On the p-adic Waring’s problem

by

José Felipe Voloch (Austin, TX)

Let R be a ring (commutative with unity, in what follows). For an integer $n > 1$ define $g_R(n)$ to be the least integer s for which every element of R is a sum of s nth powers of elements of R, if such an integer exists, or ∞ otherwise. Waring’s problem for R is the problem of deciding whether $g_R(n)$ is finite and estimating it for all n. Note that what is usually called Waring’s problem is not what we call Waring’s problem for \mathbb{Z}. For n odd, what we call Waring’s problem for \mathbb{Z} is usually referred to as the “easier” Waring’s problem, with Waring’s problem proper referring only to positive integers. Nevertheless, the results we are discussing here have an impact on the usual Waring’s problem because they have a bearing on the issue of local solvability. For Waring’s problem for finite fields see [GV] and the references therein.

We wish to consider in this note Waring’s problem for unramified extensions of the ring of p-adic integers \mathbb{Z}_p. For \mathbb{Z}_p the problem has been considered extensively (see [B] and references therein) for its connection with the problem of non-vanishing of the singular series in the classical Waring’s problem. We shall improve some of Bovey’s results for \mathbb{Z}_p and obtain new results for unramified extensions of \mathbb{Z}_p.

Let $W(k)$ be the (unique) complete unramified extension of \mathbb{Z}_p with residue field k algebraic over \mathbb{F}_p; $W(k)$ is the ring of Witt vectors over k and we will recall some of its properties later. To begin with, note that it follows from Hensel’s lemma that if $n = p^t d$, $(p, d) = 1$ and $a \equiv x_1^n + \ldots + x_s^n \pmod{p^{t+\varepsilon}}$, $x_1, \ldots, x_s \in W(k)$, where $\varepsilon = 1$, $p \neq 2$, $\varepsilon = 2$, $p = 2$ and some x_i is a unit, then there exist $y_1, \ldots, y_s \in W(k)$ with $a = y_1^n + \ldots + y_s^n$. This is easy and well known.

Assume for now on that $p \neq 2$ so $\varepsilon = 1$. Notice that if a, as above, is a unit then, for any representation $a \equiv x_1^n + \ldots + x_s^n \pmod{p^{t+\varepsilon}}$, some x_i will be a unit. So every unit of $W(k)$ is a sum of at most $g_{W_{t+1}(k)}(n)$ nth powers.

1991 Mathematics Subject Classification: 11D88, 11P05.
where $W_{t+1}(k) = W(k)/p^{t+1}$ is the ring of truncated Witt vectors. If a is not a unit then $a - 1$ is a unit and is a sum of $g_{W_{t+1}(k)}(n)$ nth powers, and it follows that $g_W(k)(n) \leq g_{W_{t+1}(k)}(n) + 1$. Obviously, $g_{W(k)}(n) \geq g_{W_{t+1}(k)}(n)$ and in [B] it is implicitly assumed that they are equal (for $k = \mathbb{F}_p$), however this is false already for $p = 3, n = 2$.

Bovey’s nice idea was to relate $g_W(k)$ with the following function. Let v denote the p-adic valuation on $W(k)$ and define $g_W(k)(n, r)$ to be the smallest integer s for which there exist x_1, \ldots, x_s in $W(k)$ with

$$v(x_1^n + \ldots + x_s^n) = r.$$

Of course $g_W(k)(n, 0) = 1$. If $n = p^d$, $(p, d) = 1$, $r \leq t$ and $v(x_1^n + \ldots + x_s^n) = r$ then some x_i is a unit for, otherwise, $v(x_1^n + \ldots + x_s^n) \geq n \geq p^t > t$. This observation will be useful in the following.

The following result was proved by Bovey [B] for \mathbb{Z}_p. We state and prove it in a more general form. The proof is essentially the same as Bovey’s and is done here for the reader’s convenience. Note however that Bovey actually claims a stronger result which is false (see above).

