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ON THE CLASSIFICATION OF MARKOV CHAINS

VIA OCCUPATION MEASURES

Abstract. We consider a Markov chain on a locally compact separable
metric space X and with a unique invariant probability. We show that
such a chain can be classified into two categories according to the type of
convergence of the expected occupation measures. Several properties in each
category are investigated.

1. Introduction. Consider a Markov chain {Φt : t = 0, 1, . . .} on (X,B)
(with X a locally compact separable metric space and B its usual Borel σ-
field), with stochastic kernel P , and a unique invariant probability measure
µ on B. One way to characterize such a chain is to use the various notions
of transience and recurrence as is done for instance in Meyn and Tweedie
[7]. However, except for X countable, there is no definite classification.

The aim of this paper is to show that according to the type of conver-
gence of the sequence of expected occupation measures, those chains can be
classified in only two categories. Namely, there is an absorbing set A of full
measure µ such that either (a) or (b) below occur:

(a) The chain is positive recurrent in A, and positive Harris recurrent
in H ⊂ A with µ(H) = 1; the sequence of expected occupation measures
{P (n)(x, ·)} defined in (2.1) converges to µ in the total variation norm for
every x ∈ H. The set H is a “maximal” Harris set and is indecomposable
into disjoint absorbing sets.
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(b) The chain is not positive recurrent and for every x ∈ A, the se-
quence {P (n)(x, ·)} converges to µ only weakly (and the stronger setwise
convergence or in the total variation norm are not possible). In addition, A
can be decomposed into an uncountable collection of µ-null absorbing sets
Ax ⊂ A, that is, when the chain starts in state x ∈ A, it remains in a µ-null
absorbing set Ax. The restriction of P to Ax has no invariant probability
measure. Thus, in contrast to case (a), the absorbing set A can be further
decomposed into uncountably many absorbing sets.

In addition, a solidarity property holds. Namely, if the convergence
of P (n)(x, ·) to µ in total variation occurs on a µ-positive set then it oc-
curs µ-a.e. and we are in case (a). In fact, to be in case (a), it even
suffices to check whether the sequence P (n)(x,O) converges for all open
sets O ∈ B on a µ-positive set only (note that knowledge of µ(O) is not
required).

Moreover, in case (b), for every bounded measurable function f on X
and for every x ∈ A, whenever the limit f∗(x) in the Birkhoff Individual
Ergodic Theorem exists, it is shown to be

T
f dθx for some pure finitely

additive invariant probability θx and
T
f dµ =

T
f dθx for µ-a.a. x. As A can

be partitioned into µ-null absorbing sets Ax, the restriction of P to Ax is still
a Markov chain but with no P -invariant probability measure. Still, the limit
in the Birkhoff Individual Ergodic Theorem has an integral representation,
but now with respect to a finitely additive probability.

One may regard case (a) as the analogue of the countable case, i.e.,
the case of an irreducible Markov chain where A cannot be decomposed
into absorbing sets, wheras case (b) illustrates what can happen if X is
not countable. The latter case is far from being pathological. In fact, one
may show that every Markov chain with finitely supported expected occu-
pation measures, and whose invariant distribution does not have a count-
able support, will fall into case (b). This can be checked easily in many
cases. For instance, as shown in some examples, many measure-preserving
transformations in R

n, random dynamical systems with finitely supported
noise-distribution (among them, random walks with finite distributions) and
iterated functions systems will fall into this class. For such systems (with
a unique invariant probability measure µ), for µ-a.a. initial states x, the
chain evolves in a countable space Ax and the associated Markov chain (the
restriction to Ax) has no invariant probability measure.

Finally, it is important to note that for the purpose of this paper, the
uniqueness assumption is not restrictive. Indeed, in the case of a non-unique
invariant probability measure, and thanks to an ergodic decomposition à la
Yosida, one may restrict to the ergodic classes in that decomposition in
which there is a unique invariant probability measure (see e.g. [3]).
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2. Notation and definitions. With (X,B) a measurable space, let
M(X) be the Banach space of finite signed measures on B, endowed with
the total variation norm ‖ · ‖, whereas L1(µ) denotes the standard Banach
space L1(X,B, µ).

Let P (x, ·) be the transition kernel of a discrete-time homogeneous Mar-
kov chain Φ = {Φt : t = 0, . . .} on X, i.e.,

• For every x ∈ X, P (x, ·) is a probability measure (p.m.) on B.

