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THE VALUE FUNCTION IN ERGODIC CONTROL

OF DIFFUSION PROCESSES

WITH PARTIAL OBSERVATIONS II

Abstract. The problem of minimizing the ergodic or time-averaged cost
for a controlled diffusion with partial observations can be recast as an equiv-
alent control problem for the associated nonlinear filter. In analogy with the
completely observed case, one may seek the value function for this problem
as the vanishing discount limit of value functions for the associated dis-
counted cost problems. This passage is justified here for the scalar case
under a stability hypothesis, leading in particular to a “martingale” formu-
lation of the dynamic programming principle.

1. Introduction. The usual approach to control of partially observed
diffusions is via the equivalent “separated” control problem for the associ-
ated nonlinear filter. This approach has proved quite successful for the fi-
nite horizon and infinite horizon discounted costs. (See, e.g., Borkar (1989),
Chapter V.) For the average cost or “ergodic” control problem, however,
a completely satisfactory treatment is still lacking. While the existence of
optimal controls in appropriate classes of controls is known in many cases
(see, e.g., Bhatt and Borkar (1996)), the characterization of optimality via
dynamic programming has not yet been fully developed. Limited results
are available in Bhatt and Borkar (1996) which takes a convex duality ap-
proach, and in Borkar (1999) where the vanishing discount limit is justified
for the limited class of the so-called “asymptotically flat” diffusions of Basak,
Borkar and Ghosh (1997). The aim here is to present another special case
where this limit can be justified, that of stable scalar diffusions.
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Specifically, consider the scalar diffusion X(·) and an associated obser-
vation process Y (·) = [Y1(·), . . . , Ym(·)]T described by the stochastic differ-
ential equations

X(t) = X0 +

t\
0

m(X(s), u(s)) ds +

t\
0

σ(X(s)) dW (s),(1.1)

Y (t) =

t\
0

h(X(s)) ds +W ′(t),(1.2)

for t ≥ 0. Here,

(i) m(·, ·) : R × U → R, for a prescribed compact metric space U , is
a bounded continuous map, Lipschitz in its first argument uniformly w.r.t.
the second,

(ii) σ(·) : R → R
+ is bounded Lipschitz and uniformly bounded away

from zero,
(iii) h(·) : R → R

m is bounded twice continuously differentiable with
bounded first and second derivatives,

(iv) X0 is a random variable with prescribed law π0 ∈ P(R) (here and
later, for a Polish space S, P(S) := the Polish space of probability measures
on S with the Prokhorov topology),

(v) W (·),W ′(·) are resp. one and m-dimensional standard Brownian
motions and (X0,W (·), W ′(·)) are independent,

(vi) u(·) : R+ → U is a “control” process with measurable paths, adapted
to {Gt} := the natural filtration of Y (·). Call such u(·) “strict sense admis-
sible” controls. (More generally, u(·) is said to be “admissible” if for t ≥ s,
W (t)−W (s) is independent of (u(y), W (y), y ≤ s,X0).)

Given a bounded continuous “running cost” k : R×U → R, the ergodic
control problem under partial observations seeks to minimize over all strict
sense admissible controls the “ergodic” or average cost

(1.3) lim sup
t→∞

1

t

t\
0

E[k(X(s), u(s))] ds.

We consider the weak formulation of this problem described in Chapter I
of Borkar (1989) and the relaxed control framework. The latter in particular
implies the following: We suppose that U = P(Q) for a compact metric
space Q and that there exist bounded continuous m : R×Q→ R, Lipschitz
in the first argument uniformly w.r.t. the second, and bounded continuous
k : R×Q→ R, such that

m(x, u) =
\
m(x, y)u(dy), k(x, u) =

\
k(x, y)u(dy) ∀x, u.

See Borkar (1989), Chapter I, for background.
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The “stability” assumption is the following: Say u(·) is a “Markov con-
trol” if u(t) = v(X(t)) for all t and a measurable v : R → U . (This is
not strict sense admissible in general.) Equation (1.1) has a unique strong
solution X(·) under any Markov control (see, e.g., Borkar (1989), pp. 10–
12). We assume that any such X(·) is stable, i.e., positive recurrent (Bhat-
tacharya (1981)), under all Markov u(·) ∼ v(X(·)). By abuse of notation,
we may refer to the map v(·) itself as the Markov control.

Consequences of stability are given in Section 3, following a description
of the separated control problem in the next section. The final section
establishes the vanishing discount limit, leading to a martingale formulation
of the dynamic programming principle in the spirit of Striebel (1984).

