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SAMPLE-PATH AVERAGE COST OPTIMALITY

FOR SEMI-MARKOV CONTROL PROCESSES

ON BOREL SPACES:

UNBOUNDED COSTS AND MEAN HOLDING TIMES

Abstract. We deal with semi-Markov control processes (SMCPs) on Borel
spaces with unbounded cost and mean holding time. Under suitable growth
conditions on the cost function and the mean holding time, together with
stability properties of the embedded Markov chains, we show the equivalence
of several average cost criteria as well as the existence of stationary optimal
policies with respect to each of these criteria.

1. Introduction. A quick glance at the literature dealing with semi-
Markov control processes (SMCPs) shows the following facts (see, e.g.,
[2], [3], [6]–[9], [13], [18], [19], [21], [22], [25], [26], [25]–[29]):

(i) there are several ways to measure the performance of the controlled
system by means of a (long-run) average cost;

(ii) most of the papers use expected cost criteria, with a small number
of exceptions: Bhatnagar and Borkar [2], Kurano [18], [19], who consider
different sample-path average cost criteria;

(iii) almost all papers consider either denumerable spaces ([2], [6]–[9],
[13], [21], [22], [25], [27]–[29]) or Borel spaces and bounded costs (see [3],
[18], [19]);

(iv) moreover, in all papers it is assumed that the mean holding time is
a bounded function.

In this paper our main concern is sample-path average cost (SPAC-) op-
timality for SMCPs on Borel spaces, with unbounded costs and unbounded
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mean holding time. We show the existence of a stationary policy which is
optimal with respect to four average cost criteria. We begin with an opti-
mality analysis of the ratio expected average cost ([6]–[9]), that is, analyzing
the upper limit of the ratios of expected average costs during the first n tran-
sitions to the expected time for these n transitions to occur when n goes to
infinity [see (5)]. In order to guarantee the existence of a stationary optimal
policy for this criterion we suppose, besides a usual continuity/compactness
requirement, that the cost function and the mean holding time satisfy a
growth condition and also that the embedded Markov chains have suitable
stability properties (see Assumptions 3.1, 3.2, 3.4). Then, in Theorem 3.5,
we prove the existence of a solution to the Average Cost Optimality Equation

(ACOE), which, in turn, yields the existence of stationary optimal policies.
Similar results were previously obtained under weaker recurrence conditions,
but in the denumerable space case ([6]–[8], [27]), and also for Borel spaces
with bounded costs ([3], [18], [19]). Moreover, our approach to ensure the
existence of a solution to the ACOE is a direct one in the sense that we
use neither Schweitzer’s data transformation (see [28]) nor the vanishing

discount factor approach. Assumptions 3.1, 3.2, 3.4 were previously used
([16], [17], [31]) to study (expected and sample-path) average cost and other
undiscounted cost criteria for Markov control processes (MCPs) on Borel
spaces and unbounded cost. In fact, our results are extensions to SMCPs of
some results in the latter references.

Once the ACOE is established, we study three sample-path average cost
criteria. The first one can be thought of as an auxiliary criterion [see
(10)–(11)]; the second one is a (direct) sample-path analogue of the ra-
tio expected average cost, that is, it equals the upper limit of the ratios of
sample-path costs during the first n transitions to the time for these n tran-
sitions occur when n goes to infinity [see (9)]. The third criterion is a time
sample-path average cost; more precisely, it is given as the upper limit of ra-
tios of the sample-path costs accumulated in the transitions occurred up to
time t ∈ (0,∞) to this time when it tends to infinity [see (12)–(13)]. Impos-
ing additional mild growth conditions on the pth moment , with 1 < p ≤ 2,
of the cost function and the mean holding time, we are able to show that
the three criteria coincide almost surely for all policies and initial states and
also that a stationary policy is optimal with respect to each one of these
sample-path criteria if and only if it is (ratio) expected average cost optimal
(see Theorems 3.7, 3.8).

