Problème aux limites de Poincaré généralisé
par W. Pogorelski (Warszawa)

1. Introduction. Le problème aux limites de Poincaré ([3], Chapitre X) consiste dans la recherche d'une fonction $u(x,y)$, harmonique à l'intérieur d'un domaine D, limitée par une courbe fermée L, qui sur cette courbe satisfait à une relation linéaire
\begin{equation}
 du/dn + a(s) u + b(s) du/ds = f(s)
\end{equation}
entre les valeurs limites de la dérivée suivant la normale du/dn, de la dérivée tangentielle du/ds, et de la fonction u elle-même; $a(s)$, $b(s)$, $f(s)$ sont les fonctions données de la longueur d'arc de la courbe L qui détermine la position du point sur la courbe L.

Le problème cité fut posé et résolu par Poincaré dans le cas particulier $a = 0$ et sous la supposition que les fonctions données, $b(s)$, $f(s)$ et la ligne L, sont analytiques. L'auteur de ce travail [2] a résolu le problème pour le cas $a \neq 0$ mais sous la même supposition d'analyticité. Le problème a été résolu complètement, sous les suppositions plus générales que les fonctions $a(s)$, $b(s)$, $f(s)$ satisfont à la condition d'Hölder, par le mathématicien soviétique Evedelezid [1].

Dans ce travail nous nous proposons de résoudre le problème de la recherche d'une fonction harmonique $u(x,y)$ à l'intérieur du domaine D, qui en tout point (s) au bord L de ce domaine vérifie la relation généralisée suivante:
\begin{equation}
 du/dn + a(s) u + b(s) du/ds = f(s)
\end{equation}

où $F(s, u, v) = 1$ est une fonction des trois variables définie dans une certaine région et λ est un paramètre. On admet les suppositions suivantes:

I. La ligne fermée de Jordan L a la tangente continue en tout point et l'angle que fait cette tangente avec une direction fixe satisfait à la condition d'Hölder, c'est-à-dire qu'on a
\begin{equation}
 |\delta_m| \leq |\delta_m| \leq \beta y \leq 1,
\end{equation}
où δ_m désigne l'angle que font les tangentes aux deux points arbitraires de la courbe L aux coordonnées curvilinéiques s et η.

Annales Polonici Mathematici II
II. La fonction des trois variables réelles $F(s, u, v)$ est définie dans la région formée

\[(s) \in L, \quad |s| \leq R_1, \quad |v| \leq R_2,\]

Elle vérifie la condition d'Hölder par rapport aux variables s, u et la condition de Lipschitz par rapport à la variable v, c'est-à-dire qu'on a

\[|F(s, u, v) - F(s_1, u_1, v_1)| \leq K(|s - s_1| + |u - u_1| + |v - v_1|).\]

III. La fonction $a(s)$, définie sur L, vérifie la condition d'Hölder

\[|a(s) - a(s_1)| \leq K'|s - s_1|^\alpha.\]

On admet que les exposants d'Hölder satisfont aux inégalités

\[a < \beta \leq 1, \quad a < \mu \leq 1.\]

Nous cherchons la fonction demandée $w(M)$ sous la forme d'un potentiel logarithmique

\[u(M) = \frac{1}{L} \log r^3_{M_0} \mu(s) ds\]

de la couche simple de densité réelle $\mu(s)$. On a alors

\[\frac{du}{ds} = -\pi \mu(s) + \int L \sin \varphi_r r^3_{M_0} \mu(s) ds,\]

\[\frac{du}{ds} = \int L \cos \varphi_r r^3_{M_0} \mu(s) ds,\]

où φ_r désigne l'angle que fait le vecteur r, joignant les points (s) et (c) sur L avec la direction positive de la tangente au point (s). La fonction sous la première intégrale (9) a une faible singularité, si $r_{M_0} \rightarrow 0$ et la seconde — une forte singularité; par conséquent, la seconde intégrale a une valeur principale de Cauchy. En substituant les expressions (9) dans la relation limite (2), on arrive à une équation intégrale pour la fonction inconnue $\mu(s)$:

\[-\pi \mu(s) + \int L \sin \varphi_r r^3_{M_0} \mu(s) ds + a(s) \int L \log r^3_{M_0} \mu(s) ds = \lambda \int L \int L \cos \varphi_r r^3_{M_0} \mu(s) ds.\]

C'est une équation intégrale non-linéaire à une forte singularité. La méthode classique des approximations successives est impuissante à résoudre l'équation (10). Nous la résolvons donc par l'application du théorème topologique de J. Schauder [4]:

Si dans un espace complet, linéaire et normé, une transformation continue fait correspondre à un ensemble S de points, concave et fermé, son sous-ensemble compact où il existe dans l'ensemble S un point invariant de la transformation.

2. Études des intégrales auxiliaires. Avant d'appliquer le théorème de Schauder à l'équation intégrale (10), nous démontrons les propriétés concernant les trois intégrales qui figurent dans l'équation (10). Nous étudierons d'abord l'intégrale la plus difficile,

\[\Phi(s) = \int L \cos \varphi_r r^3_{M_0} \mu(s) ds,\]

dont la fonction sous-intégrale admet la forte singularité si $r_{M_0} \rightarrow 0$.

