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SOME REMARKS ON EQUILIBRIA IN

SEMI-MARKOV GAMES

Abstract. This paper is a first study of correlated equilibria in nonzero-
sum semi-Markov stochastic games. We consider the expected average pay-
off criterion under a strong ergodicity assumption on the transition structure
of the games. The main result is an extension of the correlated equilibrium
theorem proven for discounted (discrete-time) Markov games in our joint pa-
per with Raghavan. We also provide an existence result for stationary Nash
equilibria in the limiting average payoff semi-Markov games with state inde-
pendent and nonatomic transition probabilities. A similar result was proven
for discounted Markov games by Parthasarathy and Sinha.

1. Introduction and the model. This paper is a first study of corre-
lated equilibria in nonzero-sum semi-Markov stochastic games. We consider
the expected average payoff criterion and assume some strong ergodicity con-
dition on the transition structure of the games. Nash equilibria were studied
in several classes of (discrete-time) general state space Markov stochastic
games but they are known to exist only when some specific conditions (es-
pecially concerning the transition probability functions) are satisfied. Also
some results on ε-equilibria in Markov games are available (see [2, 17, 18]
and their references). Nash equilibria are known to exist in some classes of
ergodic semi-Markov games with countable state spaces [14, 22]. A broad
discussion of nonzero-sum Markov games can be found in [20].
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The main purpose of this paper is to extend the correlated equilibrium
theorem established for discounted Markov games in our joint paper with
Raghavan [19] and for a class of ergodic Markov games in our article [16].
Combining our result with an observation due to Parthasarathy and Sinha
[21], we also prove the existence of stationary Nash equilibria in a class
of semi-Markov games with state independent and nonatomic transition
probabilities. This is a counterpart of the result obtained for discounted
Markov games in [21].

Let X be a metric space, and (S,Σ) a measurable space. A multivalued
mapping Φ from S into a family of subsets ofX is said to be lower measurable

if for any open subset U of X the set {s ∈ S : Φ(s) ∩ U 6= ∅} belongs to Σ.
For a thorough discussion of lower measurable multivalued mappings with
some applications to control and optimization theory we refer to [4].

An N -person nonzero-sum semi-Markov game is defined by the following
objects:

• (S,Σ) is a measurable space, where S is the set of states for the game,
and Σ is a countably generated σ-algebra of subsets of S.

• Xk is a nonempty compact metric space of actions for player k. We
put X = X1 × . . .×XN .

• Ak is a lower measurable multivalued mapping from S into nonempty
compact subsets of Xk. For each s ∈ S, Ak(s) represents the set of actions

available to player k in state s. We put

A(s) = A1(s)× . . .×AN (s), s ∈ S.

• rk : S ×X → R is a bounded nonnegative product measurable payoff

function for player k.

• q is a product measurable transition probability from S × X to S,
called the law of motion among states.

• F (t | s, x, y) is a product measurable distribution function of the tran-

sition time.

If s is a state at some stage of the game and the players select an x ∈ A(s),
then every player k receives the immediate payoff rk(s, x) and a new state y
for the game is selected according to the probability distribution q(· | s, x).
Conditional on the next state y the time until the transition from s to y

actually occurs is a random variable having the distribution F (t | s, x, y).
For any s ∈ S and x ∈ A(s), the distribution of the holding time in the state
s is

G(t | s, x) =
\
S

F (t | s, x, y) q(dy | s, x)

and the mean holding time in the state s is
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T (s, x) =

∞\
0

t dG(t | s, x).

We now formulate our basic regularity assumptions.

A1: For every player k and s ∈ S, the function rk(s, ·) is continuous
on X.

Usually, it is assumed that

rk(s, x) = r1k(s, x) + T (s, x)r2k(s, x)

where r1
k
(s, x) is the immediate reward at the transition time and r2

k
(s, x) is

the reward rate in the time interval between the successive transitions.

A2: The transition probability q has a density function, say z, with
respect to a fixed probability measure µ on (S,Σ), satisfying the following
L1 continuity condition: If xn → x0 in A(s), then\

S

|z(s, y, xn)− z(s, y, x0)|µ(dy) → 0 as n → ∞.