The remainder of the paper is organized as follows. In Section 2 we
briefly describe the semi-Markov control model we are interested in and
also introduce the average cost optimality criteria. The assumptions and
main results are stated in Section 3. The proofs are given in Sections 4, 5
and 6.
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We shall use the following terminology and notation throughout the pa-
per. A Borel subset, say X, of a complete and separable metric space is
called a Borel space, and it is endowed with the Borel σ-algebra B(X). If
X and Y are Borel spaces, a stochastic kernel on X given Y is a function
P (· | ·) such that P (· | y) is a probability measure on X for every y ∈ Y
and P (B | ·) is a (Borel-) measurable function on Y for every B ∈ B(X).
We denote by N (respectively, N0) the set of positive (resp., nonnegative)
integers; R (resp., R+) denotes the set of real (resp., nonnegative) numbers.

2. The optimal control problems. We deal with a semi-Markov

control model (X,A, {A(x) : x ∈ X}, Q, F,C) where the state space X and
action space A are Borel spaces. For each x ∈ X, the subset A(x) of A is
measurable; it is the admissible control set for the state x. We also assume
that the admissible pair set

K := {(x, a) : x ∈ X, a ∈ A(x)}

is a Borel subset of X×A. We denote by F the class of measurable functions
f : X → A such that f(x) ∈ A(x) for all x ∈ X, and we suppose that it
is nonempty. Moreover, the transition law Q(B |x, a), with B ∈ B(X) and
(x, a) ∈ K, is a stochastic kernel on X given K, and the distribution of

holding times F (t |x, a) is a measurable function on K for each t ∈ R and a
distribution function for each (x, a) ∈ K. Finally, the one-step cost C is a
measurable function on K.

For notational ease, for a measurable function v on K and a stationary
policy f ∈ F we write

(1) vf (x) := v(x, f(x)), x ∈ X.

In particular, for the transition law Q and the cost function C, we have

(2) Qf (· |x) := Q(· |x, f(x)) and Cf (x) := C(x, f(x)), x ∈ X.

A semi-Markov control model (SMCM) represents a stochastic system
evolving as follows: at time t = 0 the system is observed in some state
x0 = x ∈ X and a control a0 = a ∈ A(x) is chosen incurring a cost C(x, a).
Then the system remains in the state x0 = x for a (nonnegative) random
time δ1 with distribution function F (t |x, a) and jumps to the state x1 = y
according to the probability measure Q(· |x, a). Immediately after the jump
occurs, a control a1 = a′ ∈ A(y) is chosen and the above process is repeated
indefinitely. Thus, for each n ∈ N0, we denote by xn, an and δn+1 the state
of the system immediately after the nth transition, the control chosen and
the corresponding holding (or sojourn) time, respectively. Moreover, we
define

(3) T0 := 0, Tn := Tn−1 + δn for n ∈ N
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and

(4) τ(x, a) :=
\
t F (dt |x, a), (x, a) ∈ K.

Observe that, for each n ∈ N, Tn is the time at which the nth transition
of the system occurs and also that τ(x, a) is the mean holding time in the
state x when the control chosen is a ∈ A(x).

For each n ∈ N0, define the space of admissible histories until the nth
transition by

H0 := X, Hn := (K× R+)
n ×X for n ∈ N.

Definition 2.1. A control policy π = {πn} is a sequence of stochastic
kernels πn on A given Hn satisfying the constraint πn(A(xn) |hn) = 1 for all
hn = (x0, a0, δ1, . . . , xn−1, an−1,δn, xn) ∈ Hn, n ∈ N0. A policy π = {πn} is
said to be a (deterministic) stationary policy if there exists f ∈ F such that
πn(· |hn) is concentrated at f(xn) for each n ∈ N0. We denote by Π the
class of all policies and, following a usual convention, identify the subclass
of stationary policies with F.