Théorème 1. Si la fonction réelle $\mu(s)$, définie sur L, vérifie la condition d'Hölder,

\[|\mu(s) - \mu(s_1)| \leq K|\dot{s} - s_1|^\alpha,\]

où $0 < a < 1$, y étant l'exposant d'Hölder concernant la propriété (3) de la courbe L, alors l'intégrale (11) vérifie aussi la condition d'Hölder sous la forme

\[|\Phi(s) - \Phi(s_1)| \leq (K_1 M_0 + K_2 M_2)|\dot{s} - s_1|^\alpha,\]

avec le même exposant $a < 1$; les constantes positives K_1 et K_2 ne dépendent que de la forme géométrique de la courbe L, M_0 désigne la borne supérieure de la fonction $\mu(s)$.

Pour démontrer le théorème, désignons par φ_r l'angle que fait la tangente au point (s) avec le vecteur r, et remarquons qu'on a

\[\int L \cos \varphi_r r^3_{M_0} ds = \int L (\dot{s} \log r^3_{M_0}) ds = 0.\]

Nous pouvons donc écrire l'intégrale (11) sous la forme

\[\Phi(s) = \int L \cos \varphi_r r^3_{M_0} \mu(s) - \cos \varphi_r r^3_{M_0} \mu(s) ds = I_1(s) + I_2(s),\]

où l'on a désigné

\[I_1(s) = \int L \cos \varphi_r - \cos \varphi_r r^3_{M_0} \mu(s) ds,\]

\[I_2(s) = \int L \cos \varphi_r r^3_{M_0} \mu(s) - \mu(s) ds.\]

Les fonctions sous-intégrales ont ici une faible singularité. Nous démontrons que chacune des intégrales (15) vérifie la condition d'Hölder avec l'exposant $a < 1$. 17
Soit donc un point arbitraire \(s\) de la courbe \(L\) et le point voisin \((s_1)\) de cette courbe. On peut toujours supposer que la distance \(r_{sa}\) est suffisamment petite pour que le cercle \(l\) de rayon \(r = 2r_{sa}\) contienne l’unité.

Fig. 1

Fig. 2

térieur un seul arc \(l\) de la courbe \(L_1\) désignons par \(L - l\) la partie extérieure de la courbe \(L\). Décomposons l’intégrale \(I_1(s)\) en deux parties

\[
I_1(s) = I_1^1(s) + I_1^2(s),
\]

étendues aux arcs \(l\) et \(L - l\), et considérons d’abord la différence

\[
I_1^1(s) - I_1^1(s_1) = \int_{L - l} \left[(P(s, \sigma) \tau_{sa}^1 - P(s_1, \sigma) \tau_{sa}^1) \mu(\sigma) \right] d\sigma
\]

en posant

\[
P(s, \sigma) = \cos \phi_{sa} - \cos \phi_{as} = -2 \sin [(\phi_{sa} + \phi_{as})/2] \sin [(\phi_{sa} - \phi_{as})/2].
\]

Or nous avons (Fig. 1) \(\phi_{sa} + \phi_{as} = \delta_{sa}\), donc, d’après la supposition (3), la fonction (18) satisfait à l’inégalité de la forme

\[
|P(s, \sigma)| \leq |s - \sigma|\theta
\]

pour tout point \(s \in l\), où la constante positive \(\theta\) ne dépend que de la courbe \(L\). Remarquons ensuite qu’il existe un nombre positif \(\chi\) ne dépendant que de la courbe \(L\), et qu’un a les inégalités

\[
1 \leq |s - \sigma|\tau_{sa}^1 \leq \chi
\]

pour tout les deux points \(s\) et \(\sigma\) sur la courbe \(L\). Nous avons donc

\[
|I_1^1(s)| \leq \int_{L - l} |P(s, \sigma)| \tau_{sa}^1 |\mu(\sigma)| d\sigma \leq 2 \chi M_\sigma \int_{L - l} |s - \sigma| |s - \sigma|^{-1} d\sigma,
\]

\[
M_\sigma \text{ étant la borne supérieure de la fonction } |\mu(\sigma)|. L’inégalité analogue est vérifiée par l’intégrale \(I_2^1(s_1)\). Nous en concluons, d’après la valeur

\[
r = 2r_{sa}\text{ du rayon du cercle } \Gamma \text{ et l’inégalité } (20), \text{ qu’il existe une constante positive } \rho, \text{ ne dépendant que de la forme de la courbe } L, \text{ que les inégalités}
\]

\[
|I_1^1(s)| \leq c M_\sigma |s - s_1|^{\rho}, \quad |I_2^1(s_1)| \leq c M_\sigma |s - s_1|^{\rho}
\]

soient vraies en tout point \(s\) et \(s_1\) de la courbe \(L\). Nous écrivons ensuite

\[
I_1^1(s) - I_1^1(s_1) = \int_{L - l} \left[P(s, \sigma) \tau_{sa}^1 - P(s_1, \sigma) \tau_{sa}^1 \right] \mu(\sigma) d\sigma
\]

\[
= \int_{L - l} \left[P(s, \sigma) - P(s_1, \sigma) \right] \tau_{sa}^1 \mu(\sigma) d\sigma + \int_{L - l} \left[P(s_1, \sigma) \tau_{sa}^1 \mu(\sigma) \right] d\sigma
\]

et remarquons que

\[
P(s, \sigma) - P(s_1, \sigma) = (\cos \phi_{sa} - \cos \phi_{as}) = (\cos \phi_{sa} - \cos \phi_{as});
\]

donc

\[
|P(s, \sigma) - P(s_1, \sigma)| \leq |\phi_{sa} - \phi_{as}| + |\phi_{as} - \phi_{sa}|.
\]