The L1 continuity above is satisfied via Scheffe’s theorem (see Theorem 16.11
of [3]) when z(s, y, ·) is continuous on X. It implies the norm continuity of
the transition probability q(· | s, x) with respect to x ∈ X.

A3: For any s ∈ S, the function T (s, ·) is continuous on X. Moreover,
there exist a and b such that 0 < a ≤ T (s, x) ≤ b for each s ∈ S and x ∈ X.

The game is played over the infinite future with past history as common
knowledge for all the players. A strategy for player k is a measurable map-
ping (transition probability) which associates with each given finite history
hn = (s1, x1, . . . , sn−1, xn−1, sn) of the game (where si ∈ S, xi ∈ A(si)) a
probability distribution on the set Ak(sn) of actions available to him. A
stationary strategy for player k is a mapping which associates with each
state s ∈ S a probability distribution on the set Ak(s), independent of the
history that led to the state s. A stationary strategy for player k can thus
be identified with a measurable transition probability f from S to Xk such
that f(Ak(s) | s) = 1, for every s ∈ S.

Let H = S × X × S × . . . be the space of all infinite histories of the
game, endowed with the product σ-algebra. For any multi-strategy π =
(π1, . . . , πN ) for the players and every initial state s1 = s ∈ S, a probability
measure Pπ

s and a stochastic process {σn, αn} are defined on H in a canon-
ical way, where the random variables σn and αn describe the state and the
actions chosen by the players, respectively, on the nth stage of the game (see
Proposition V.1.1 of [15]). Thus, for each multi-strategy π = (π1, . . . , πN )
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and every initial state s ∈ S, the expected average payoff to player k is

Jk(s, π) = lim inf
m→∞

Eπ
s (
∑m

n=1
rk(σn, αn))

Eπ
s (
∑m

n=1
T (σn, αn))

.

Here Eπ
s means the expectation operator with respect to the probability

measure Pπ
s .

Let π∗ = (π∗

1 , . . . , π
∗

N
) be a fixed multi-strategy for the players. For any

strategy πk of player k, we write (π∗

−k
, πk) for the multi-strategy obtained

from π∗ by replacing π∗

k
with πk.

A multi-strategy π∗ = (π∗

1 , . . . , π
∗

N
) is called a Nash equilibrium for the

average payoff semi-Markov game if no unilateral deviations from it are
profitable, that is, for each s ∈ S,

Jk(s, π
∗) ≥ Jk(s, (π

∗

−k, πk)),

for every player k and any strategy πk.

It is still an open problem whether Markov games with uncountable
state space have stationary equilibrium points. A positive answer to this
problem is known only for some special classes of games, where the transition
probabilities satisfy certain specific conditions. For a good survey of the
existing literature see [20, 16, 18]. An equilibrium is easier to obtain if we
allow the players to communicate in some sense and correlate their choices.
We now extend the approach taken in our joint paper with Raghavan [19]
where discounted (discrete-time) Markov games were studied.

We extend the sets of strategies available to the players in the sense that
we allow them to correlate their choices in a natural way described below.
The resulting solution is a kind of extensive-form correlated equilibrium [7].

Suppose that {ξn : n ≥ 1} is a sequence of so-called signals, drawn
independently from [0, 1] according to the uniform distribution. Suppose
that at the beginning of each (random) period n of the game the players are
informed not only of the outcome of the preceding period and the current
state sn, but also of ξn. Then the information available to them is a vector
hn = (s1, ξ1, x1, . . . , sn−1, ξn−1, xn−1, sn, ξn) where si ∈ S, xi ∈ A(si)), and
ξi ∈ [0, 1]. We denote the set of such vectors by Hn.

An extended strategy for player k is a sequence πk = (π1
k
, π2

k
, . . .), where

every πn

k
is a (product) measurable transition probability from Hn to Xk

such that πn

k
(Ak(sn) |h

n) = 1 for any history hn ∈ Hn. (Here sn is the last
coordinate of hn.) An extended stationary strategy for player k is a strategy
πk = (π1

k
, π2

k
, . . .) such that each πn

k
depends on the current state sn and

the last signal ξn only. In other words, a strategy πk of player k is called
stationary if there exists a transition probability f from S× [0, 1] to Xk such
that for every n and each history hn ∈ Hn, we have πn

k
(· |hn) = f(· | sn, ξn).