Lemma 1. If $n = p^d$, and $(p, d) = 1$ then

$$g_{W_{t+1}(k)}(n) \leq g_k(n) \sum_{r=0}^{t} g_W(k)(n, r).$$

Proof. By induction on t, the case $t = 0$ being clear. Assume $t > 0$. If $a \in W_{t+1}(k)$, then by induction there exist x_1, \ldots, x_s in $W_{t+1}(k)$, $s \leq g_k(n) \sum_{r=0}^{t-1} g_W(k)(n, r)$ with $x_1^n + \ldots + x_s^n = a$ and, as $x^n/p \equiv (\sigma x)^n$ (mod p^t), where σ is the inverse of the Frobenius automorphism of $W(k)$, we get $(\sigma x_1)^n + \ldots + (\sigma x_s)^n = a - b p^t$ for some b. Also, there exist y_1, \ldots, y_u with $\sum y_i^n = c p^t$, with $u \leq g_W(k)(n, t)$ and c not divisible by p. Finally, there exist z_1, \ldots, z_t with $\sum z_i^n \equiv b/c$ (mod p) and $v \leq g_k(n)$. It follows that

$$\sum (\sigma x_i)^n + \sum y_i^n \sum z_i^n \equiv a - b p^t + c p^t b/c \equiv a \pmod{p^{t+1}}$$

and this means that a is a sum of at most $s + uv$ nth powers in $W_{t+1}(k)$, as desired.

The main results of this paper are sharpened estimates for $g_W(k)(n, r)$ with the consequences for Waring’s problem following from Lemma 1.

The simplest result is when k is algebraically closed.

Lemma 2. If $n = p^d$, $(p, d) = 1$ and k is an algebraically closed field then $g_W(k)(n, r) \leq 2r + 1$ for $1 \leq r \leq t$.

Proof. It follows from [TV] that the residue classes of x_1, \ldots, x_s with $v(\sum x_i^n) \geq r$ form an algebraic variety V_r for $r \leq t + 1$, since x^n/p is a Teichmüller representative modulo p^{t+1}. Also from [TV], Proposition 1, V_r has dimension $s - 1 - r$ for $r \leq (s + 1)/2$. The subset of V_r where the residue class of some x_i is zero corresponds to a similar variety with s replaced by
s \leq s/2$. It follows that there exists a point in $V_t \setminus V_{t+1}$ with x_1, \ldots, x_s non-zero, for $r \leq (s-1)/2$. The Teichmüller representatives of x_1, \ldots, x_s are dth powers since k is algebraically closed, and are p^ith powers modulo p^{i+1}. We thus obtain $y_1, \ldots, y_s \in W(k)$ with $v(\sum y_i^n) = r$ if $s \geq 2r + 1$. Thus $g_{W(k)}(n, r) \leq 2r + 1$.

Corollary. Under the assumptions of Lemma 2, $g_{W(k)}(n, r) \leq (t+1)^2 + 1$.

Proof. Since $g_k(n) = 1$, this follows from Lemmas 1 and 2.

Lemma 3. If $n = pd$, $(p, d) = 1$ and $q \geq 4d^4$, $q \neq p$, or $q = p \geq \max\{27d^6, 13\}$, then $g_{W(\mathbb{F}_q)}(n, 1) \leq 3$.

Proof. Retaining the notation of the previous lemma and of [TV], we have to consider the \mathbb{F}_q-rational points of $V_1 \setminus V_2$, that is, the set of $a \in \mathbb{F}_q$ with $f(a) \neq 0$, where $f(x) = ((-x-1)^p + x^p + 1)/p$. Any such a will give rise to a triple of pth powers modulo p^2 whose sum has valuation 1, by taking the Teichmüller representatives of a, $(-1-a)$, 1. To ensure that these lifts are pdth powers and prove the lemma, we need to be able to choose $a \in \mathbb{F}_q$ such that both a and $-1-a$ are dth powers. The set of $a \in \mathbb{F}_q$ with both a and $-1-a$ dth powers has at least $q/d^2 - q^{1/2}$ elements by the Riemann hypothesis for function fields (although the relevant case of Fermat equations can be proved directly), whereas $f(x)$ has at most $p - 1$ zeros, so we are done unless $q = p$. In this case Mit’kin [M] (see also Heath-Brown [HB]) has shown that $f(x)$ has at most $2p^{2/3} + 2$ zeros in \mathbb{F}_p and again we are done.

Corollary. Under the assumptions of Lemma 3, $g_{W(\mathbb{F}_q)}(n, 1) \leq 9$. If n is odd then $g_{W(\mathbb{F}_q)}(n, 1) \leq 8$.