Or, \(\phi_{sa} + \phi_{as} = \delta_{sa}\), donc, étant un angle que fait le vecteur \(\tau_{sa}\) avec le vecteur \(\tau_{as}\) égal en valeur absolue à \(|\phi_{sa} - \phi_{as}|\). Nous avons donc

\[
|\phi_{sa} - \phi_{as}| \leq |\delta_{sa}| + |\phi_{as} - \phi_{sa}|.
\]

(22b)

\[
|\phi_{sa} - \phi_{as}| \leq |\delta_{sa}| + |\phi_{as} - \phi_{sa}|.
\]

(22c)

\[
|\delta_{sa}| = \pm |\sin \phi_{sa} \tau_{sa}^1|.
\]

Cette formule fait connaître l’ordre de grandeur de cette dérivée, si \(\gamma = 0\). En appliquant le théorème des accroissements, nous avons

\[
|\phi_{sa} - \phi_{as}| \leq |\sin \phi_{sa} \tau_{sa}^1| |s - s_1| = |\phi_{sa} - \phi_{as}|.
\]

(22d)

\[
|\phi_{sa} - \phi_{as}| \leq |\phi_{sa} - \phi_{as}|.
\]

(22e)

\[
|\phi_{sa} - \phi_{as}| \leq |\phi_{sa} - \phi_{as}|.
\]

Le vecteur \(\tau_{sa}\) est sur \(L - l\) et \(s\) est un point sur l’arc \(s_1\). D’après le même théorème, il existe sur l’arc \(s\) un point où la tangente est parallèle au vecteur \(\tau_{sa}\), donc, remarque faite des inégalités (3) et (20), nous aurons la limitation suivante de la dérivée

\[
|d\phi_{sa}| / ds = |\sin \phi_{sa} \tau_{sa}^1| \leq c \chi |s - \sigma|^{-1},
\]

quelle que soit la différence \(s - \sigma \neq 0\). Mais si le point \(s\) est situé sur l’arc \(L - l\), alors la longueur \(|s - \sigma|\) est toujours supérieure à la distance \(r_{sa}\), donc \(|s - \sigma| \gg |s - \sigma| \gg |s - \sigma|^{-1}\). Il en résulte la limitation suivante de la différence

\[
|\phi_{sa} - \phi_{as}| \leq c \chi |s - \sigma|^{-1} (\sigma \neq L - l).
\]
Nous en concluons que la différence (22)\(^{17}\) satisfait à l’inégalité
\begin{equation}
|P(x,\sigma) - P(x_0,\sigma)| \leq \epsilon_0 |x - s_i|^{-\gamma},
\end{equation}
\(\gamma\) étant une constante positive ne dépendant que de la courbe \(L\). Nous avons donc
\begin{equation}
\int_{L_1} |P(x,\sigma) - P(x_0,\sigma)| r_{\sigma}^{-1} \mu(\sigma) \, d\sigma \leq \epsilon_0 M_\sigma \int_{L_1} |s - \sigma|^{-\gamma} \, d\sigma.
\end{equation}
Or l’intégrale à droite augmente comme \(\log r_{\tau}\) si \(|x - s_i|\to 0\), par conséquent la première intégrale dans la somme (22) vérifie la condition d’Hölder avec un exposant positif \(\gamma - \epsilon\), arbitrairement inférieur à \(\gamma\), et nous avons
\begin{equation}
\int_{L_1} |P(x,\sigma) - P(x_0,\sigma)| r_{\sigma}^{-1} \mu(\sigma) \, d\sigma \leq \epsilon_0 M_\sigma |x - s_i|^{-\gamma + \epsilon},
\end{equation}
on la constante positive \(\epsilon_0\) ne dépend que de la courbe \(L\) et de \(\epsilon\). Pour étudier la seconde composante de la somme (22), remarquons que l’on a
\begin{equation}
|r_{\sigma} - r_{\tau}| \leq r_{\sigma} - r_{\tau} |x - s_i|, \quad \frac{1}{2} \leq \sigma_{L_1} \leq 3/2 \quad (x \in L_1).
\end{equation}
Par conséquent nous aurons, d’après les inégalités (19) et (20),
\begin{equation}
\int_{L_1} |P(x,\sigma)| r_{\sigma}^{-1} \mu(\sigma) \, d\sigma \leq M_\sigma \int_{L_1} |s - \sigma|^{-\gamma} r_{\sigma}^{-1} r_{\sigma}^{-1} \, d\sigma \leq 2 (3/2)^{\gamma} \epsilon_0 M_\sigma |x - s_i| \int_{L_1} |s - \sigma|^{-\gamma + \epsilon} \, d\sigma.
\end{equation}
L’intégrale obtenue est comparable à \(|x - s_i|^{-\gamma + \epsilon}\) si \(x \to s_i\), donc
\begin{equation}
\int_{L_1} |P(x,\sigma)| \, d\sigma \leq \epsilon_0 M_\sigma |x - s_i|^{-\gamma + \epsilon}.
\end{equation}
En somme, d’après les inégalités (21), (24), (26), l’intégrale \(I_1(\sigma)\), donnée par la formule (15), vérifie la condition d’Hölder avec un exposant \(\gamma - \epsilon\) arbitrairement inférieur à \(\gamma\), et l’on a
\begin{equation}
I_1(\sigma) - I_1(x_0) \leq C_1 M_\sigma |x - s_i|^{-\gamma + \epsilon}.
\end{equation}
La constante positive \(C_1\) ne dépend que de la courbe \(L\) et de \(\epsilon\). Étudions maintenant la seconde des intégrales (15). Nous la décomposons de même en deux parties
\begin{equation}
I_2(\sigma) = I_2^1(\sigma) + I_2^{2-1}(\sigma),
\end{equation}
etrées aux arcs \(l\) et \(L - l\). Pour la première partie, nous aurons, d’après les inégalités (12) et (20),
\begin{equation}
|I_2^1(\sigma)| = \int \cos \varphi_{\alpha} r_{\alpha}^{-1} [\mu(\sigma) - \mu(s_i)] \, d\sigma \leq \epsilon_0 \int_{L_1} |s - \alpha|^{-\gamma} \, d\sigma.
\end{equation}
et l’inégalité analogue pour l’intégrale \(I_2^{2-1}(\sigma)\). Par conséquent, nous avons les inégalités
\begin{equation}
|I_2^1(\sigma)| \leq \epsilon_0 |s - s_i|^{-\gamma}, \quad |I_2^{2-1}(\sigma)| \leq \epsilon_0 |s - s_i|^{-\gamma},
\end{equation}
où la constante positive \(\epsilon_0\) ne dépend que de la courbe \(L\).