• For every B ∈ B, P (·, B) is a measurable function on X.

Denote by P (n)(x, ·) the n-step expected occupation measure with initial
state x ∈ X, i.e.,

(2.1) P (n)(x,B) := n−1
n−1
∑

t=0

P t(x,B), B ∈ B.

The transition kernel P defines a linear operator on M(X), µ 7→ µP , by

µP (B) :=
\
P (x,B)µ(dx), B ∈ B.

A p.m. µ in M(X) is called a P -invariant probability measure (P -invariant
p.m.) if µP = µ.

A set B ∈ B is called a µ-null set if µ(B) = 0. A measure ν is said to be
singular with respect to µ (denoted by ν ⊥ µ) if there is a set A ∈ B with
µ(A) = 0 = ν(X \ A).

3. Main results. In this section we first consider a measurable space
(X,B) with B countably generated. We use a result of Neveu [8] to classify
into two categories the chains with a unique invariant p.m. (i.p.m.). Then,
using a result from [4] that characterizes positive recurrent Harris chains in
terms of the convergence of the expected occupation measures, we obtain a
solidarity property (see Proposition 3.2 below). We then consider the case
where X is a locally compact separable metric space and B its usual Borel
σ-field. In this case, the two categories of chains can be identified via the
type of convergence of the expected occupation measures (Theorem 3.3).
Moreover, a necessary and sufficient condition that only involves open sets
permits one to detect to which category the chain belongs (Proposition 3.5).

3.1. General measurable space. We first have the following result that
is an extension of Proposition 2 of Neveu [8] (see also Horowitz [5]).

Proposition 3.1. Assume that P has a unique P -invariant p.m. µ.
Then there is an absorbing set A ∈ B with µ(A) = 1 and such that either

(a) Φ is positive recurrent in A and positive Harris recurrent in H ⊂ A
with µ(H) = 1, or
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(b) µ ⊥
∑

∞

i=1 P
i(x, ·) for each x ∈ A so that when the chain Φ starts

in state x ∈ A, it remains in a µ-null absorbing set Ax ⊂ A. There are

uncountably many such sets.

Of course, when X is countable, only (a) can occur.

P r o o f. As µ is the unique P -invariant p.m., by the celebrated Birkhoff
Individual Ergodic Theorem (see e.g. [11]), for all B ∈ B one has

lim
n→∞

n−1
n
∑

i=1

P i(x,B) = µ(B) µ-a.e.

Therefore, whenever µ(B) > 0,
∞
∑

i=1

P i(x,B) > 0 µ-a.e.,

which implies that Φ is µ-essentially irreducible (see e.g. Neveu [8]). There-
fore, from Proposition 2 of Neveu [8], only two things may happen. Either
(a) there is an absorbing set A1 ∈ B with µ(A1) = 1 such that

µ≪
∞
∑

i=1

P i(x, ·) for all x ∈ A1,

or (b) there is an absorbing set A2 ∈ B with µ(A2) = 1 such that

(3.1) µ ⊥

∞
∑

i=1

P i(x, ·) for all x ∈ A2.

In case (a), the chain is µ-irreducible in the absorbing set A1, and, having a
unique P -invariant p.m., it is positive recurrent (see e.g. Meyn and Tweedie
[7]) in A1. In addition, there is a set H ∈ B and a µ-null set N such that
A1 = H ∪N , and H is a maximal Harris set in which Φ is positive Harris
recurrent (see e.g. Theorem 9.1.5 in [7]).

In case (b), it follows from (3.1) that for each x ∈ A := A2, there
is a Borel set Ax ⊂ A such that µ(Ax) = 0 and P i(x,Ax) = 1 for all
i = 1, 2, . . . Thus, the µ-null set A′

x := {y : P j(y,Ax) = 1 for j = 1, 2, . . .} ⊂
A is absorbing and x ∈ A′

x. As the A′

x form a covering of A, there are
uncountably many different such sets A′

x because otherwise, µ(A′

x) = 0 for
all x and µ(A) = 1 would yield a contradiction.

We now use Proposition 3.1 to obtain the following solidarity property:

Proposition 3.2. Assume that Φ has a unique P -invariant p.m. µ.
Then the following statements are equivalent :

(a) P (n)(x, ·) → µ setwise for all x ∈ B ∈ B with µ(B) > 0.
(b) P (n)(x, ·) → µ setwise µ-a.e.
(c) ‖P (n)(x, ·)− µ‖ → 0 µ-a.e.
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P r o o f. The implications (c)⇒(b)⇒(a) are trivial. The implication
(b)⇒(c) is proved in [4]. Therefore, it suffices to prove (a)⇒(b).