2. The separated control problem. Let {Ft} := the natural filtra-

tion of (u(·), Y (·)) and {F̂t} := the natural filtration of (u(·), Y (·), X(·),
W (·), W ′(·)). Let πt ∈ P(R) be the regular conditional law of X(t) given
Ft. Let πt(f) =

T
f dπt for f : R → R measurable (when defined) and

Luf(x) =
1

2
σ2(x)

d2f

dx2
(x) +m(x, u)

df

dx
(x), x ∈ R, u ∈ U,

for f ∈ C2(R). The evolution of {πt} is given by the nonlinear filter (see,
e.g., Borkar (1989), Section V.1)

πt(f) = π0(f) +

t\
0

πs(Lu(s)f) ds(2.1)

+

t\
0

〈πs(hf)− πs(f)πs(h), dŶ (s)〉, t ≥ 0,

where the “innovations process” Ŷ (t) := Y (t) −
Tt
0
πs(h) ds, t ≥ 0, is a

standard Brownian motion in R
m. Rewrite (1.3) as

(2.2) lim sup
t→∞

1

t

t\
0

E[πs(k(·, u(s)))] ds.

The “separated” control problem equivalent to the one above is to control
{πt} given by (2.1) over strict sense admissible u(·), so as to minimize the
cost (2.2). For well-posedness issues concerning (2.1), see Borkar (1989),
Section V.1. (Assumption (iii) above plays a role here. See Fleming and
Pardoux (1982) for weaker conditions.)

Following Fleming and Pardoux (1982), we enlarge the class of controls
under consideration as follows: Let (Ω,F , P ) denote the underlying proba-

bility space. Without loss of generality, let F =
∨

t≥0 F̂t. Define on (Ω,F)
another probability measure P0 as follows. If P0t, Pt are the restrictions to
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(Ω, F̂t) of P0, Pt respectively, then

dPt

dP0t
= exp

( t\
0

〈h(X(s)), dY (s)〉 −
1

2

t\
0

‖h(X(s))‖2 ds

)
, t ≥ 0.

Under P0, Y (·) is a standard Brownian motion in R
m, independent of X0,

W (·). Call u(·) “wide sense admissible” if under P0, for t ≥ s, Y (t)− Y (s)
is independent of {X0,W (·), u(y), Y (y), y ≤ s}. (Note that this includes
strict sense admissible controls.) The problem now is to minimize (2.2) over
all such u(·).

To summarize, we consider the “separated control problem” defined by:

• the P(R)-valued controlled Markov process {πt}, whose evolution is
described by (2.1),

• U -valued control process u(·) assumed to be wide sense admissible in
the sense defined above,

• the objective of minimizing the associated “ergodic” cost defined by
(2.2) over all such u(·).

Note that we are considering the so-called weak formulation of the control
problem (Borkar (1989), Chapter I), i.e., a “solution” for the above control
system is a pair of processes {πt, u(t)} satisfying the foregoing on some
probability space. Call it a “stationary pair” if they form a jointly stationary
process in P(R) × U and an optimal stationary pair if the corresponding
ergodic cost (2.2) (wherein the lim inf will perforce be a lim) is the least
attainable.

3. Consequences of stability. Let (X(·), u(·)) be as in (2.1). De-
fine Markov controls vm, vM such that vm(x) ∈ Argmin(m(x, ·)), vM(x) ∈
Argmax(m(x, ·)) for all x. This is possible by a standard measurable selec-
tion theorem (see, e.g., Borkar (1989), p. 20). Let Xm(·),XM(·) be corre-
sponding solutions to (1.1) on the same probability space as X(·), with the
same W (·) and initial condition X0. By the comparison theorem of Ikeda
and Watanabe (1981), pp. 352–353,

(3.1) Xm(t) ≤ X(t) ≤ XM(t) ∀t a.s.

Thus for any y > 0,

P (|X(t)| ≥ y) ≤ P (|Xm(t)| ≥ y) + P (|XM(t)| ≥ y).

Since Xm(·),XM(·) are stable, this implies tightness of the laws of X(t),
t ≥ 0, and therefore of the laws of πt, t ≥ 0, by Lemma 3.6, pp. 126–127, of
Borkar (1989). It then follows as in Lemmas 3.1, 3.2 of Bhatt and Borkar
(1996) that an optimal stationary pair {πt, u(t)} exists.

