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THE EFFECT OF ROUNDING ERRORS ON
A CERTAIN CLASS OF ITERATIVE METHODS

Abstract. In this study we are concerned with the problem of approxi-
mating a solution of a nonlinear equation in Banach space using Newton-like
methods. Due to rounding errors the sequence of iterates generated on a
computer differs from the sequence produced in theory. Using Lipschitz-
type hypotheses on the mth Fréchet derivative (m ≥ 2 an integer) instead
of the first one, we provide sufficient convergence conditions for the inexact
Newton-like method that is actually generated on the computer. Moreover,
we show that the ratio of convergence improves under our conditions. Fur-
thermore, we provide a wider choice of initial guesses than before. Finally,
a numerical example is provided to show that our results compare favorably
with earlier ones.

1. Introduction. In this study we are concerned with approximating
a solution of an equation

(1) F (x) = 0,

where F is an m times (m ≥ 2 an integer) continuously differentiable non-
linear operator defined on an open convex subset D of a Banach space E1

with values in a Banach space E2.
The Newton method generates a sequence {xn} (n ≥ 0) which in theory

satisfies

(2) xn+1 = φ(xn) (n ≥ 0),

where

(3) φ(x) = x− F ′(x)−1F (x) (x ∈ D).
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Here, F ′(x) denotes the first Fréchet derivative of F evaluated at x ∈ D (see
[1], [3], [5]). Sufficient convergence conditions for Newton methods of the
form (2) have been given by several authors. For a survey of such results
we refer the reader to [3], [5] and the references there.

We first calculate F ′(xn) and F (xn) (n ≥ 0). Then we need to find a
solution θ(xn) (n ≥ 0) of the equation

(4) F ′(xn)(y) = −F (xn) (n ≥ 0),

and set

(5) φ(xn) = xn + θ(xn) (n ≥ 0).

Due to the presence of rounding errors in numerical computations instead
of the sequence {xn} (n ≥ 0) we really generate a sequence {xn} such that

xn+1 = φ(xn) (n ≥ 0),(6)
φ(x) = [I + E0(x)]ψ(x), ψ(x) = x+ θ(x) (x ∈ D),(7)

where θ(xn) is the exact solution of the equation

(8) [Ân + E1(xn)](y) = −[F (xn) + E2(xn)] (n ≥ 0)

for some E0(x), E1(x), E2(x) ∈ L(E1, E2), the space of bounded linear op-
erators from E1 into E2.

In the elegant paper [8] (see also [2], [4], [6], [7]) the convergence of the
inexact sequence {xn} (n ≥ 0) was analyzed, when E1 = E2 = Ri (i ∈ N)
under Lipschitz hypotheses on the first Fréchet derivative. Here we provide
sufficient conditions for the local convergence of the inexact sequence {xn}
(n ≥ 0) in the more general setting of a Banach space but using Lipschitz
hypotheses on the mth Fréchet derivative. Moreover, we show that the ratio
of convergence improves under our conditions. Furthermore, we can provide
a wider choice of initial guesses than before. Finally, a numerical example
is provided to show that our results compare favorably with earlier ones.

2. Convergence analysis. We need a result whose proof can be found
in [8, p. 111].

Theorem 1. If both F ′(xn) and An (n ≥ 0) are nonsingular , then φ(xn)
and φ(xn) (n ≥ 0) exist and

‖φ(xn)− x∗‖ ≤ ηn‖x∗‖+ (1 + ηn){ωn‖xn − x∗‖(9)
+ (1 + ωn)‖φ(xn)− x∗‖},

(10) ηn = ‖E0(xn)‖, ωn = ‖A−1
n F ′(xn)− I‖+

‖A−1
n (Fn − Fn)‖

‖F ′(xn)−1Fn‖
.

In [2] we proved the following local convergence result for the exact
Newton method.
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Theorem 2. Let F be m times (m ≥ 2 an integer) continuously Fréchet-
differentiable on U(x∗, σ) = {x ∈ E1 | ‖x∗ − x‖ < σ} ⊆ D for some σ > 0.
Suppose F ′(x∗) is nonsingular , F (x∗) = 0,

(11) αm+1 = sup
{
‖F ′(x∗)−1[F (m)(x)− F (m)(x∗)]‖

‖x− x∗‖

∣∣∣∣
x ∈ U(x∗, σ), x 6= x∗

}
,

and

(12) αi ≥ ‖F ′(x∗)−1F (i)(x∗)‖, i = 2, . . . ,m.