Pour étudier l’intégrale \(I_2^{2-1}\), nous écrivons
\begin{equation}
I_2^{2-1}(\sigma) - I_2^{2-1}(s_i) = \int \cos \varphi_{\alpha} r_{\alpha}^{-1} [\mu(\sigma) - \mu(s_i)] \, d\sigma.
\end{equation}
En nous appuyant sur la propriété
\begin{equation}
\int \cos \varphi_{\alpha} r_{\alpha}^{-1} \, d\sigma - \int \log r_{\alpha}^{-1} / \, d\sigma = 0.
\end{equation}
En appliquant maintenant les inégalités (12), (22), (20) et (25) à l’expression (29), nous aurons
\begin{equation}
|I_2^{2-1}(\sigma) - I_2^{2-1}(s_i)| \leq \epsilon_0 |s - s_i|^{-\gamma} \int_{L_1} (|s - s_i| r_{\alpha}^{-1} + \int_{L_1} |s - \alpha|^{-\gamma} \, d\sigma) \, d\sigma + \epsilon_0 |s - s_i|^{-\gamma} \int_{L_1} |s - \alpha|^{-\gamma} \, d\sigma.
\end{equation}
La première intégrale obtenue est à droite reste bornée si \(|s - s_i|\to 0\) et la seconde à la partie principale: const. \(|s - s_i|^{-\gamma - 1}\), nous en concluons, d’après les inégalités (28), que l’intégrale \(I_2(\sigma)\) satisfait à l’inégalité d’Hölder avec un exposant \(\alpha\) sous la forme
\begin{equation}
|I_2(\sigma) - I_2(s_i)| \leq C_2 |s - s_i|^{-\gamma}.
\end{equation}
où la constante positive \(C_2\) ne dépend que de la courbe \(L\). En réunissant les résultats (27), (30) et remarquant qu’on a supposé \(\alpha < \gamma < 1\), nous concluons que l’intégrale (11) satisfait à la condition d’Hölder avec l’exposant \(\gamma\) sous la forme suivante
\begin{equation}
|\Phi(x) - \Phi(s_i)| \leq \epsilon_0 |x - s_i|^{-\gamma},
\end{equation}
elles constantes positives \(K_{x}\) et \(K_{s}\) ne dépendant que de la forme de la courbe \(L_{x}\), c. q. f. d.

Nous signalons encore que, d’après les expressions (14) et (15), la fonction \(\Phi(x)\) elle-même satisfait à l’inégalité
\begin{equation}
|\Phi(x)| \leq \epsilon_0 M_{\gamma} \int_{L_1} |s - \alpha|^{-\gamma} r_{\alpha}^{-1} \, d\sigma + \epsilon_0 \int_{L_1} |s - \alpha|^{-\gamma} r_{\alpha}^{-1} \, d\sigma \leq \epsilon_0 M_{\gamma} + k_{\alpha} \epsilon_0,
\end{equation}

Page 262

W. Pogorzelski

Problème aux limites de Poincaré généralisé

263
où \(k_1 \) et \(k_2 \) sont les constantes positives fixées ne dépendant que de la courbe \(L \).