Assuming that the players use extended strategies we actually assume that
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they play the semi-Markov game with the extended state space S × [0, 1].
The law of motion, say q, in the extended state space model is obviously
the product of the original law of motion q and the uniform distribution η

on [0, 1]. More precisely, for any s ∈ S, ξ ∈ [0, 1], a ∈ A(s), any set C ∈ Σ

and any Borel measurable set D ⊆ [0, 1], q(C ×D | s, ξ, a) = q(C | s, a)η(D).
For any multi-strategy π = (π1, . . . , πN ) of the players, the limiting

expected average payoff to player k is a function of the initial state s1 and
the first signal ξ1 and is denoted by Jk(s1, ξ1, π).

We say that f∗ = (f∗

1 , . . . , f
∗

N
) is a Nash equilibrium for the average

payoff semi-Markov game in the class of extended strategies if for each initial
state s1 ∈ S,

1\
0

Jk(s1, ξ1, f
∗) η(dξ1) ≥

1\
0

Jk(s1, ξ1, (f
∗

−k, πk)) η(dξ1)

for every player k and any extended strategy πk.

A Nash equilibrium in extended strategies is also called a correlated

equilibrium with public signals. The reason is that after the outcome of
any period of the game, the players can coordinate their next choices by
exploiting the next (known to all of them, i.e. public) signal and using
some coordination mechanism telling which (pure or mixed) action is to be
played by each of them. In many applications, we are particularly interested
in stationary equilibria. In such a case the coordination mechanism can be
represented by a family of N + 1 measurable functions λ1, . . . , λN+1 : S →
[0, 1] such that

∑N+1

i=1
λi(s) = 1 for every s ∈ S. (We remind the reader that

N is the number of players. The number N + 1 appears in our definition
because Carathéodory’s theorem [4] is applied in the proof of our main
result.) A stationary Nash equilibrium in the class of extended strategies
can then be constructed by using a family of N + 1 stationary strategies
f1
k
, . . . , fN+1

k
, given for each player k, and the following coordination rule.

If the game is at a state s on the nth stage and a random number ξn is
selected, then each player k is suggested to use fm

k
(· | s), where m is the

least index for which
∑m

i=1
λi(s) ≥ ξn. An extended stationary strategy f∗

k

for each player k can be defined as follows:

(1) f∗

k (· | s, ξ) =

{

f1
k
(· | s) if ξ ≤ λ1(s), s ∈ S,

fm

k
(· | s) if

∑m−1

i=1
λi(s) < ξ ≤

∑m

i=1
λi(s),

for s ∈ S, 2 ≤ m ≤ N+ 1. Because the signals are independent and uni-
formly distributed in [0, 1], it follows that at any period of the game and
for any current state s, the number λi(s) can be interpreted as the proba-
bility that player k is suggested to use f i

k
(· | s) as his mixed action. It turns

out (under our assumptions) that a multi-strategy (f∗

1 , . . . , f
∗

N
) obtained by

the above construction is a stationary Nash equilibrium in the class of ex-
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tended strategies of the players in a game iff no player k can unilaterally
improve upon his expected average payoff by changing any of his strategies
f i

k
, i = 1, . . . , N + 1. A formal proof of this result is given in Section 2.
In the proofs we shall use the following notation. If w : S → R is a

bounded measurable function, f = (f1, . . . , fN ) is a stationary (extended)
multi-strategy and s ∈ S, ξ ∈ [0, 1], then

(2) w(s, ξ, f) =
\
. . .
\
w(s, x1, . . . , xN ) f1(dx

1 | s, ξ) . . . fN(dxN | s, ξ).

Clearly, w(s, f) is defined in a similar way for a stationary multi-strategy f

(which is independent of ξ).

2. Main results. We start with an assumption which implies the strong
ergodicity property of the transition structure of the game.

A4: There exist a constant δ > 0 and a probability measure ν on S such
that

q(D | s, x) ≥ δν(D),

for every s ∈ S, x ∈ X and for each measurable subset D of S.