Remark 2.2. Let (Ω,F) be the (canonical) measurable space consisting
of the sample space Ω := (X×A×R+)

∞ and its product σ-algebra. Then,
by the Ionescu–Tulcea Theorem ([1], Theorem 2.7.2, p. 109), for each policy
π ∈ Π and initial state x0 = x ∈ X, there exists a probability measure Pπ

x

on (Ω,F) satisfying the following: For all B ∈ B(A), C ∈ B(X), hn =
(x0, a0, δ1, . . . , xn−1, an−1, δn, xn) ∈ Hn, n ∈ N0, we have

(i) Pπ
x [x0 = x] = 1;

(ii) Pπ
x [an ∈ B |hn] = πn(B |hn);

(iii) Pπ
x [xn+1 ∈ C |hn, an, δn+1] = Q(C |xn, an);

(iv) Pπ
x [δn+1 ≤ t |hn, an] = F (t |xn, an).

The expectation operator with respect to Pπ
x is denoted by Eπ

x .

Remark 2.3. Note that, for an arbitrary policy π ∈ Π, the distribution
of the state of the system xn may depend on the evolution in the first n− 1
transitions of the system. However, when a stationary policy f ∈ F is used,
it follows (from the Markov-like properties in Remark 2.2) that the state
process {xn} is a Markov chain with transition probability Qf (· |x). In the
latter case, we denote by Qn

f (· | ·) the n-step transition probability.

The literature on semi-Markov control processes shows that there are
several ways to measure the performance of the systems using an “average
cost criterion” (see [2], [9], [18], [19], [21], [22]). In the remainder of this
section we introduce the criteria we are concerned with, beginning with
the (ratio of) expected average cost: for a policy π ∈ Π and initial state



Sample-path average cost optimality 347

x0 = x ∈ X, we define the expected average cost (EAC) as

(5) J(π, x) := lim sup
n→∞

1

Eπ
xTn

Eπ
x

n−1∑

k=0

C(xk, ak),

and the optimal expected average cost function by

(6) J∗(x) = inf
π∈Π

J(π, x).

Definition 2.4. A policy π∗ is said to be:

(a) expected average cost (EAC-) optimal if

J(π∗, x) = J∗(x) ∀x ∈ X;

(b) strong expected average cost (strong EAC-) optimal if

lim inf
n→∞

1

Eπ
xTn

Eπ
x

n−1∑

k=0

C(xk, ak) ≥ J(π∗, x) ∀x ∈ X, π ∈ Π.

We shall prove in Theorem 3.5, under suitable continuity/compactness
conditions and stability properties, that there exists a stationary strong
EAC-optimal policy by showing the existence of a solution to the Average

Cost Optimality Equation. This problem has been solved in several papers
but almost all consider denumerable state space, or general state space but
with the assumption that the cost function and the mean holding time are
bounded (e.g., for the denumerable case, see [2], [6]–[8], [25]–[27]; and, for
the Borel space case, see [3], [18], [19]). Recently, in [23], the existence of a
solution to the Average Cost Optimality Equation was proved for the case
of Borel spaces and unbounded cost, by assuming that the mean holding
time is bounded. Our approach is closely related to that taken in [23],
but here we use a weaker stability assumption and do not require that the
mean holding time be a bounded function. Moreover, in our proof of the
existence of a solution to the Average Cost Optimality Equation we use
“direct” arguments, in contrast to those in [23], which are based on the
data transformation (see [28]) and, implicitly, the vanishing discount factor

approach.

Remark 2.5. Note that for π ∈ Π and x ∈ X we have

(7) J(π, x) = lim sup
n→∞

[
Eπ

x

n−1∑

k=0

τ(xk, ak)
]−1

Eπ
x

n−1∑

k=0

C(xk, ak).