Théorème 2. Si la fonction réelle \(\mu(s) \), définie sur la ligne \(L \), est continue, alors les intégrales suivantes de fonctions à faible singularité

\[
J_1(s) = \int_L \text{log} r_\mu \, \mu(s) \, ds, \quad J_2(s) = \int \text{sin} r_\mu \, \mu(s) \, ds
\]

sont des fonctions déterminées sur la ligne \(L \) qui satisfont à la condition d'Hölder, la première avec un exposant arbitrairement inférieur à l'unité et la seconde avec un exposant arbitrairement inférieur à l'exposant \(\gamma \), conservant la propriété (3) de la tangente.

Pour démontrer le théorème, nous suivons la même méthode que précédemment. Nous considérons donc deux points suffisamment voisins, \((s) \) et \((s) \), de la courbe \(L \), le cercle \(\Gamma \) de centre \(s \) et nous décomposons les intégrales (33) en deux parties principales aux arcs \(\beta \) et \(L-\beta \). Étudions d'abord l'intégrale

\[
J_1(s) = J_1^\beta(s) + J_1^{L-\beta}(s).
\]

Nous avons

\[
|J_1^\beta(s) - J_1^\beta(a)| \leq M_\beta \int \text{log} (r_\mu)^{-1} \, ds.
\]

En utilisant la transformation homothétique de l'arc \(L \), du point \(s \) comme centre, qui amène le cercle \(\Gamma \) au cercle de rayon unité, on voit que la différence (34) vérifie l'inégalité

\[
|J_1(s) - J_1(a)| \leq \text{const} \cdot M_\beta |s - a|.
\]

Pour la seconde partie, nous avons de même

\[
|J_1^{L-\beta}(s) - J_1^{L-\beta}(a)| \leq M_{L-\beta} \int \text{log} (r_\mu)^{-1} \, ds.
\]

Or pour les points \((s) \) sur \(L-\beta \) on a les inégalités \(1/2 \leq r_\mu \leq 3/2 \), il existe donc une constante \(\delta \) telle que pour tous les points \((s) \) sur l'arc \(L-\beta \) vérifiant l'inégalité \(\text{log} (r_\mu)^{-1} \leq \delta \), et nous savons, d'après (20),

\[
|J_1^{L-\beta}(s) - J_1^{L-\beta}(s)| \leq M_{L-\beta} \int |s - a|^{-1} \, ds
\]

\[
\leq M_{L-\beta} |s - a|^{-1} \int |s - a|^{-1} \, ds.
\]

L'intégrale obtenue augmente comme \(\log |s - a| \), si le rayon \(r_\mu = 2r_\mu \) du cercle \(\Gamma \) tend vers zéro. Nous en concluons finalement, d'après l'inégalité (34), que l'intégrale \(J_1(s) = J_1^\beta(s) + J_1^{L-\beta}(s) \) vérifie la condition d'Hölder de la forme

\[
|J_1(s) - J_1(a)| \leq M_\rho \cdot |s - a|^{1-\gamma}
\]

avec un exposant \(1-\gamma \) arbitrairement inférieur à l'unité ; \(g_2 \) est une constante positive qui ne dépend que de la courbe \(L \) et du nombre \(\gamma \) choisi.

Il reste à étudier la seconde des intégrales (33). Nous la décomposons de même:

\[
J_2(s) = J_2^\beta(s) + J_2^{L-\beta}(s)
\]

et nous voyons, d'après l'inégalité (3) et le théorème de la moyenne, qu'on a

\[
|J_2^\beta(s)| \leq c_1 M_\beta \int |s - a|^\gamma r_\mu^{-1} \, ds \leq c_1 M_\beta \int |s - a|^\gamma \, ds,
\]

\[
(37)
\]

\[
|J_2^\beta(s)| \leq c_1 M_\beta \int |s - a|^\gamma \, ds.
\]

Ces intégrales admettent par conséquent la limite supérieure const\(\times \) \(M_\rho |s - a|^{1-\gamma} \). Nous avons ensuite

\[
|J_2^{L-\beta}(s)| \leq M_{L-\beta} \int |s - a|^\gamma \, ds
\]

mais, d'après les inégalités (224) et (225), on a

\[
|\text{sin} r_\mu - \text{sin} r_\mu| \leq c_\gamma |s - a|^\gamma,
\]

donc, en appliquant de même les inégalités (20) et (25), nous avons

\[
(38) \quad |J_2^{L-\beta}(s) - J_2^{L-\beta}(a)| \leq c_\gamma |s - a| \int |s - a|^\gamma \, ds + \int |\text{sin} r_\mu| |s - a|^\gamma \, ds
\]

\[
\leq M_\rho |s - a| c_\gamma |s - a|^\gamma \int |s - a|^\gamma \, ds.
\]

La première intégrale obtenue à droite est comparable à \(\log |s - a| \), et la seconde à \(|s - a|^\gamma \), nous en concluons, en réunissant les résultats (37) et (38), que l'intégrale \(J_2(s) \) vérifie la condition d'Hölder de la forme

\[
|J_2(s) - J_2(a)| \leq M_\rho \cdot |s - a|^{1-\gamma}
\]

avec un exposant \(\gamma \) arbitrairement inférieur à \(\gamma \) c. q. f. d., \(g_2 \) est une constante positive ne dépendant que de la courbe \(L \) et du nombre \(\gamma \) choisi.