Now let τ(x) = inf{t ≥ 0 : X(t) = x}. Define τm(x), τM(x) analogously,
with Xm(·), resp. XM(·), in place of X(·). By (3.1), Ex[τ(0)] ≤ Ex[τM(0)]
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(resp., Ex[τm(0)]) for x ≥ 0 (resp., ≤ 0). Since Xm(·),XM(·) are stable, the
right-hand side is bounded and so is φ(x) := supu(·)Ex[τ(0)] for all x. Let
g : R → [0, 1] be a smooth map with g(0) = 0 and g(x) → 1 monotonically
as x → ±∞. Let β ∈ (0, 1) denote the optimal cost for the ergodic control
problem that seeks to maximize

lim sup
t→∞

1

t

t\
0

E[g(X(s))] ds.

The value function V (·) : R → R for this problem (see Borkar (1989),
Ch. VI) is given by

(3.2) V (x) = sup
u(·) admissible

Ex

[ τ(0)\
0

(g(X(s)) − β) ds
]
≤ 2φ(x).

Then V (·) is a C2 solution to the associated Hamilton–Jacobi–Bellman equa-
tion (ibid.)

1

2
σ2(x)

d2V

dx2
(x) + max

u

(
m(x, u)

dV

dx
(s)

)
= β − g(x).

For our choice of g(·), it follows that there exist ε, a > 0 such that

(3.3) max
u

LuV (x) ≤ −ε for |x| > a.

Remark. In conjunction with Ito’s formula, (3.3) leads to: For x ≥ a,

V (a) = Ex[V (x(τ(a)))] ≤ V (x)− εEx[τ(a)].

Thus

εφ(a) + V (x) ≥ ε(Ex[τ(a)] + Ea[τ(0)]) + V (a) = εEx[τ(0)] + V (a),

leading to V (x) ≥ ε(φ(x)− φ(a)) + V (a). Together with its counterpart for
x ≤ −a and (3.2), this shows that V (·), φ(·) have similar growth as |x| → ∞.

Now consider independent scalar Brownian motions W1(·),W2(·), and
for x1, x2 ∈ R, let X1(·),X2(·) be the processes given by

Xi(t) = xi +

t\
0

m(Xi(s), u(s)) ds +

t\
0

σ(Xi(s)) dWi(s), t ≥ 0,

for i = 1, 2, u(·) being a common control process admissible for both. Let
ξ = inf{t ≥ 0 : X1(t) = X2(t)}.

Lemma 3.1. E[ξ] ≤ K1(V (x1) + V (x2)).
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P r o o f. Without loss of generality, suppose that x1 ≥ x2. Define Xi(t),
t ≥ 0, i = 1, 2, by

Xi(t) = xi +

t\
0

m(Xi(s), ui(s)) ds +

t\
0

σ(Xi(s)) dWi(s), t ≥ 0,

for i = 1, 2, with u1(·) = vM (X1(·)), u2(·) = vm(X2(·)). By the same
comparison principle as in (3.1), it suffices to verify that

E[ξ] ≤ K1(V (x1) + V (x2))

for ξ = inf{t ≥ 0 : X1(t) = X2(t)}. From (3.3), it follows that V (x, y)
= V (x) + V (y) serves as a stochastic Lyapunov function for X(·) =
(X1(·),X2(·)), implying that the expected first hitting time thereof for any
open ball in R

2 is bounded (see, e.g., Bhattacharya (1981)). In particu-
lar, this is so if the ball is separated from the point (x1, x2) by the line
{(x, y) : x = y}. The claim follows by standard arguments.

The following lemma gives a useful estimate:

Lemma 3.2. For T > 0, the law of X(t), t ∈ (0, T ], conditioned on

X0 = x, has a density p(t, x, ·) satisfying the estimates

C1t
−1/2 exp(−C2|y − x|2/t) ≤ p(t, x, y) ≤ C3t

−1/2 exp(−C4|y − x|2/t),

where C1, C2, C3, C4 are constants that depend on T .

P r o o f. For controls of the type u(t) = v(X(t), t), t ≥ 0, with a measur-
able v : R×R

+ → U , these are the estimates of Aronson (1967). The general
case follows from the fact that the one-dimensional marginals of X(·) under
any admissible u(·) can be mimicked by u(·) of the above type (Bhatt and
Borkar (1996), p. 1552).

Corollary 3.1. For any s ≥ 0, the conditional law of X(s+t), t∈ [0, T ],

given F̂s has a density satisfying the above estimates with x replaced by X(s)
throughout.

