ON HYPERGRAPHS OF MAXIMAL SIMPLE PATHS
OF A CLASS OF HAMILTONIAN GRAPHS

L. SZAMKOŁOWICZ

Institute of Computer Sciences, University of Wrocław,
Wrocław, Poland

Let $G = (V, E, \phi)$ be an arbitrary simple graph. A hypergraph of maximal simple paths of G is a hypergraph $H = (X, \mathcal{E})$, where $\mathcal{E} = \{E_i\}_{i=1}^n$, $E_i = E_j \iff i = j$ is a family of subsets of X corresponding to subsets of edges of an arbitrary maximal path of G. In [1] some fundamental problems in structural hypergraph theory have been formulated. Some solutions to these problems related to hypergraphs of maximal simple paths of a graph are given in [2]. In this paper necessary and sufficient conditions for a hypergraph H to be a hypergraph of maximal simple paths of G in certain subclass \mathcal{G} of Hamiltonian graphs are established. Also, the unicity of reconstruction of $G \in \mathcal{G}$ based on corresponding hypergraph H will be proved. The class \mathcal{G} contains, as a proper subclass, all Hamiltonian graphs for which $r(e) \geq 3$.

A graph $G \in \mathcal{G}$ iff there exists a Hamiltonian cycle C of G such that if a vertex $v \in C$ is not incident with any chord of cycle C, then there is a chord d linking both neighbours of v in C. The class of hypergraphs of maximal paths of elements in \mathcal{G} is denoted by \mathcal{H}. The following properties of a hypergraph $H = (X, \mathcal{E}) \in \mathcal{H}$ are evident:

1. $E_i \in \mathcal{E}, A \subseteq E_i, A \neq E_i \Rightarrow A \notin \mathcal{E}$.
2. There exists a set $C \subseteq X$ such that $A \subseteq C$, $|A| = |C|-1 \Rightarrow A \in \mathcal{E}$.

The set C called a Hamiltonian cycle of hypergraph H. The set $X \setminus C$ will be called a set of chords of cycle C and its elements—chords of cycle C.

Let d be an arbitrary chord of a Hamiltonian cycle of G. There exist in $D = C \cup \{d\}$ exactly two maximal paths of G with the length $|D|-2$ containing edge d. Hence, hypergraph H has to satisfy:

3. $d \in X \setminus C \Rightarrow$ there exist exactly two sets $E_i, E_j \in \mathcal{E}; E_i, E_j \subseteq C \cup \{d\}, d \in E_i, d \in E_j, |E_i| = |E_j| = |C \cup \{d\}| - 2$.

Let E_i and E_j be maximal paths in G determined by chord d in condition (3). Then, it is easy to notice that

4. For every $x \in C \setminus E_i$ there exists exactly one $y \in C \setminus E_j$ such that $(x, y, d) \notin E_i$ for every $E_i \in \mathcal{E}$.

[199]
Let us denote \(\{x_1, x_2\} = C \setminus E_1 \) and \(\{y_1, y_2\} = C \setminus E_2 \). By condition (4) it follows that for a fixed chord \(d \) there are three cases possible:

\((a) \) \(\{x_1, y_1, d\} \) and \(\{x_2, y_2, d\} \) are not contained in any set \(E_k \in \mathcal{E} \); for the remaining two sets: \(\{x_1, y_2, d\} \in E_k \), \(\{x_2, y_1, d\} \in E_k \); \(p, q \in I \),

\((b) \) only \(\{x_1, y_1, d\} \) is contained in \(E_k \); \(k \in I \),

\((c) \) none of the sets \(\{x_1, y_1, d\} \) is contained in \(E_k \in \mathcal{E} \).

Let us form a family of subsets of \(X \) denoted by \(\mathcal{F} \). Let \(d \) be an arbitrary chord of cycle \(C \). In case (a) we include sets \(\{x_1, x_2, d\} \) and \(\{x_2, y_2, d\} \) into family \(\mathcal{F} \), in case (b) the sets \(\{x_1, y_1, d\}, \{x_2, y_2, d\}, \{x_1, x_2, d\} \), \(\{y_1, y_2, d\} \) or \(\{x_1, y_2, d\}, \{x_2, y_1, d\}, \{x_1, y_1, d\}\).

Now, let \(\mathcal{F} \) be an arbitrary family of subsets of \(X \) and \(C \) an arbitrary non-empty subset of \(X \). Let us denote by \(\mathcal{F}^{(2)} \) the least family of a subset in \(X \) such that

\((i) \) \(\mathcal{F} \subseteq \mathcal{F}^{(2)} \),

\((ii) \) \(F_1, F_2 \in \mathcal{F}^{(2)}, |F_1 \cap F_2| \geq 1 \Rightarrow F_1 \cup F_2 \in \mathcal{F}^{(2)} \).