En outre, il est facile de montrer que les intégrales (33) admettent les limites supérieures suivantes

\[
(40) \quad |J_1(s)| \leq M_\rho g_1, \quad |J_2(s)| \leq M_\rho g_2,
\]

\(g_1 \) et \(g_2 \) étant des constantes positives ne dépendant que de la courbe \(L \).

3. Solution du problème. Pour résoudre l'équation intégrale (10), considérons un espace fonctionnel \(E \) composé de toutes les fonctions
continues réelles \(\mu(s) \), déterminées sur la courbe \(L \). Nous définirons la distance des deux points \(\mu_1(s) \) et \(\mu_2(s) \) de cet espace par la borne supérieure suivante :

\[
\| \mu(s) - \mu(s') \| = \sup_{s \neq s'} \| \mu_1(s) - \mu_2(s) \|.
\]

En outre, on définit la somme des deux points et le produit du point par un nombre réel d'une façon évidente. L'espace \(E \) sera donc complet, normé et linéaire. Considérons maintenant dans l'espace \(E \) un ensemble borné \(S(\varrho,x) \) de tous les points \(\mu(s) \) qui vérifient à la fois l'inégalité

\[
\| \mu(s) \| \leq \varrho
\]

et la condition d'Hölder

\[
|\mu(s) - \mu(s')| \leq \kappa |s - s'|
\]

avec un exposant \(\kappa \leq 1 \) admis dans la propriété (5). Les constantes positives \(\varrho, \kappa \) sont fixées suffisamment petites pour qu'on ait à la fois

\[
\varrho \kappa \leq R_1, \quad \kappa \varrho \leq R_2.
\]

Alors, d'après les propriétés démontrées (32), (40), toute fonction d'ensemble \(S(\varrho,x) \) satisfait aux inégalités

\[
\int_L \log \rho(x, \mu(s)) \, \mu(s) \, ds \leq \mathcal{K}, \quad \int_L \cos \varphi \rho(x, \mu(s)) \, \mu(s) \, ds \leq \mathcal{K}.
\]

L'ensemble \(S(\varrho,x) \) est évidemment fermé, puisque la fonction limite d'une suite uniformément convergente des fonctions, vérifiant les conditions (42) et (43), vérifie aussi ces conditions. L'ensemble \(S(\varrho,x) \) est en outre convexe ; en effet, si \(\mu_1(s) \) et \(\mu_2(s) \) sont deux fonctions vérifiant les inégalités (42) et (43), alors la fonction \((1 - \nu) \mu_1(s) + \nu \mu_2(s) \) vérifie aussi ces conditions, si le nombre réel \(\nu \) varie dans l'intervalle \((0,1)\). Cela veut dire que tous les points du segment rectiligne dans l'espace fonctionnel \(E \), joignant les deux points \(\mu_1(s) \) et \(\mu_2(s) \) de l'ensemble \(S(\varrho,x) \), appartiennent aussi à cet ensemble. Remarque faite de l'intégrale proposée (10), transformons maintenant l'ensemble \(S(\varrho,x) \) en faisant correspondre à tout point \(\mu(s) \) de cet ensemble un point \(\psi(s) \), déterminé par la relation fonctionnelle

\[
-\nu \psi(s) + \int_L \sin \varphi \rho(x, \mu(s)) \, \mu(s) \, ds + a(s) \int_L \log \rho(x, \mu(s)) \, \mu(s) \, ds = \lambda F(s) \int_L \cos \varphi \rho(x, \mu(s)) \, \mu(s) \, ds.
\]

Pour la fonction \(\mu(s) \) donnée, l'équation (46) a la forme d'une équation de Fredholm à faible singularité avec la fonction inconnue \(\psi(s) \). Si nous supposons que l'équation intégrale homogène, obtenue en égalant à zéro le membre à droite dans l'équation (46), n'a qu'une solution \(\psi = 0 \), alors à chaque point \(\mu(s) \) de l'ensemble \(S(\varrho,x) \) correspond un point \(\psi(s) \) d'espace \(E \), déterminé par la formule connue de Fredholm. Cette circonstance a lieu par exemple dans le cas où la fonction donnée \(a(s) \), non identiquement nulle, n'est pas positive : \(a(s) \leq 0 \); fait bien connu dans la théorie du potentiel.

Remarquons maintenant que la fonction de la variable \(s \) dans la relation (46), étant le résultat de la substitution dans la fonction \(F(s, \varrho, x) \) des intégrales (11) et (33) à la place de \(u \) et \(v \), satisfait à la condition d'Hölder avec l'exposant \(\alpha \). Cela résulte de la propriété admise (5) et des propriétés démontrées (13) et (35). En outre, la fonction \(\psi(s) \) étant continue, les deux intégrales à gauche dans la relation (46) satisfont aussi à la condition d'Hölder avec les exposants \(1 - \epsilon \) et \(\epsilon \). Nous en concluons que la fonction \(\psi(s) \) correspondant à la fonction \(\mu(s) \) de l'ensemble \(S(\varrho,x) \) satisfait à la condition d'Hölder avec l'exposant \(\alpha \). Nous allons montrer que cette fonction \(\psi(s) \) sera partie de l'ensemble \(S(\varrho,x) \), si le module du paramètre \(\lambda \) est suffisamment petit. Remarquons donc que, d'après la formule connue de Fredholm, la fonction \(\psi(s) \), correspondant à \(\mu(s) \), admet la limite suivante :

\[
|\psi(s) - |\lambda| \mu P
\]