If x0 ∈ U(x∗, σ) and

(13) ‖x0 − x∗‖ < δ0,

where δ0 is the positive zero of the equation

(14)
αm+1

m!
tm + . . .+ α2t− 1 = 0,

then

(15) ‖x0 − F ′(x0)−1F (x0)− x∗‖

≤
mαm+1
(m+1)! ‖x0 − x∗‖m−1 + (m−1)αm

m! ‖x0 − x∗‖m−2 + . . .+ α2
2!

1− α2‖x0 − x∗‖ − . . .− αm+1
m! ‖x0 − x∗‖m

× ‖x0 − x∗‖2.
Moreover , if

(16) ‖x0 − x∗‖ < δ,

where δ is the positive zero of the equation

(17)
(2m+ 1)αm+1

(m+ 1)!
tm +

(2m− 1)αm

m!
tm−1 + . . .+

3α2

2
t− 1 = 0,

then the exact Newton method converges quadratically to x∗.

This leads to the following interesting result for the inexact Newton
method.

Theorem 3. If η0 = 0, ω0 < 1, x0 ∈ U(x∗, σ) with x0 6= x∗, and

(18) ‖x0 − x∗‖ < min{δ, δ0},
where δ0 is the positive root of the function

f0(t) =
αm+1

(m+ 1)!
(1− w0 + 2m)tm +

αm

m!
[2m− (1− w0)]tm−1(19)

+ . . .+
α2

2!
(3− w0)t+ w0 − 1,
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then

(20) ‖φ(x0)− x∗‖

≤
{
ω0 + (1 + ω0)‖x0 − x∗‖

×
mαm+1
(m+1)! ‖x0 − x∗‖m−1 + (m−1)αm

m! ‖x0 − x∗‖m−2 + . . .+ α2
2!

1− α1‖x0 − x∗‖ − . . .− αm+1
m! ‖x0 − x∗‖m

}
‖x0 − x∗‖

< ‖x0 − x∗‖.
P r o o f. By hypothesis (18) it follows that ‖x0 − x∗‖ < δ. If φ(x0) =

x0 − F ′(x0)−1F (x0), then inequality (15) gives

(21) ‖φ(x0)− x∗‖

<

mαm+1
(m+1)! ‖x0 − x∗‖m−1 + (m−1)αm

m! ‖x0 − x∗‖m−2 + . . .+ α2
2!

1− α2‖x0 − x∗‖ − . . .− αm+1
m! ‖x0 − x∗‖m

‖x0 − x∗‖2.

Hence, the first inequality in (20) follows from (9) by setting n = 0 and
using (21). Moreover, the term in braces in (20) is less than 1 iff (18) holds.

That completes the proof of Theorem 3.

The following result provides sufficient conditions for the local conver-
gence of the inexact Newton method.

Theorem 4. If ηn = 0, ωn ≤ ω < 1 for all n ≥ 0 and x0 ∈ U(x∗, σ)
satisfies

(22) ‖x0 − x∗‖ < δ(ω),

where δ(ω) is the positive root of the function (19) with w0 being w,

f(t) =
αm+1

(m+ 1)!
(1− w + 2m)tm +

αm

m!
[2m− (1 + w)]tm−1(23)

+ . . .+
α2

2!
(3− w)t+ w − 1,

then the inexact Newton method (6)–(8) generates a sequence {xn} (n ≥ 0)
which converges to x∗.

P r o o f. The result follows from Theorem 3 by induction on n ≥ 0.

Remark 1. The conditions used in this study are different from the
corresponding ones in [6]–[8] unless α = 0, and E1 = E2 = Ri (i ∈ N).

Remark 2. Theorem 4 provides sufficient conditions for local conver-
gence. However, as noted in [8, p. 113], ηn 6= 0 in general, which may lead to
ωn > 1, so that convergence breaks down. Therefore, though the theory can
predict monotonic decrease of the sequence {‖xn−x∗‖} (n ≥ 0), in practice
the conditions of the theory fail to hold in some neighborhood of x∗, and
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within this neighborhood the behavior of {xn} (n ≥ 0) is unpredictable. We
examine the extent of this neighborhood by introducing the notation

(24) σn = ωn + (1 + ωn)

×
mαm+1
(m+1)! ‖xn − x∗‖m−1 + (m−1)αm

m! ‖xn − x∗‖m−2 + . . .+ α2
2!

1− α2‖xn − x∗‖ − . . .− αm+1
m! ‖xn − x∗‖m

‖xn − x∗‖

for n ≥ 0. Using (9), (15) and (24) we can easily see that ‖φ(xn) − x∗‖ <
‖xn − x∗‖ if

(25)
‖xn − x∗‖
‖x∗‖

>
ηn

1− (1 + ηn)σn
, (1 + ηn)σn < 1.

