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VIA BASE CONTRAST

Abstract. The present article is a continuation of previous papers by
the same authors devoted to the efficiency of crop rotation experiments.
We focus on plans distinguished by the cyclical pattern of the incidence
matrix. For practical reasons, we slightly modify the efficiency coefficient.
The relation between the resulting efficiency coefficients is examined. In
addition, we provide a background material on crop rotation experiments.

1. Preliminaries. In the preliminary section, we establish conventions
of notation, state the problem and give an outline of the paper.

1.1. Notation. Let D1 be a cyclic block design with v1 treatments la-
belled 0, . . . , v1 − 1 (cf. John [2]). The blocks of such a design are obtained
by successive addition of unity to the elements of the initial block and re-
duction modulo v1 if necessary. It may be that the same block is obtained
after a certain number of steps, but our convention is that the initial block
generates v1 − 1 further blocks. We denote by r1 the number of treatments
attached to the initial block and by N1 the v1× v1 incidence matrix of such
a proper design.

Let D2 be a cyclic design with a similar pattern, but with v2 blocks, each
of size r2, and with incidence matrix N2.

Given the designs D1 and D2, we will focus our attention on block designs
D∗ with incidence matrix

(1) N =

1′δ2
⊗N1

. . . . . . . .
1′δ1

⊗N2

 .
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Since there is no restriction v1 = v2, the dimensions δ1, δ2 of the respective
vectors of ones should be such that δ2v1 = δ1v2. The design D∗ has the
following parameters: v = v1 + v2, b = δ2v1 = δ1v2, r′ = (δ2r11′v1

, δ1r21′v2
)

and k = r1 + r2. Its information matrix C can be partitioned into circulant
submatrices as follows:

C =

 C1

... C12

. . . . . . . . .

C′
12

... C2

 ,

where the diagonal subblocks are square matrices of order v1 and v2, re-
spectively. It will be convenient to use the symbols s1, s2 to denote row
sums of the matrices C1 and C2. Moreover, we let C+ = [cij ] be the
Moore–Penrose generalized inverse of the information matrix and we denote
by varij the variance of the elementary contrast with non-zero entries at
positions specified by subscripts. Let us recall that

(2) varij = (cii + cjj − 2cij)σ2,

where σ2 is the variance of the error component in the model. For the sake
of convenience, we shall omit this factor in further considerations.

Finally, let us introduce the following base contrast :

(3) γ′α = [δ1′v1

... − 1′v2
] α,

expressing the overall comparison of the effects of competing cyclical sys-
tems. Here δ stands for the fraction v2/v1 and α denotes the vector of
treatment parameters in the model of the design D∗.

1.2. Efficiency factors. In a series of papers (cf. [4], [5]), we considered
the efficiency of the block designs D∗. To assess the performance of a design,
we employed the usual measure of efficiency relative to an orthogonal design
as the inverse ratio of mean variances with which elementary contrasts are
estimated in both designs. In some cases of interest (cf. Section 5), there
emerges some preference in the paired comparisons the experimenter judges.
Namely, we are primarily interested in comparisons of treatments from dif-
ferent groups. These pairwise comparisons are referred to as inter-contrasts.
Because of our practical bias, we propose an efficiency factor based on mean
variances resulting from inter-contrast estimates:

(4) E∗ =
(

1
δ2r1

+
1

δ1r2

) / (
(v1v2)−1

∑
i≤v1<j

varij

)
.

Note that all these variances obtained from an orthogonal design are equal
to the sum of the replication inverses (cf. John [2]).
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1.3. Motivation and outline of the paper. Our chief interest is to re-
examine the concepts introduced in recent work. Our theoretical investiga-
tions centre on performance properties of efficiency factors. The rest of the
paper is organised as follows. In Section 2, attention is given to the vari-
ance of the base contrast. Section 3 provides a detailed study of the case
v1 = v2. Section 4 contains some numerical examples. Some issues related
to applications are discussed in Section 5. Finally, a few concluding remarks
are given in Section 6.

2. Variance of base contrast. Since the rows of the information
matrix add to zero, i.e., C1 = 0, short calculations yield s1 = δs2. As a
consequence, we obtain

Cγ = (δ + 1)C
(

1v1

0v2

)
−C1v = (δ + 1)

(
s11v1

−s21v2

)
= (δ−1 + 1)s1γ.

Thus γ is an eigenvector of C with eigenvalue λ = (δ−1 +1)s1, i.e., the nor-
malised vector γ is the basic contrast of the design. According to John [2],

(5) var γ′α̂ = λ−1‖γ‖2 =
v1

s1
δ2.

