphism of pairs \((B_i, \epsilon_i)\) and \((B_j, \epsilon_j)\) we mean a group isomorphism \(\phi\): \(B_i \to B_j\) such that \(\phi \circ \epsilon_i = \epsilon_j\). If the claim is true, then the theorem follows since each \(B_i\) can appear only \(\omega\) times as the first coordinate of a pair.

Suppose to the contrary that there are up to isomorphism, at most \(\omega\) pairs \((B_i, \epsilon_i)\), \(i < \omega\). We shall obtain a contradiction by constructing a pair \((C, \epsilon)\), satisfying the conditions (5.1.1) which is not isomorphic to any \((B_i, \epsilon_i)\). As a set \(C\) will be \(A \times G\). Let \(A = \bigcup A\), be a \(\omega\)-filtration of \(A\). We shall define by induction on \(\nu\) a group structure \(C\) on \(A \times G\) such that

\[
0 \to G \to C \xrightarrow{\pi} A \to 0
\]

is a short exact sequence (where \(\pi\): \(G \to C\); \(\pi(\sigma) = (0, x)\) and \(\pi\): \(C \to A\) (\(\sigma, x\) \to \(\sigma\)). To insure that \((C, \epsilon)\) is not isomorphic to any \((B_i, \epsilon_i)\) and we make use of \(\text{Ext}(E_i)\) for each \(i < \omega\). For pair \((B_i, \epsilon_i)\) fix a short exact sequence (\(\ast\)) satisfying the conditions (5.1.1). Let \(B_{i\nu} = \nu^{-1}(A_i)\). Let \(\{f_i\}: B_i \to A\times G\) be a \(\omega\)-sequence (see, for example, Theorem 0.2 of [4]).

The crucial case in the construction is when \(C\) has been constructed, \(\sigma \in E_i\), and the function \(f_i\) is an isomorphism of the pairs \((B_i, \epsilon_i)\) and \((C, \epsilon)\). We consider the commutative diagram

\[
0 \to Z \xrightarrow{i} B_i \xrightarrow{\pi(B_i)} A \to 0
\]

\[
0 \to Z \xrightarrow{i} C \xrightarrow{\pi(C)} A \xrightarrow{0}
\]
where \(f \) is induced by \(f_{|\mathcal{A}} \), i.e., \(f_{|\mathcal{A}}(b) = \pi(f_{|\mathcal{A}}(b)) \). Choose a splitting \(\varphi: A_{\mathcal{A}+1} \to B_{\mathcal{A}+1} \) of \(\pi|B_{\mathcal{A}+1} \). Let \(p = f_{\mathcal{A}+1} \circ (\varphi|A_{\mathcal{A}+1})^{-1} : A_{\mathcal{A}+1} \to C_{\mathcal{A}+1} \). Then \(p \) is a splitting of \(\pi|C_{\mathcal{A}+1} \), so by the argument above we get that there is an extension

\[
0 \to G \to C_{\mathcal{A}+1} \to A_{\mathcal{A}+1} \to 0
\]

of \(0 \to G \to C_{\mathcal{A}+1} \to A_{\mathcal{A}+1} \to 0 \) such that \(p \) does not extend to a splitting of \(\pi|C_{\mathcal{A}+1} \) (see Lemma 1.3 of [4]).

The other cases of the construction are routine (cf. proof of Lemma 1.4 of [4]). Now having constructed \(C \) we must check that \((C, e)\) is not isomorphic to any \((B, e_1)\). Suppose to the contrary that for some \(i \) there is an isomorphism \(\varphi: B_i \to C \) such that \(\varphi(e_i) = e \). Let \(\varphi: A \to B \) be the automorphism induced on \(A \). There is a cub \(S \) such that for \(v \in S \), \(\varphi(B_v) = C_v \). By \(\otimes \) the automorphism has a \(v \in S \) such that \(\varphi(B_v) = f_{|\mathcal{A}} \). Thus we are in the crucial case of the construction. Choose \(\tau > v \) such that \(\tau \in S \). Since \(A_{\mathcal{A}+1} \) is free, \(\varphi \) extends to a splitting \(\varphi': A_{\mathcal{A}+1} \to B_{\mathcal{A}+1} \) for \(\pi|B_{\mathcal{A}+1} \). Let \(p' = (\varphi|B_{\mathcal{A}+1}) \circ \varphi' \circ (\varphi|B_{\mathcal{A}+1})^{-1} : A_{\mathcal{A}+1} \to C_{\mathcal{A}+1} \); then \(p' \) extends \(p \) since \(\varphi|B_{\mathcal{A}+1} = f_{|\mathcal{A}} \) and is a splitting for \(\pi|A_{\mathcal{A}+1} \). But this contradicts the construction of \(C_{\mathcal{A}+1} \).

By combining the methods of the above theorem and the methods of [7], we obtain the following results which are not theorems of ZFC. (For the second part we use [11].)

5.4. Theorem. (V = L) For every \(\kappa \) which is regular and not weakly compact, there are \(2^{\kappa} \) strongly \(\kappa \)-free indecomposable groups \(B_i (i < 2^{\kappa}) \) of cardinality \(\kappa \) which are pairwise quotient-equivalent and pairwise non-isomorphic.

(ii) (GCH) For \(\kappa = \omega_{\omega+3} (n \in \mathbb{N}) \) we obtain the same result as in part (i).

References