\(\mu P \) étant la borne supérieure de la fonction \(|\mu| \) et \(P \) est une constante positive ne dépendant que du noyau de l'équation (46), qui ne dépend donc que de la forme de la courbe \(L \) et de la fonction donnée \(a(s) \). Cherchons le coefficient d'Hölder pour la fonction \(\psi(s) \). D'après les inégalités (51) et (36), le coefficient d'Hölder pour la fonction composée \(\lambda F \) à droite dans la relation (46) sera pour l'expression

\[
|\lambda F(s, \mathcal{K}(1 + \mathcal{K}_1 \varrho + \mathcal{K}_2 \varrho^2 + \varrho^2))| \psi(s)|,\]

en choisissant \(\beta(1-\epsilon) = \alpha \).

Les deux intégrales à gauche dans la relation (46) ont, d'après les inégalités (50), (59) et (48), les coefficients d'Hölder \(|\lambda| \mu P_0 \) et \(\lambda |\lambda| \mu P_1 \), en choisissant \(\gamma = \epsilon = \alpha \), \(1 - \gamma = \alpha \). Nous en concluons que la fonction \(\psi(s) \) dans la relation (46) satisfait à la condition d'Hölder de la forme

\[
|\psi(s) - \psi(s')| \leq |\lambda| \pi^{-1} \left(|\lambda| \mu P_0 + |\lambda| \mu |\lambda| \mu P_0 + \right. \left. + |\lambda| \mu P_1 \mathcal{K} + |\lambda| \mu P_1 \mathcal{K} + \mathcal{K}(1 + \mathcal{K}_1 \varrho + \mathcal{K}_2 \varrho^2 + \varrho^2)\right) |s - s'|.
\]

\(\mu P \) étant la borne supérieure de la fonction \(\pi^{-1} \). La fonction transformée \(\psi(s) \) sera donc partie de l'ensemble \(S(\varrho,x) \), si le paramètre \(\lambda \) a le module suffisamment petit pour qu'on ait à la fois

\[
|\lambda| \mu P \leq \varrho,
\]

et

\[
|\lambda| \pi^{-1} \left(|\lambda| \mu P_0 + |\lambda| \mu |\lambda| \mu P_0 + \right. \left. + |\lambda| \mu P_1 \mathcal{K} + |\lambda| \mu P_1 \mathcal{K} + \mathcal{K}(1 + \mathcal{K}_1 \varrho + \mathcal{K}_2 \varrho^2 + \varrho^2)\right) \leq \varrho.
\]
Pour appliquer le théorème de Schauder, nous démontrerons maintenant que la transformation (46) est continue dans l'espace E. Soit donc une suite $\{\mu_n(s)\}$ des fonctions d'ensemble $B(g,s)$ qui tend uniformément vers la fonction $\mu^*(s)$ du même ensemble. Il est évident, d'après les limitations (40), que l'intégrale de fonction à faible singularité

$$\int L \log r_{\mu}^{-1} \mu_n(s) \, ds$$

tend uniformément vers l'intégrale analogue de la fonction limite

$$\int L \log r_{\mu}^{-1} \mu^*(s) \, ds.$$

Pour démontrer que la même propriété possède l'intégrale de la fonction à forte singularité

$$\Phi_n(s) = \int L \cos \varphi \, r_{\mu}^{-1} \mu_n(s) \, d\sigma$$

écrivons cette intégrale sous la forme (14) déjà utilisée et nous avons

$$\Phi_n(s) = \int L \cos \varphi \, r_{\mu}^{-1} \mu_n(s) \, d\sigma + \int L \cos \varphi \, r_{\mu}^{-1} \mu_n(s) - \mu_n(s) \, d\sigma.$$

La première intégrale concerne la fonction à faible singularité et tend uniformément vers l'intégrale analogue de la fonction limite $\mu^*(s)$. Il reste à étudier la seconde intégrale que nous désignerons par $Q_n(s)$. Nous démontrerons que la suite des intégrales $Q_n(s)$ tend uniformément vers l'intégrale

$$Q(s) = \int L \cos \varphi \, r_{\mu}^{-1} \mu^*(s) - \mu^*(s) \, d\sigma.$$

Soit donc au voisinage du point s un arc L (correspondant au nombre positif a) assez petit pour qu'en ait

$$\int L \cos \varphi \, r_{\mu}^{-1} \mu_n(s) - \mu_n(s) \, d\sigma < \frac{\pi}{al}, \quad \int L \cos \varphi \, r_{\mu}^{-1} \mu^*(s) - \mu^*(s) \, d\sigma < \frac{\pi}{2},$$

pour toute la valeur n et pour s arbitraire. Cette inégalité est donc aussi satisfaite par la fonction limite μ^*. Le point s étant extérieur à l'arc d'intégration $L - L$, nous pouvons maintenant faire correspondre au nombre s un nombre N, assez grand pour qu'on ait

$$\int L \cos \varphi \, r_{\mu}^{-1} \mu_n(s) - \mu_n(s) \, d\sigma < \frac{\pi}{2N}, \quad \int L \cos \varphi \, r_{\mu}^{-1} \mu^*(s) - \mu^*(s) \, d\sigma < \frac{\pi}{2},$$

si $N > N_0$ quelque soit N. Il en résulte que l'intégrale $Q_n(s)$ tend uniformément vers l'intégrale $Q(s)$; donc on a la convergence uniforme suivante:

$$\lim_{n \to \infty} \Phi_n(s) = \int L \cos \varphi \, r_{\mu}^{-1} \mu^*(s) \, d\sigma.$$