P r o o f. Combine the above with Theorem 1.6, p. 13, of Borkar (1989).

Let Pe(R) = {µ ∈ P(R) :
T
eax µ(dx) <∞ for all a > 0}.

For x > 0, φ(x) = E[τM(0)/XM(0) = x]. Thus φ(·) satisfies: φ(0) = 0
and

1

2
σ2(x)

d2φ

dx2
(x) +m(x, vM (x))

dφ

dx
(x) = −1 on (0,∞).

Explicit solution of this o.d.e. shows that φ(·) has at most exponential
growth on [0,∞). A symmetric argument shows the same for E[τm(0)/Xm(0)
= x] on (−∞, 0]. Thus V (·) has at most exponential growth and henceT
V (x)µ(dx) < ∞ for µ ∈ Pe(R). What is more, by Corollary 3.1 above,

if π0 ∈ Pe(R), E[V (X(t))] < ∞ for t ≥ 0, implying E[πt(V )] < ∞, or
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πt(V ) < ∞ a.s. A similar argument shows that π0 ∈ Pe(R) ⇒ πt ∈ Pe(R)
a.s. for t ≥ 0, allowing one to view {πt} as a Pe(R)-valued process.

4. The vanishing discount limit. The associated discounted cost
problem with discount factor α > 0 is to minimize over all wide sense ad-
missible u(·) the discounted cost

Jα(u(·), π0) = E
[∞\

0

e−αtk(X(t), u(t)) dt
]
= E

[∞\
0

e−αtπt(k(·, u(t))) dt
]
.

For π ∈ P(R) define the discounted value function

ψα(π) = inf E
[∞\

0

e−αtπt(k(·, u(t))) dt/π0 = π
]
,

where the infimum is over all wide sense admissible u(·). This infimum is,
in fact, a minimum—see Borkar (1989), Chapter V. We shall need a bound
on |ψα(π) − ψα(π

′)| for π 6= π′. For this purpose, we first construct on a
common probability space two solutions to (2.1), (2.2) with different initial
laws, but a “common” wide sense admissible u(·) as follows. (We closely
follow Borkar (1999).)

Let (Ω,F , P0) be a probability space on which we have R-valued ran-

dom variables X̂0, X̃0 with laws π, π′ respectively, scalar Brownian motions
W1(·),W2(·) and m-dimensional Brownian motions Ŷ (·), Ỹ (·), such that

[X̂0, X̃0, W1(·), W2(·), Ŷ (·), Ỹ (·)] is an independent family. Also defined on
(Ω,F , P0) is a U -valued process u(·) with measurable sample paths, indepen-

dent of (X̂0, X̃0,W1(·),W2(·), Ỹ (·)), and satisfying: For t ≥ s, Ŷ (t) − Ŷ (s)

is independent of the foregoing and of u(y), Ŷ (y), y ≤ s. Let X̂(·), X̃(·) de-

note the solutions to (2.1) with initial conditions X̂0, X̃0 and driving Brow-
nian motions W1(·), W2(·) replacing W (·), respectively. Define F∗

t = the

right-continuous completion of σ(X̂(s), X̃(s), Ŷ (s), Ỹ (s),W1(s),W2(s), u(s),
s ≤ t), t ≥ 0. Without any loss of generality, let F =

∨
t F

∗
t . Define a new

probability measure P on (Ω,F) as follows: Let Pt, P0t be the restrictions
of P,P0 respectively to (Ω,F∗

t ) for t ≥ 0. Then

dPt

dP0t
= exp

( t\
0

(〈h(X̂(s)), dŶ (s)〉+ 〈h(X̃(s)), dỸ (s)〉)

−
1

2

t\
0

(‖h(X̂(s))‖2 + ‖h(X̃(s))‖2) ds

)
, t ≥ 0.

Novikov’s criterion (see, e.g., Ikeda and Watanabe (1981)) ensures that the
right-hand side is a legal Radon–Nikodym derivative. By Girsanov’s theo-
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rem (ibid.), under P ,

Ŷ (t) =

t\
0

h(X̂(s)) ds + Ŵ (t), Ỹ (t) =

t\
0

h(X̃(s)) ds + W̃ (t),

for t ≥ 0, where Ŵ (·), W̃ (·) are m-dimensional Brownian motions and

(X̂0, X̃0,W1(·),W2(·), Ŵ (·), W̃ (·)) is an independent family. Further, u(·)

is a wide sense admissible control for both X̂(·), X̃(·).