Proof. The first statement follows from Lemma 1 and $g_{\mathbb{F}_q}(n) = g_{\mathbb{F}_q}(d) \leq 2$, for d in the given range. For the second statement, note that 0 = $1^n + (-1)^n$, so it is easy to see that $g_{W(\mathbb{F}_q)}(n) = g_{W(\mathbb{F}_q)}(1)$ in this case. So, again, the statement follows from Lemmas 1 and 2.

Remark. For $p = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37$, we have $g_{\mathbb{F}_p}(2p) = 9, 12, 7, 6, 7, 5, 5, 5, 5, 5$ respectively. It appears at first glance that $g_{\mathbb{F}_p}(2p) = 5$ for $p \geq 17$. However, $g_{\mathbb{F}_{59}}(118) = 7$.

Examples. Some cases where one knows the value of $g_{\mathbb{F}_p}$ are:

\[g_{\mathbb{F}_p}((p-1)p^d) = p^{d+1}, \quad p \neq 2, \quad g_{\mathbb{F}_p}((p-1)p^d/2) = (p^{d+1} - 1)/2, \quad p \neq 2. \]

Bovey has shown (it appears that the proof can be fixed) that, if $(p-1)/2$ does not divide n, $g_{\mathbb{F}_p}(n) \ll n^{1/2+\varepsilon}$ for all $\varepsilon > 0$.

It is not hard to show, using the above methods, that $g_{\mathbb{F}_p}(p) \leq 4$ for all p. But $g_{\mathbb{F}_p}(p) = 3$ for all $p \leq 211$, except $p = 3, 7, 11, 17, 59$ when it is 4.
Lemma 4. \(gw(k)(n, r) \leq gw(k)(n, 1)^r \).

Proof. If \(\sum_{i=1}^{s} x_i^n \) has valuation 1, then \((\sum_{i=1}^{s} x_i^n)^r \) has valuation \(r \), which gives what we want upon expansion.

Lemma 4 is well known but is included here for completeness. Since \(gw(k)(n, 1) = gw(k)(n/p^{t-1}, 1) \), \(n = p'd \), \((p, d) = 1 \), the above lemma can be used together with the previous results to give bounds on \(gw(k)(n) \), for arbitrary \(n \). Of course, these bounds are not always the best. For instance, \(gw(F_q)(p^2, 2) \leq 3^2 = 9 \), \(q \neq p \), as follows from Lemmas 3 and 4. However, we have

Lemma 5. \(gw(F_q)(p^2, 2) \leq 5 \) if \(q = p^a \), \(a \geq 7 \) and \(p \) is sufficiently large.

Proof. As in Lemma 2, we use the notation and results of [TV]. The variety \(V_2 \) is, in this case, a surface of degree \(p \) in \(V_1 \cong \mathbb{F}^3 \), with isolated singularities, and \(V_3 \) is a curve of degree \(p^3 \). It follows from [K] that \(|\#V_2(F_q) - q^2 - q - 1| \leq 2(4p + 10)q^{3/2} \). Also \(\#V_3(F_q) \leq p^3(q + 1) \), trivially. So \(V_2 \setminus V_3 \) has \(F_q \) rational points as soon as \(p \) is sufficiently large.

Acknowledgements. I would like to thank J. Tate for pertinent comments, F. Rodriguez Villegas for help with the numerical calculations and the NSA (grant MDA904-97-1-0037) for financial support.

My interest in the subject was started by reading a post by N. Benschop on the Usenet newsgroup sci.math where he claimed, in effect, that \(gw(Z_p)(p) \leq 4 \) for all \(p \). After overcoming my initial disbelief of the statement, through numerical experimentation, I looked at Benschop’s paper [Be], but the proof there is unfortunately incorrect, although he does rediscover part of Bovey’s argument. A search through MathSciNet then unearthed Bovey’s paper, which sparked the present work.

References

[K] N. M. Katz, Number of points on singular complete intersections, appendix to: C. Hooley, On the number of points on a complete intersection over a finite field, J. Number Theory 38 (1991), 338–358.

Department of Mathematics
University of Texas
Austin, Texas 78712
U.S.A.
E-mail: voloch@math.utexas.edu

Received on 13.10.1998