If (a) holds and B ∈ B is such that µ(B) > 0, then on B we cannot
have µ ⊥ P k(x, ·) for all k = 0, 1, . . . Therefore, by Proposition 3.1(a),
the chain is positive recurrent in an absorbing set of full µ-measure and
positive Harris recurrent on some maximal Harris set H ⊂ A. From a result
of [4], we conclude that P (n)(x, ·) → µ setwise for all x ∈ H and in fact
‖P (n)(x, ·)− µ‖ → 0 for all x ∈ H.

3.2. Locally compact separable metric space. In this section, we assume

that X is a locally compact separable metric space with B its usual Borel
σ-field. In this case, whenever P has a P -invariant p.m. µ, there is a Yosida
ergodic decomposition in the sense that there is a family of absorbing sets
{Eα} called “ergodic classes” where the restriction of Φ to each Eα has a
unique i.p.m. µα, and

P (n)(x, ·) ⇒ µα ∀x ∈ Eα

(see e.g. [3]), where “P (n)(x, ·) ⇒ µα” denotes weak convergence. Therefore,
we may now characterize the behavior of the chain in each ergodic class by
reducing to the case of a unique P -invariant p.m.

Theorem 3.3. Assume that Φ has a unique P -invariant p.m. µ. Then

only (a) or (b) below may occur :

(a) Φ is positive recurrent (resp. positive Harris recurrent) in an absorb-

ing set A with µ(A) = 1 (resp. in an absorbing set H ⊂ A with µ(H) = 1)
and for µ-a.a. x ∈ X (resp. for all x ∈ H), one has

(3.2) ‖P (n)(x, ·)− µ‖ → 0.

(b) Φ is not positive recurrent and for µ-a.a. x ∈ X, one has

(3.3) P (n)(x, ·) ⇒ µ and µ ⊥ P (n)(x, ·).

P r o o f. In the case of Proposition 3.1(a), the chain Φ is positive recur-
rent in an absorbing set A with µ(A) = 1 and positive Harris recurrent in a
maximal Harris set H ⊂ A. Therefore, by a result of [4], (3.2) holds in H.
This yields (a) since µ(H) = 1. The case (b) follows from Proposition 3.1(b)
and Theorem 3.1(b) of [3].

Remark 3.4. Theorem 3.3 states that µ-a.e., either the expected occupa-
tion measures converge in the strongest possible way (in the total variation
norm), or “at most” the weakest form (the weak convergence “⇒”). Nothing
in-between can happen! For instance, we cannot have setwise convergence
on some µ-positive set B ∈ B and only weak convergence on some other
µ-positive set C ∈ B.
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Thus, from the solidarity property in Proposition 3.2 it follows that to
check which type of convergence occurs (in norm or only weak), it suffices
to consider one µ-positive set only.

In addition, we even have:

Proposition 3.5. Assume that Φ has a unique P -invariant p.m. µ.
Then:

(a) Φ is positive recurrent in an absorbing set of full measure if and only

if there is some µ-positive set B ∈ B such that P (n)(x,O) converges for

every open set O ∈ B and every x ∈ B.

(b) Φ is not positive recurrent in any absorbing set if and only if there is

some µ-positive set B ∈ B such that for every x ∈ B, P (n)(x,Ox) does not

converge for some open set Ox ∈ B.

P r o o f. It suffices to observe that the setwise convergence of a sequence
of probability measures occurs if and only if it occurs in the class of open
sets only (see Corollary 1 in Panchapagesan [9], which is an extension of
Dieudonné’s result in the compact case).

Observe that in (a), one does not need to know the limit which is µ(O).
It suffices that the sequence P (n)(x,O) converges.

3.3. Examples. In this section, we provide a series of examples.

Measure-preserving transformations. Consider the following measure-
preserving transformations (see Lasota and Mackey [6]):

(a) The r-adic transformation S : [0, 1] → [0, 1] given by x 7→ rx (mod 1)
with r > 0.

(b) The Ulam–von Neumann transformation S : [0, 1] → [0, 1] given by
x 7→ S(x) := 4x(1 − x).