In the following, we express (5) in terms of varij . To this end, we utilise
similarity between the structures of C+ and C. Let C+

1 , C+
2 , C+

12 be the
respective subblocks of the matrix C+. By applying the decomposition of
C+, we find

var γ′α̂ = γ′C+γ =
(

(δ + 1)
(

1v1

0v2

)
− 1v

)′

C+

(
(δ + 1)

(
1v1

0v2

)
− 1v

)
= (δ + 1)21′v1

C+
1 1v1 = (δ + 1)2v1s

+
1 ,

meaning that C+1v = 0. Here, s+
1 denotes the row sum in the subma-

trix C+
1 .

For brevity, we write Σ, Σ∗ for
∑

i<j≤v varij and
∑

i≤v1<j varij , respec-
tively. Then, by applying (2) for all i ≤ v1 < j, one gets

Σ∗ = v2 trC+
1 + v1 trC+

2 + 2v1s
+
1 .

Finally, combining the above observations, we derive the decomposition

var γ′α̂ =
(δ + 1)2

2
(Σ∗ − v2 trC+

1 − v1 trC+
2 ).

In particular, for v1 = v2 we obtain

(6) var γ′α̂ = 2Σ∗ − v trC+ = 2Σ∗ − Σ.

A detailed explanation for the second equality can be found in [1]. The
formula (6) gives an interesting interpretation of the eigenvalues of the ma-
trix C.
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3. Main result. In this section we discuss the case v1 = v2. To gain
a better insight into the structure of the information matrix, we make a
few observations which follow immediately from the cyclical set-up of the
design. First, observe that cii = rj (k−1)/k, where i = 1, . . . , v, while j = 1
if i ≤ v/2 and j = 2 if i > v/2. This gives

(7)
v∑

i=1

1
cii

=
v

2
· k2

r1r2(k − 1)
.

We now turn to the row sum s1. Notice that
v/2∑
j=2

λ1j = r1(r1 − 1),

where λ(·) denote the entries of the concurrence matrix NN′. In view of the
above, the resulting formula is

(8) s1 = c11 − k−1

v/2∑
j=2

λ1j =
r1r2

k
.

Having established some elementary properties of the information ma-
trix, we can now investigate the efficiency properties of the design D∗. We
prove the following theorem.

Theorem 3.1. For any connected design with incidence matrix N, given
in (1), if v1 = v2 then

(9) E∗ ≥ E.

P r o o f. In the following, we denote by Σ∗, Σ the respective mean vari-
ances. First, by combining (5) and (6), we derive

Σ∗ − Σ =
(

v

2

)−2

Σ∗ −
(

v

2

)−1

Σ =
2
v2

(
var γ′α̂− 1

v − 1
Σ

)
(10)

=
2
v2

(
v

2s1
− v

v − 1
trC+

)
.

We need the following lemma due to Shah and Sinha [6].

Lemma 3.2. Let a function f be convex and nonincreasing on [0,∞).
Then for any connected design

v−1∑
i=1

f(λi) ≥
v − 1

v

v∑
i=1

f

(
v

v − 1
cii

)
,

where λ1, . . . , λv−1 are the nonzero eigenvalues of the information matrix.
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Applying this result to f(x) = 1/x, we find

trC+ ≥ (v − 1)2

v2

∑ 1
cii

.

Inserting this lower bound in (10), we obtain

Σ∗ − Σ ≤ 2
v2

(
v

2s1
− v − 1

v

∑ 1
cii

)
.

The relations (7) and (8) yield

Σ∗ − Σ ≤ 2
v2

(
vk

2r1r2
− (v − 1)k2

2r1r2(k − 1)

)
(11)

=
1
v2
· k

r1r2
· k − v

k − 1
≤ 0

since k ≤ v. Moreover, it is straightforward to verify the equality of the
respective mean variances in an orthogonal design. This completes the proof
of Theorem 3.1.

4. Examples. We conducted some numerical studies to assess the
performance of the bound (11). Tables 1 and 2 list the results. Calculations
were carried out for the specific case r1 = r2. The results reported in the
two rightmost columns are of prime interest. The comparison arranged in
Tables 1 and 2 reveals a significant discrepancy in the case of v1 = v2 = 6,
r = 3. Both the lower bound and the differences calculated are very similar
in the remaining cases.

Table 3 summarises similar calculations for the case v1 6= v2. Numbers in
bold exemplify important cases. We conclude that the resulting inequality
(11) fails to hold for arbitrary v1, v2.