Condition A4 was often used in stochastic dynamic programming [6, 10,
23] and is satisfied in replacement models [10]. Bielecki [2] and Küenle [9]
used condition A4 to study ε-equilibria in stochastic Markov games.

Theorem 1. Let A1 through A4 be satisfied. Then the semi-Markov

game has a stationary Nash equilibrium in the class of extended strategies.

P r o o f. Fix any B > 0 such that 0 ≤ rk(s, x) ≤ B for every k and
s ∈ S, x ∈ X. Define V to be the space of all (µ + ν)-equivalence classes
of nonnegative measurable functions w : S → R such that w(s) ≤ B,
(µ+ν)-a.e. Let L∞

i
= L∞

i
(S,Σ, µi) be the space of all µi-essentially bounded

measurable functions φ : S → R (µ1 = µ and µ2 = ν). Similarly, we put
L1
i
= L1

i
(S,Σ, µi). Assume that V is endowed with the topology T = T1∩T2

where Ti is the weak-star topology σ(L∞

i
, L1

i
). It is well known that V is

a compact space and since Σ is countably generated the topology on V is
metrizable [5]. Let U = V × . . .× V (N times). Assume that U is given the
product topology.

Choose c > 0 such that cb ≤ δ (recall A3). Then

(3) q(D | s, x) ≥ cT (s, x)ν(D)

for every s ∈ S, x ∈ X and D ∈ Σ. With any s ∈ S and u = (u1, . . . , uN ) ∈
U, we associate the nonzero-sum (static) game Γu(s) in which the payoff
function to player k (defined on A(s)) is

cark(s, ·) +
\
S

uk(y) q(dy | s, ·)− cT (s, ·)
\
S

uk(y) ν(dy).
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Let coPu(s) be the set of all convex combinations of Nash equilibrium payoffs
in the game Γu(s). It turns out that s 7→ coPu(s) is a weakly measurable
compact valued mapping (see Section 4 of [19]). By Mu we denote the set
of all (µ + ν)-equivalence classes of measurable selectors of coPu. By the
Kuratowski and Ryll-Nardzewski measurable selection theorem [11], Mu is
nonempty (see also Lemma 7 of [19]). From our definition of the constant c
and (3), it follows that Mu ⊂ U . Moreover, the correspondence u 7→ Mu is
upper semicontinuous (has a closed graph). We have to show that if un → u0

in U , wn ∈ Mun
for each n and wn → w0 in U , then w0 ∈ Mu0

. The proof
of this fact is similar to that of Lemma 7 of [19]. The crucial part is that
(by Mazur’s theorem [5]) there exists a sequence of convex combinations of
the functions wn which converges (µ+ ν)-a.e. By the Kakutani–Glicksberg
fixed point theorem [8], there exists some v = (v1, . . . , vN ) ∈ Mv. Using a
“random version” of Carathéodory’s theorem [4] and the Kuratowski and
Ryll-Nardzewski measurable selection theorem [11], it is possible to find a
family of N + 1 measurable functions λ1, . . . , λN+1 : S → [0, 1] such that
∑N+1

i=1
λi(s) = 1 for every s ∈ S and a family of N + 1 stationary strategies

f1
k
, . . . , fN+1

k
for every player k such that the extended stationary strategies

f∗(· | s, ξ) defined by (1) form a Nash equilibrium in the extended one-stage
game Γv(s) allowing for “public communication” using signals ξ ∈ [0, 1].
The formal proof of this fact is similar to that of the Equilibrium Theorem
in [19].

For every player k, s ∈ S and ξ ∈ [0, 1], we have (recall (2))

(4) vk(s) = cark(s, ξ, f
∗) +

\
S

vk(y) q(dy | s, ξ, f
∗)− T (s, ξ, f∗)jk

where f∗ = (f∗

1 , . . . , f
∗

N
) and

jk = c
\
S

vk(y) ν(dy).