Let us denote by \(\mathcal{F}^{(2)}_{\text{max}} \) the family of all maximal sets of family \(\mathcal{F}^{(2)} \). We say that family \(\mathcal{F} \) determines a Hamiltonian structure in \(X \) with respect to a set \(C \) if the following conditions are satisfied:

\((iii) \) \(F_1 \in \mathcal{F}^{(2)}_{\text{max}} \Rightarrow |F_1 \cap C| \geq 2 \),

\((iv) \) \(x \in X \Rightarrow \) there exist exactly two sets \(F_1, F_2 \in \mathcal{F}^{(2)}_{\text{max}} \) such that \(x \in F_1, x \in F_2 \),

\((v) \) \(\forall y \in |X|; F_1, F_2 \in \mathcal{F}^{(2)}_{\text{max}}, F_1 \neq F_2 \Rightarrow \{x \in X, y \neq x, y \in F_1 \Rightarrow y \notin F_2 \} \).

Let \(\mathcal{F} \) determine in \(X \) a Hamiltonian structure with respect to \(C \). A subset \(S \) of \(X \) is called elementary if for every \(F_1 \in \mathcal{F}^{(2)}_{\text{max}} \), we have \(|F_1 \cap S| \leq 2 \). In particular, \(C \) is an elementary set. \(n(S) \) denotes the number of those \(F_1 \in \mathcal{F}^{(2)}_{\text{max}} \), for which \(|F_1 \cap S| = 1 \). The number \(n(S) \) is an index of an elementary set \(S \). \(\mathcal{F} \) denotes a family of subsets of \(X \), all elementary maximal sets of a given Hamiltonian structure with index 2.

It is easy to see that if \(\mathcal{F} \) is a family of subsets of \(X \) determined by conditions (a), (b), (c), then for a hypergraph \(H \) of maximal paths of a Hamiltonian graph \(G \) the following condition should be satisfied:

\((5) \) the family \(\mathcal{F} \) determines a Hamiltonian structure in \(X \) with respect to cycle \(C \) and \(E_k \in \mathcal{E} \).

Now, we shall prove the following

Theorem. Hypergraph \(H = \langle X, \mathcal{E} \rangle \) is a hypergraph of maximal simple paths for a graph \(G = \langle V, X, \phi \rangle \in \mathcal{G} \) iff for conditions (1)-(5) are satisfied. There is a one-to-one correspondence (isomorphism) between \(H \in \mathcal{H} \) and \(G \in \mathcal{G} \).

Proof. The necessity of conditions (1)-(5) is evident.

Let \(H = \langle X, \mathcal{E} \rangle \) be a hypergraph satisfying (1)-(5) and \(C \) its Hamiltonian cycle. We form graph \(G \) in the following way: let \(G = \langle V, X, \phi \rangle \) where \(V = \mathcal{F}^{(2)}_{\text{max}} \), function \(\phi : X \rightarrow V \) is defined according to condition (iv): \(x \in F_1 \Rightarrow \phi(x) = (F_1, F_2) \).

By condition (5), and taking into account (iii), (iv), and (v), we obtain the fact that \(G \) is a simple graph and for every vertex \(F_1 \in \mathcal{F}^{(2)}_{\text{max}} \), (iii) it follows that there exist exactly two edges \(x \in C \) of the graph which are incident with \(F_1 \) and hence \(C \) is a Hamiltonian cycle of \(G \). By conditions (2)-(4) the unicity of construction for family \(\mathcal{F} \) follows, and so it follows consequently for \(\mathcal{F}^{(2)}_{\text{max}} \). Further, by condition (5) and (iv) the unicity of construction for \(G \) is obtained. Only in case (c) a fictitious ambiguity occurs for family \(\mathcal{F} \) when for a chord \(d \) none of the sets \(\{x_1, y_1, d\} \) is contained in \(E_k \in \mathcal{E} \). By conditions (1)-(iv) it follows that if \(G \) has a chord with this property, then its Hamiltonian cycle contains exactly four edges and one or two diagonals. Here, the unicity (isomorphism) of \(G \) is evident. The vertices of \(G \), as it follows by construction of \(\mathcal{F} \), are determined either by a chord incident with a vertex or by a pair of edges belonging to a Hamiltonian cycle and incident with the same chord \(d \). Hence, it follows that \(G \in \mathcal{G} \).

By the construction of sets in family \(\mathcal{F} \) it follows that each \(S \in \mathcal{F} \) is a set of edges of \(G \) belonging to an arbitrary maximal path of \(G \). A set of edges of \(G \) belonging to an arbitrary maximal simple path of the graph is an elementary set with index 2 and it belongs to \(\mathcal{G} \). Hence, according to condition (5) hypergraph \(H = \langle X, \mathcal{E} \rangle \) is! a hypergraph of maximal simple paths of \(G \).

The set of conditions (1)-(5) allows to formulate a simple algorithm for verification whether \(H \in \mathcal{H} \). It seems that analysis of independence and reduction of the set of conditions should be interesting.

References

Presented to the Semester
Discrete Mathematics
(Febuary 15-June 15, 1977)