This follows by noting first that the Markov-like properties in Remark 2.2
yield

Eπ
x [Tn |hn, an] =

n−1∑

k=0

τ(xk, ak) ∀hn ∈ Hn, an ∈ A(xn), n ∈ N,
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then noting that

(8) Eπ
xTn = Eπ

x

n−1∑

k=0

τ(xk, ak) ∀n ∈ N,

from which we see that (7) holds.

Now, we introduce the sample-path average cost criteria. For a policy
π ∈ Π and x ∈ X, define

(9) J0(π, x) := lim sup
n→∞

1

Tn

n−1∑

k=0

C(xk, ak),

and

(10) J1(π, x) := lim sup
n→∞

1

T̂n

n−1∑

k=0

C(xk, ak),

where

(11) T̂n :=
n−1∑

k=0

τ(xk, ak), n ∈ N.

We also consider a time-average cost criterion defined as follows:

(12) J2(π, x) := lim sup
t→∞

1

t

η(t)∑

k=0

C(xt, at),

where

(13) η(t) := max{n ≥ 0 : Tn ≤ t}, t ∈ R
+.

Observe that (9) and (10) are the sample-path analogues of (5) and (7),
respectively, and also that (9), (10) and (12) coincide in the Markovian case,
that is, when F (· |x, a) is concentrated at t = 1 for all (x, a) ∈ K. Indeed, in
this case, the expected average cost (5) and the sample-path average costs
(9), (10), (12), respectively, become

J(π, x) = lim sup
n→∞

1

n
Eπ

x

n−1∑

t=0

C(xt, at),

and

J0(π, x) = J1(π, x) = J2(π, x) = lim sup
n→∞

1

n

n−1∑

t=0

C(xt, at),

for all initial states x ∈ X and policies π ∈ Π.
The references dealing with sample-path average cost optimality for un-

bounded costs are also scarce in the Markovian case; we mention [4], [5] for
discrete state spaces, and [17], [20], [30] for Borel spaces.
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Definition 2.6. Let i ∈ {0, 1, 2}. A policy π∗ is said to be i-sample

path average cost (i-SPAC ) optimal if there exists a constant ̺i such that

Ji(π∗, x) = ̺i Pπ∗

x -a.s., ∀x ∈ X,

and

Ji(π, x) ≥ ̺i Pπ
x -a.s., ∀π ∈ Π, x ∈ X.

The constant ̺i, i ∈ {0, 1, 2}, is called the i-optimal sample-path average

cost.

We prove in Theorem 3.7, under Assumptions 3.1, 3.2, 3.4 and 3.6, that
there exists a stationary 1-SPAC optimal policy f∗ and that the 1-optimal
sample-path average cost equals the optimal expected average cost function,
i.e., J∗(·) ≡ ̺1. In fact, we prove that a stationary policy f ∈ F is EAC-
optimal if and only if it is 1-sample-path average cost optimal. Then, under
an additional mild assumption, we show in Theorem 3.8 that the sample
path average cost criteria (9), (10) and (12) coincide, that is,

J0(π, x) = J1(π, x) = J2(π, x) Pπ
x -a.s., ∀π ∈ Π, x ∈ X.

Hence, there exists a stationary policy which is optimal with respect to each
one of the criteria introduced above and J∗(·) ≡ ̺0 = ̺1 = ̺2.

3. Main results and assumptions. To prove the existence of ex-
pected and sample-path stationary optimal polices we require to impose
suitable conditions on the model. The first one is a combination of standard
continuity/compactness requirements together with a growth condition on
the cost function C and on the mean holding time τ .

Assumption 3.1. For each state x ∈ X:

(a) A(x) is a compact subset of A;
(b) C(x, ·) is lower semicontinuous on A(x);
(c) τ(x, ·) is upper semicontinuous on A(x);
(d) Q(· |x, ·) is strongly continuous on A(x), that is, the mapping

a 7→
\
X

u(y)Q(dy |x, a)

is continuous for each bounded measurable function u on X;
(e) There exist a measurable function W ≥ 1 on X and positive con-

stants k1 and θ such that:

(e1) |C(x, a)| ≤ k1W (x) and θ < τ(x, a) ≤ k1W (x) ∀a ∈ A(x);
(e2)

T
X
W (y)Q(dy |x, ·) is continuous on A(x).