(c) The Baker transformation S : [0, 1]2 → [0, 1]2 given by

(x, y) 7→ S(x, y) =

{

(2x, y/2), 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1,
(2x− 1, (y + 1)/2), 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(d) Anosov diffeomorphisms S : [0, 1]2 → [0, 1]2 given by

(x, y) 7→ S(x, y) = (x+ y, x+ 2y) (mod 1).

In cases (a), (c) and (d), the Lebesgue measure is invariant, whereas in
case (b), there is an invariant measure with density (π

√

x(1− x))−1.
Therefore, since in all cases the expected occupation measures are finitely

supported, the convergence of the expected occupation measures to the
invariant probability µ is only “weak” and therefore, the corresponding
Markov chains cannot be positive recurrent, that is, we are in case (b)
of Theorem 3.3.
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Systems xt+1 = F (xt, ξt), t = 0, 1, . . . , where F : Rn → R
n is measurable

and the ξt are i.i.d. n-random vectors. If ξ0 takes only a finite number of
values and the invariant measure (assumed to exist and to be unique) is not
discrete, then the chain cannot be positive recurrent and we are in case (b)
of Theorem 3.3. Most random walks with finite distributions fall into that
class.

Barnsley “Iterated Function Systems”. Consider m mappings Fi :
R

n → R
n, and the system

xt+1 = Fξn(xt), t = 0, 1, . . . ,

where the ξt are i.i.d. random variables with values in {1, . . . ,m} and dis-
tribution [p1, . . . , pm]. Under certain conditions, the induced Markov chain
has a unique absolutely continuous i.p.m., called a fractal measure (a mea-
sure supported on a fractal); see e.g. Section 12.8 in Lasota and Mackey
[6]. Again, as the expected occupation measures are finitely supported, the
chain cannot be positive recurrent and the convergence is only weak.

4. On the Birkhoff Individual Ergodic Theorem. In this section,
(X,B) is again a measurable space with B countably generated. From the
results of the previous section, in the case of a unique i.p.m. µ and when
the chain is not positive recurrent, for µ-almost all initial states, the chain
remains in a µ-null absorbing set Ax. Therefore, the restriction of the tran-
sition kernel to Ax is still a Markov chain but with no i.p.m. However, the
limit in the Birkhoff Ergodic Theorem is still related to the i.p.m. µ. We
make this more precise in Theorem 4.1 below.

Let B(X) be the Banach space of bounded measurable functions on X,
equipped with the sup-norm. From the Birkhoff Individual Ergodic Theorem
(see e.g. [11]), we already know that for every f ∈ L1(µ),

(4.1) P (n)f(x) → f∗(x) µ-a.e. and
\
f dµ =

\
f∗ dµ.

In fact, from the uniqueness of µ it follows that f∗(x) =
T
f dµ for µ-a.a.

x ∈ X. Moreover, in the case that Φ is positive recurrent (resp. positive
Harris recurrent), we also have

(4.2) ‖P (n) − µ‖ → 0 µ-a.e. (resp. for all x ∈ X)

so that if Φ is positive recurrent, there is a set A with µ(A) = 1 such that

(4.3) P (n)f →
\
f dµ ∀x ∈ A, f ∈ B(X),

and if Φ is Harris recurrent, one may replace A with X. We now show
that if Φ is not recurrent, then for every x ∈ X, limn P

(n)f(x) (whenever
exists) can be written as

T
f dϕx with ϕx a purely finitely additive measure

(called a pure mean) which is P -invariant. The link with µ is that for every
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f ∈ B(X),
T
f dϕx =

T
f dµ, µ-a.e. Part (i) of Theorem 4.1 below does not

depend on the uniqueness of the i.p.m. µ.

Theorem 4.1. (i) For every x ∈ X, there is a finitely additive (proba-
bility) measure ϕx such that whenever f ∈ B(X) and limn P

(n)f(x) exists,
we have

(4.4) lim
n→∞

P (n)f(x) =
\
f dϕx.

Moreover , for every P -invariant p.m. µ one has

(4.5) µ(B) =
\
ϕx(B)µ(dx), B ∈ B.

(ii) In addition, if Φ has a unique P -invariant p.m. µ, then either (a)
or (b) below occurrs:

(a) Φ is positive recurrent in an absorbing set A with µ(A) = 1 (and
positive Harris recurrent in a maximal Harris set H ⊂ A), and ϕx =
µ, µ-a.e. (for all x ∈ H),

(b) Φ is not positive recurrent , and µ-a.e., ϕx is a purely finitely additive

P -invariant probability ; for every f ∈ B(X),
T
f dµ =

T
f dϕx for

µ-a.a. x ∈ X.