Thus, the crucial condition is σn < 1, and by (24) this condition implies

(26) ωn < 1, ‖xn − x∗‖ < min{δ, δn} (n ≥ 0)

where δn is the positive root of the function

fn(t) =
αm+1

(m+ 1)!
(1− wn + 2m)tm +

αm

m!
[2m− (1 + wn)]tm−1(27)

+ . . .+
α2

2!
(3− wn)t+ wn − 1 (n ≥ 0).

Hence, as in condition (3.7) of [8, p. 113], we conclude that the crucial
condition is

(28) ‖A−1
n F ′(xn)− I‖+

‖A−1
n (Fn − Fn)‖

‖F ′(xn)−1Fn‖
< 1.

3. Concluding comments—applications. The results obtained here
have theoretical and practical value. As an example we consider an operator
F that satisfies an autonomous differential equation of the form (see [3], [5])

(29) F ′(x) = T (F (x)), x ∈ U(x∗, σ),

where T : E2 → E1 is a known Fréchet-differentiable operator. Using (29)
we get F ′(x∗) = T (F (x∗)) = T (0), and F ′′(x∗) = F ′(x∗)Q′(F (x∗)) =
Q(0)Q′(F (0)). That is, without knowing the solution x∗ we can use the
results obtained here. Below, we consider such an example for m = 2.

Example. Let E1 = E2 = R. Define functions F , T on U(0, 1) by

F (x) = ex − 1 (x ∈ U(0, 1)),(30)
T (x) = x+ 1 (x ∈ U(0, 1)).(31)

It follows from (30) and (31) that equation (29) is satisfied.
Using (11), (12), (17), (18), (19) and (30) we find for ω0 = 1/2 that:

α = e, β = 1, δ = .411254048 and min{δ, δ0} = δ0 = .27587332. That is,
conditions (16) and (18) are satisfied provided

(32) ‖x0 − x∗‖ < .411254048
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and

(33) ‖x0 − x∗‖ < .27587332,

respectively.
In order to compare our results with the ones in [7], [8], let us first

introduce

(34) µ = sup
{
‖F ′(x∗)−1[F ′(x)− F ′(y)]

‖x− y‖

∣∣∣∣x, y ∈ U(x∗, σ), x 6= y

}
.

Then the conditions in [7], [8] corresponding to (16) and (18) are

(35) ‖x0 − x∗‖ < 2
3µ

and

(36) ‖x0 − x∗‖ < 2(1− ω0)
(3− ω0)µ

,

respectively.
It can be easily seen from (30) and (34) that µ = e. Hence, conditions

(35) and (36) are satisfied provided that

‖x0 − x∗‖ < .245253,(37)
‖x0 − x∗‖ < .1471518,(38)

respectively. That is, (32) and (35) provide a wider choice for x0 and x0

than conditions (37) and (38) respectively. It turns out that the ratios
of convergence are smaller in our case also. Indeed, (15) and (20) give
respectively for ‖x0 − x∗‖ ≤ .2 and ‖x0 − x∗‖ ≤ .1 that

‖x0 − F ′(x0)−1F (x0)− x∗‖ ≤ .913609703‖x0 − x∗‖2(39)
≤ .182721941‖x0 − x∗‖

and

(40) ‖φ(x0)− x∗‖ ≤ .599944213‖x0 − x∗‖.
The corresponding results in [7], [8] are

(41) ‖x0 − F ′(x0)−1F (x0)− x∗‖ ≤ µ‖x0 − x∗‖2

2(1− µ‖x0 − x∗‖)
and

(42) ‖φ(x0)− x∗‖ ≤
{
ω0 +

(1 + ω0)µ‖x0 − x∗‖
2(1− µ‖x0 − x∗‖)

}
‖x0 − x∗‖,

respectively. If we use the above values, (41) and (42) give

‖x0 − F ′(x0)−1F (x0)− x∗‖ ≤ .913609703‖x0 − x∗‖2(43)
≤ .182721941‖x0 − x∗‖
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and

(44) ‖φ(x0)− x∗‖ ≤ .599944213‖x0 − x∗‖,
respectively. That is, our ratios of convergence (39) and (40) are smaller
than (43) and (44) given in [7], [8]. These observations are important in
numerical computations.

Our results can be compared favorably with all the examples given in
[8]. However, we leave the details to the motivated reader.
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