The following two sets of hypotheses (Assumptions 3.2 and 3.4 below)
guarantee that the imbedded Markov chains have suitable stable behavior
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uniformly in f ∈ F. These assumptions were already used in a Marko-
vian setting in [16] and [31] to study several undiscounted (expected) cost
criteria—such as overtaking optimality, bias optimality and others—and also
in [17] to obtain sample-path average cost optimal policies as well as to solve
a variance-minimization problem. In fact, Assumption 3.2 is a standard way
to obtain (W -) geometric ergodicity for (uncontrolled) Markov chains (see,
e.g., [10] or [24], Theorem 16.0.3, p. 383). In what follows we shall use the
notation and terminology from these references.

Assumption 3.2. For each stationary policy f ∈ F:

(a) There exist positive constants Bf < 1 and bf < ∞, and a petite
subset Kf of X such that [using the notation (2)]

(14)
\
X

W (y)Qf (dy |x) ≤ BfW (x) + bfIKf
(x) ∀x ∈ X,

where W is the function in Assumption 3.1(e), and IK(·) denotes the indi-
cator function of K.

(b) The state process {xn}—which under f ∈ F is a Markov chain with
transition kernel Qf (· | ·) [see Remark 2.3]—is ϕ-irreducible and aperiodic,
for some (nontrivial) σ-finite measure ϕ on X, which does not depend on
the policy f .

To state some consequences of Assumption 3.2 we need the following
notation: let BW (X) be the linear space of measurable functions u on X

with finite W -norm, which is defined as

(15) ‖u‖W := sup
x∈X

|u(x)|

W (x)
.

Moreover, for a measurable function u and measure µ on X, we write

µ(u) :=
\
X

u(y)µ(dy).

Remark 3.3. Under Assumption 3.2, for each stationary policy f ∈ F

we have:

(a) The Markov chain {xn} induced by f is positive Harris-recurrent

and its unique invariant probability measure µf satisfies µf (W ) < ∞;

(b) {xn} is W -geometrically ergodic; that is, there exist positive con-
stants γf < 1 and Mf < ∞ such that

(16)
∣∣∣
\
X

u(y)Qn
f (dy |x)− µf (u)

∣∣∣ ≤ ‖u‖WMfγ
n
f W (x)

for each u ∈ BW (X), x ∈ X, and n ∈ N0.
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The proof of Remark 3.3(b) is given in [24], Theorem 16.0.1. Remark
3.3(a) follows from Remark 3.3(b) (see [15], Theorem 3.2), or from [10],
Theorem 2.2, which uses a more general Lyapunov condition than (14).

The next assumption concerns the constants γf and Mf in (16).

Assumption 3.4. The constants M := supf Mf and γ := supf γf are
such that

M < ∞ and γ < 1.

Assumptions 3.1, 3.2 and 3.4 were previously used in [16] and [17] (see
also [31]) to study several undiscounted cost criteria, including the sample-
path and expected average cost criteria, for Markov control processes on
Borel spaces and unbounded cost. Among these hypotheses, Assumption 3.4
has the inconvenience that it is not imposed directly on the control model.
However, [11] provides conditions which guarantee that Assumption 3.4
holds as well as estimates on the constants γ andM . On the other hand, [16]
and [23] provide examples (an inventory system and a replacement model,
respectively) satisfying Assumptions 3.1, 3.2 and 3.4. In fact, in [23] it is
shown that the conditions in [11] imply Assumptions 3.2 and 3.4.

Next, we state our first main result.