P r o o f. (i) The proof of the first statement is an application of a special
Hahn–Banach Extension Theorem (Proposition 5, p. 224 of Royden [10]).
Indeed, choose an arbitrary x ∈ X, and with f∗(x) as in (4.1), let

Vx := {f ∈ B(X) : f∗(x) exists}.

Then Vx is a nonempty subspace of B(X) since it contains at least all the
constant functions f := c for which f∗(x) = c. In addition,

(4.6) |f∗(x)| ≤ ‖f‖ ∀f ∈ Vx, and f ∈ Vx ⇒ Pf ∈ Vx,

so that PVx ⊂ Vx. Let Tx : Vx → R be the linear mapping

f 7→ Txf := f∗(x) for f ∈ Vx.

Observe that {I, P, P 2, . . .} is an Abelian semigroup of linear operators on
B(X). Therefore, as ‖Pf‖ ≤ ‖f‖ for all f ∈ B(X), and in view of (4.6),
from the Hahn–Banach Extension Theorem Tx can be extended to all of
B(X), that is, to a continuous linear functional on B(X), which we denote
by Tx again. As 1 ∈ Vx and Tx is positive on Vx, Tx can be chosen to be a
positive linear functional. Hence, Tx can be identified with a (nonnegative)
bounded linear functional ϕx on B that satisfies:

• Txf =
T
f dϕx for all f ∈ B(X).

• f∗(x) = Txf =
T
f dϕx for all f ∈ Vx.

• Tx(Pf) = Txf for all f ∈ B(X).
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Therefore, ϕxP = ϕx, i.e., ϕx is P -invariant. In addition, being finitely
additive, ϕx can be written as

(4.7) ϕx = νx + ψx, x ∈ X,

where νx is a countably additive measure and ψx a a purely finitely additive
measure. Finally, using an argument due to Neveu and proceeding as in
Foguel [2], one may show that both νx and ψx are P -invariant.

We now prove the second statement of (i). Let µ be a P -invariant p.m.
and take an arbitraryB ∈ B. From the Birkhoff Individual Ergodic Theorem
with f := IB ∈ L1(µ), one has I∗B(x) = limn P

(n)f(x) µ-a.e. and
T
f∗ dµ =T

f dµ = µ(B). Now, as I∗B(x) =
T
IB dϕx = ϕx(B) µ-a.e., one may extend

ϕ•(B) so as to be measurable and, therefore,\
f∗ dµ =

\
ϕx(B)µ(dx) = µ(B), B ∈ B.

(ii) From Theorem 3.3, only two cases may occur:
(a) Φ is positive recurrent in an absorbing set A with µ(A) = 1 and

positive Harris recurrent in a maximal Harris set H ⊂ A. In addition, µ-a.e.
‖P (n)(x, ·)− µ‖ → 0 so that obviously, ϕx = µ µ-a.e. (and for all x ∈ H).

(b) Φ is not recurrent and from Proposition 3.1, for µ-a.a. x ∈ X,
µ ⊥

∑

∞

i=1 P
i(x, ·) so that µ-a.e.,

P (n)(x, ·) ⊥ µ ∀n = 1, 2, . . .

Therefore, for µ-a.a. x ∈ X, there is a set Ax ∈ B with µ(Ax) = 1 and
P (n)(x,Ax) = 0 for all n = 1, 2, . . . From the decomposition ϕx = νx + ψx,
the invariance of νx and the uniqueness of µ, it follows that νx = αxµ for
some scalar 0 ≤ αx ≤ 1. But then

0 = lim
n→∞

P (n)(x,Ax) = αxµ(Ax) + ψx(Ax) = αx + ψx(Ax),

which implies that αx = 0 and thus, for µ-a.a. x ∈ X, ϕx (= ψx) is a
purely finitely additive measure. In addition, from Birkhoff’s Individual
Ergodic Theorem, since f ∈ L1(µ) if f ∈ B(X), and with f∗ as in (4.1), we
have f∗(x) =

T
f dϕx for µ-almost all x ∈ X, and thus since we also have

f∗(x) =
T
f dµ, we obtain

T
f dµ =

T
f dϕx for µ-almost all x ∈ X.
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