What this construction achieves is to identify each wide sense admis-
sible control u(·) for π with one wide sense admissible control u(·) for π′.
(This identification can be many-one.) By a symmetric argument that in-
terchanges the roles of π, π′, one may identify every wide sense admissible
control for π′ with one for π. Now suppose that ψα(π) ≤ ψα(π

′). Then for
a wide sense admissible u(·) that is optimal for π for the α-discounted cost
problem,

|ψα(π)− ψα(π
′)| = ψα(π

′)− ψα(π) ≤ Jα(u(·), π
′)− Jα(u(·), π)

≤ sup |Jα(u(·), π
′)− Jα(u(·), π)|

where we use the above identification of controls and the supremum is cor-
respondingly interpreted as being over appropriate wide sense admissible
controls. If ψα(π) > ψα(π

′), a symmetric argument works. We have proved:

Lemma 4.1. |ψα(π)− ψα(π
′)| ≤ sup |Jα(u(·), π) − Jα(u(·), π

′)|.

Let π, π′ ∈ Pe(R). Then this leads to:

Lemma 4.2. For a suitable constant K0 > 0,

|ψα(π)− ψα(π
′)| ≤ K0(π(V ) + π′(V )).

P r o o f. Let K > 0 be a bound on |k(·, u)| and K1 > 0 as in Lemma 3.1.

Let ξ=inf{t≥0 : X̂(t)=X̃(t)} and set X ′(t)=X̃(t)I{t ≤ ξ}+ X̂(t)I{t>ξ}.

ThenX ′(·) satisfies (2.1) with the same u(·) as for X̂(·), X̃(·) and the driving
Brownian motion

W (·) =W2(·)I{· ≤ ξ}+ (W2(ξ) +W1(·)−W1(ξ))I{· > ξ}.

Then

|ψα(π)− ψα(π
′)| ≤ sup |Jα(u(·), π) − Jα(u(·), π

′)|

≤ sup

∞\
0

e−αtE[|k(X̂(t), u(t)) − k(X ′(t), u(t))|] dt

≤ 2K supE[ξ] ≤ 2KK1E[V (X̂0) + V (X̃0)]

= 2KK1(π(V ) + π′(V )).
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From Borkar (1989), Chapter V, we know that ψα(·) satisfies the mar-
tingale dynamic programming principle: For t ≥ 0,

e−αtψα(πt) +

t\
0

e−αsπs(k(·, u(s))) ds

is an {Ft}-submartingale. That is, for t ≥ s,

(4.1) ψα(πs) ≤ E
[
e−αtψα(πt) +

t\
s

e−αyπy(k(·, u(y))) dy/Fs

]
a.s.

Fix π∗ ∈ Pe(R) and let ψα(π) = ψα(π)− ψα(π
∗), ψ(π) = lim supα→0 ψα(π)

and ∆ = lim infα→0 αψα(π
∗). Clearly, |∆| is bounded by any bound on

|k(·, ·)| and in view of Lemma 4.2, ψ(π) = O(π(V )) = O(π(φ)). Rewrite
(4.1) as

ψα(πs) ≤ E
[
e−αtψα(πt) +

t\
s

e−αy(πy(k(·, u(y))) − αψα(π
∗)) dy/Fs

]
.

Taking lim sup as α→ 0 on both sides, we get

ψ(πs) ≤ E
[
ψα(πt) +

t\
s

(πy(k(·, u(y))) −∆) dy/Fs

]
.

Thus we have:

Theorem 4.1. Under any wide sense admissible u(·),

ψ(πt)−

t\
0

(πs(k(·, u(s))) −∆) ds, t ≥ 0,

is an {Ft}-submartingale. Further , if {(πt, u(t)) : t ≥ 0} is a stationary

pair under which it is a martingale, then it must be an optimal stationary

pair and ∆ the optimal cost.

P r o o f. The first part is proved above. The second follows exactly as in
Theorem 3.1, Borkar (1999).

This is a weak “verification theorem”, weak because existence of a sta-
tionary pair as above is not guaranteed, even though existence of an opti-
mal stationary pair is. This is so because a priori, ∆ need not equal the
optimal cost. However, one can show as in Theorem 3.1 of Borkar (1999)
that it is less than or equal to the optimal cost. It is conjectured that
if (πt, u(t)), t ≥ 0, in (4.1) is an optimal stationary pair with the law of
πt = µ ∈ P(Pe(R)), then ∆ obtained as above is indeed the optimal cost
for µ-a.s. π∗.
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