Fix player k. Equation (4) and the fact that f∗

1 (· | s, ξ), . . . , f
∗

N
(· | s, ξ)

form a Nash equilibrium in the (extended) game Γv(s) mean that the so-
called optimality equation is satisfied for the corresponding semi-Markov
control process with player k as the controller. Standard iteration arguments
and this optimality equation (see Theorem 7.6 of [23] or [10]) give

(5)

1\
0

J ′

k(s1, ξ1, f
∗) η(dξ1) = sup

πk

1\
0

J ′

k(s1, ξ1, (f
∗

−k, πk)) η(dξ1),

where J ′

k
is the expected average payoff function corresponding to the im-

mediate payoff function cark. Since ca > 0, (5) implies that f∗ is also a
Nash equilibrium (in the class of all extended strategies) for the original
semi-Markov game.
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Our second result is a counterpart of a theorem by Parthasarathy and
Sinha [21] proved for discounted Markov games. We return to the standard
model without assuming any communication device.

Theorem 2. Assume that Ak(s) = Xk for each s ∈ S and Xk is a finite

set for every player k. Assume that q is independent of s ∈ S, that is,
q(· | s, x) = q(· |x) for all s ∈ S and x ∈ X. If moreover A3 and A4 are

satisfied and the probability measures q(· |x) and ν are nonatomic, then the

semi-Markov game has a stationary Nash equilibrium.

P r o o f. Let Pu(s) be the set of all Nash equilibrium payoffs in the game
Γu(s) defined above for u ∈ U. From the proof of Theorem 1, we infer
that there exists some vector-valued measurable function v = (v1, . . . , vN )
such that v(s) ∈ coPv(s) for all s ∈ S. Using Lyapunov’s theorem, one can
prove that there exists some measurable function u = (u1, . . . , uN ) such that
u(s) ∈ Pv(s) for all s ∈ S and

(6)
\
S

uk(y) q(dy|x) =
\
S

vk(y) q(dy |x)

for each x ∈ X and

(7)
\
S

uk(y) ν(dy) =
\
S

vk(y) ν(dy).

For the details consult for example [1]. (Here we use our assumption that X
is finite and q(· |x) and ν are nonatomic.) From (6) and (7), it follows that
the games Γv(s) and Γu(s) have identical payoff functions and consequently
Pu(s) = Pv(s) for each s ∈ S. This and the fact that u(s) ∈ Pv(s) for all
s ∈ S imply that

(8) uk(s) = cark(s, g
∗) +

\
S

uk(y) q(dy | s, g
∗)− T (s, g∗)jk

for some stationary Nash equilibrium strategies g∗
i
(· | s), g∗ = (g∗1 , . . . , g

∗

N
)

and

jk := c
\
S

uk(y) ν(dy).

Of course, to get g∗ a measurable selection theorem must be applied (similar
issues are considered in [19]). Combining (8) with standard results on the
optimality equation for semi-Markov control processes [23, 10], we infer that
g∗ is a stationary Nash equilibrium in the game with the immediate payoffs
cark and thus in the original semi-Markov game.

Remark. Assume that

(9) β(s, x, y) =

∞\
0

e−αt dF (t | s, x, y) ≤ 1− ε
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for some α > 0, ε > 0 and for all (s, x, y) ∈ S ×X × S. Assume also that
β(s, ·, y) is continuous on X. Then one can consider the semi-Markov games
in which the payoffs are discounted by the discount function β given by (9)
(see [14] or [22]). We remark that results closely related to Theorems 1
and 2 can be stated for discounted semi-Markov games satisfying the above
assumptions. Condition A4 can be dropped in that case. The proofs can
be based on the methods developed in [19, 21] and standard results on
discounted semi-Markov control processes [10, 23].

3. Concluding remarks. The existence of stationary Nash equilib-
ria in general classes of stochastic Markov (or more general semi-Markov)
games with uncountable state spaces is a challenging open problem. In this
paper, we provide a first result on correlated equilibria in the semi-Markov
setting. Our ergodicity assumption A4 is rather strong. However, the equi-
librium strategies obtained in such an approach are “pathwise optimal” (see
[10] for a definition). This interesting property follows from our theorems
and Corollary 2.1 of [10]. Some results on the existence of Nash equilib-
ria in semi-Markov games with a metric state space are stated in [12, 13].
However, the proofs given there are erroneous. They are based on a se-
quential compactness argument in a space of measurable functions which is
completely incorrect.
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