Nous en concluons, d'après la propriété (5) de la fonction $F(s, u, v)$ que le résultat de l'opération sur les fonctions $\mu_n(s)$:

$$F[\int L \log r_{\mu}^{-1} \mu_n(s) \, ds, \int L \cos \varphi \, r_{\mu}^{-1} \mu_n(s) \, d\sigma]$$

tend uniformément vers le résultat de la même opération sur la fonction limite $\mu^*(s)$.

Il en résulte, d'après la formule de Fredholm, que la suite des fonctions $\{Q_n(s)\}$ correspondant aux fonctions $\mu_n(s)$ par la transformation (46), tend uniformément vers la fonction limite $\psi^*(s)$, correspondant à la fonction limite $\mu^*(s)$ par la transformation (46). Cela veut dire que la distance $\delta(\psi_n, \psi^*)$ tend vers zéro, si la distance $\delta(\mu_n, \mu^*)$ tend vers zéro et la transformation (46) est continue. Il reste à montrer que l'ensemble S_1 des points $\{s\}$, transformés des points $\mu(s)$ de l'ensemble $B(g, s)$, est compact. Or les fonctions $\psi(s)$ de l'ensemble S_1 d'après leurs propriétés

$$|\psi(s)| < b, \quad |\psi(s) - \psi(s_0)| < a |s - s_0|$$

sont équiconvergentes et équidistantes, donc vérifient les conditions du théorème d'Arzelà et l'ensemble S_1 est compact. Toutes les conditions d'application du théorème de Schauder étant satisfaites, nous en concluons existence dans l'ensemble S_1 du point $\mu(s)$ invariant relativement à la transformation (46), c'est-à-dire vérifiant l'équation intégrale proposée (10).

Le potentiel logarithmique $u(M) = \int L \log r_{\mu}^{-1} \mu(s) \, d\sigma$, dérivant de la fonction $\mu(s)$ est la solution du problème généralisé de Poincaré proposé.

Nous considérations peuvent être étendues à la recherche d'une fonction harmonique, vérifiant la condition aux limites sous la forme plus générale

$$du/du + a(s)u + b(s)du/du = \lambda F(s, u, du/du),$$

$b(s)$ étant une fonction définie sur L et vérifiant la condition d'Hölder avec l'exposant a. En cherchant la solution du problème sous la forme du potentiel logarithmique (4), on obtient pour la densité de la couche l'équation intégrale suivante:

$$- \psi(s) + \int L \cos \varphi \, r_{\mu}^{-1} \mu(s) \, d\sigma + a(s) \int L \log r_{\mu}^{-1} \mu(s) \, d\sigma +$$

$$+ b(s) \int L \cos \varphi \, r_{\mu}^{-1} \mu(s) \, d\sigma = \lambda \int L \log r_{\mu}^{-1} \mu(s) \, d\sigma,$$

dont les parties linéaire et non-linéaire contiennent l'intégrale de la fonction singulière à une forte singularité. Nous supposons que l'équation singulière linéaire
The problem of non-local existence for solutions of a linear partial differential equation of the first order

by A. Ptak (Kraków)*

E. Kamke has shown that the partial differential equation

$$\frac{\partial z}{\partial x} + Q(x,y)\frac{\partial z}{\partial y} = 0$$

with a coefficient $Q(x,y)$ of class C^1 in a certain (open) region D admits in every closed and bounded subset of D a solution of class C^1, possessing a positive derivative with respect to y. The problem of non-local existence of non-trivial solutions of class C^1 has been solved in the negative by T. Ważewski, who furnishes an example of a differential equation of form (1) such that each of its solutions of class C^1 in the whole region D is a constant function. In this example the region D, constituting the domain of the function $Q(x,y)$, is simply connected, and $Q(x,y)$ is of high regularity in D.

In this paper we shall consider the problem of non-local existence of non-trivial solutions of equation (1), having a total differential (in the sense of Stolz) in region D. For the open simply connected region D we shall prove the existence of a solution having a total differential at every point of D and such that its derivative with respect to y is positive nearly everywhere in the set D (§ 1. Theorem 1). Consequently, such a solution

* The author thanks Professor T. Ważewski for his suggestions during the preparation of this paper.

1) A function continuous together with its derivatives of the first order is termed a function of class C^1.

2) An analogous theorem is also known for the equation

$$\frac{\partial z}{\partial x} + \sum_{i=1}^{n} Q_i(x,y_1,\ldots,y_{i-1},y_i)\frac{\partial z}{\partial y_i} = 0$$

with a larger number of independent variables. The proof (in the case of two variables) is to be found in [1].

3) By a non-trivial solution of the equation (1) we mean a solution which is not identically equal to a constant.

4) See [6]. An example of such an equation defined over the whole plane is to be found in [5].