TABLE 1. Summary of comparison for v1 = v2 = 6 and
r1 = r2 = r. Asterisk stands for the lower bound.

r initial blocks var var∗ diff.

r = 3 (012) (013) .7451 .7384 .0067 .0056∗

(012) (024) .7771 .7679 .0092
(013) (024) .7738 .7649 .0089

r = 4 (0123) (0124) .5255 .5234 .0021 .0020∗

(0123) (0134) .5262 .5241 .0021
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TABLE 2. Comparison for v1 = v2 = 7

r initial blocks var var∗ diff.

r = 3 (012) (015) .7654 .7584 .0070 .0068∗

(012) (025) .7632 .7564 .0068
r = 4 (0123) (0124) .5346 .5322 .0024 .0022∗

(0123) (0235) .5345 .5320 .0025

TABLE 3. Comparison for v1 = 3, v2 = 4

initial blocks var var∗ E E∗

v1 = 3 v2 = 4

(0) (0) 1.095 1.000 .543 .583
(0) (02) .599 .583 .676 .715
(0) (01) .539 .542 .751 .769
(0) (012) .407 .424 .838 .851

5. Applications—crop rotation experiments. In this section, we
discuss briefly the issue of applications. Crop rotation is growing two or
more crops sequentially on the same area in successive years. We start the
experiment with all plants included in a sequence. The key assumption
is that different sequences of plants create various levels of soil fertility.
We treat such additional effects of soil fertility accumulated during the full
rotation as treatment effects. The experiment aims at comparing the effects
of competing rotations. An illustration is provided by Table 4.

Some difficulties arise in the statistical analysis of crop rotation experi-
ments. It is a reasonable requirement that all the successive crops should be
taken into account. For this purpose, one can apply some uniform measure
to combine yields of all species. On the other hand, selection of such a mea-
sure depends on the general objective of cultivation and should be treated as
rather subjective. In the approach undertaken, statistical inference is made
on the basis of the responses of some distinguished species that is referred

TABLE 4. Comparison of 5-course cropping systems

Plot Year

1 2 3 4 5

1 wheat rape wheat oats beans
2 beans wheat rape wheat oats
3 oats beans wheat rape wheat
4 wheat oats beans wheat rape
5 rape wheat oats beans wheat
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TABLE 4 (cont.)

Plot Year

1 2 3 4 5

6 wheat potato wheat pulses wheat
7 wheat wheat potato wheat pulses
8 pulses wheat wheat potato wheat
9 wheat pulses wheat wheat potato
10 potato wheat pulses wheat wheat

to as the test crop. In the illustrative example, wheat is treated as the test
crop.

The usual linear response model for the crop rotation experiment (cf.
Przybysz [3]) specifies the observation as follows:

yijk = µ + %i + αj + eij + βk + ϕjk + εijk,

where µ is the general level effect, %i, αj , βk represent effects due to the ith
replication (i = 1, . . . , p), jth plot (j = 1, . . . , v) and kth year (k = 1, . . . , b).
In addition, eij and εijk are random errors of experimental units and ran-
dom technical errors with classical assumptions of independence and normal
distribution with zero mean and constant variances σ2

1 , σ2
2 , respectively. Fi-

nally, ϕjk stands for the interaction component.
The model of the experiment can be rewritten in matrix notation as

y = 1µ + R′% + ∆′α + e + D′β + G′ϕ + ε,

where y is an N × 1 vector of observations, with N = pvb, 1 is an N × 1
vector of units, while R′, ∆′, D′ and G′ are known design matrices of N×p,
N × v, N × b and N × n, respectively. We point out that the parameters
αj are of primary interest in studies of this sort. To specify the model
completely, we mention that

∆′ = 1⊗ ∆̃′, D′ = 1⊗ D̃′,

where ∆̃′ and D̃′ are design n × v and n × b matrices, respectively, where
n = bv. The binary matrices ∆̃ and D̃ take a prominent place in our
efficiency investigations. By means of them, we can describe the model of
one replication as follows:

(12) ỹ = 1µ + ∆̃′α + D̃′β + ϕ̃,

where ỹ is an n × 1 vector of observations, 1 is an n × 1 vector of units,
∆̃′, D̃′ are known design matrices for treatments and years, respectively,
while α and β are v × 1, b × 1 vectors of treatment parameters and year
effects, ϕ̃ is a standard random vector of errors with zero expectation and
a common variance σ2. Note that the vector ỹ is modelled by the equation
of incomplete block designs.
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We remark that applications are related to the model (12). The inci-
dence matrix Ñ = ∆̃ D̃′ is of the form (1) and remains in a close relation
with the arrangement of plants on the plots in the respective rotations (cf.
Table 1). Namely, its rows are related to plots, the columns correspond
to years, “one” indicates that wheat was on the plot, zero refers to other
species. To give a complete picture of this relationship, let us mention that
the incidence matrix corresponding to our example has the structure (1)
with the initial blocks (03) and (013), respectively, where δ1 = δ2 = 1.

6. Concluding remarks. Through detailed exploration of the effi-
ciency criteria, we derived some characterization of the class of designs with
the cyclic structure (1). The case with v1 = v2 is covered by Theorem 3.1. A
weak lower bound on the discrepancy between average variances is obtained.
One of the features of this result is easy implementation. The inequality (9)
is obtained by direct application of the bound (11). Notice also that for
both E and E∗, the only calculations required concern the eigenvalues of
the matrix C.

We close this summary with the conjecture that the conclusion (9) can be
extended to block designs having v1 6= v2. This is supported by an extensive
numerical study.
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