Theorem 3.5. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Then

(a) There exist a constant ̺∗, a policy f∗ ∈ F and a function h∗ ∈
BW (X) that solve the Average Cost Optimality Equation

h∗(x) = min
a∈A(x)

[
C(x, a)− ̺∗τ(x, a) +

\
X

h∗(y)Q(dy |x, a)
]

(17)

= Cf∗(x)− ̺∗τf∗(x) +
\
X

h∗(y)Qf∗(dy |x) ∀x ∈ X;(18)

(b) f∗ is EAC-optimal and

J∗(x) = J(f∗, x) = ̺∗ =
µf∗(Cf∗)

µf∗(τf∗)
∀x ∈ X;

(c) A policy f ∈ F is EAC-optimal if and only if it is strong EAC-

optimal ; hence, f∗ is strong EAC-optimal.

We have stated in Theorem 3.5 the existence of a strong EAC-optimal
stationary policy. In order to show that such a policy is also i-SPAC optimal,
i ∈ {0, 1, 2}, we require a suitable strengthening of Assumption 3.1(e1).

Assumption 3.6. There exist positive constants r1 and 1 < p ≤ 2 such
that for all (x, a) ∈ K,

(19) |C(x, a)|p ≤ r1W (x)
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and

(20) τp(x, a) ≤ r1W (x)

We are now ready to state our second main result.

Theorem 3.7. Suppose that Assumptions 3.1, 3.2, 3.4 and 3.6 are sat-

isfied , and let ̺∗ be as in Theorem 3.5. Then:

(a) For each π ∈ Π and x ∈ X,

J1(π, x) ≥ lim inf
n→∞

1

T̂n

n−1∑

k=0

C(xk, ak) ≥ ̺∗ Pπ
x -a.s.

(b) A policy f ∈ F is EAC-optimal if and only if

J1(f, x) = ̺∗ P f
x -a.s., ∀x ∈ X;

hence, from Theorem 3.5, there exists a 1-SPAC optimal stationary policy

f∗ ∈ F.

To state our third main result, Theorem 3.8 below, we introduce the
function

(21) η(x, a) :=

∞\
0

tp F (dt |x, a), (x, a) ∈ K,

where p is as in Assumption 3.6.

Theorem 3.8. Suppose that Assumptions 3.1, 3.2, 3.4 and 3.6 hold , and
also that there exists a constant r2 such that

(22) η(x, a) ≤ r2W (x) ∀(x, a) ∈ K.

Then:

(a) For each policy π ∈ Π and state x ∈ X,

J0(π, x) = J1(π, x) = J2(π, x) Pπ
x -a.s.;

(b) The following statements are equivalent :

(i) f ∈ F is EAC-optimal ;
(ii) f ∈ F is strong EAC-optimal ;
(iii) f ∈ F is 0-SPAC optimal ;
(iv) f ∈ F is 1-SPAC optimal ;
(v) f ∈ F is 2-SPAC optimal.

Consequently , by Theorem 3.7(b), there exists a stationary policy f∗ which

satisfies each one of conditions (i)–(v), and ̺∗ = ̺0 = ̺1 = ̺2.

4. Proof of Theorem 3.5. For this proof we need some preliminary
results, which are collected in Remark 4.1 and Lemmas 4.2–4.4. Throughout
this section we suppose that the assumptions of Theorem 3.5 hold.
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Remark 4.1. (a) Assumptions 3.1(a) and (e2), and the well known
Measurable Selection Theorem (see, for instance, [14], Proposition D.5,
p. 182) imply the existence of a policy g ∈ F such that

(23) sup
a∈A(x)

\
X

W (y)Q(dy |x, a) =
\
X

W (y)Qg(dy |x) ∀x ∈ X.

Then, using (14), we see that for all x ∈ X and f ∈ F,

(24)
\
X

W (y)Qf (dy |x) ≤ BgW (x) + bgIKg
(x),

which implies that

µf(W ) ≤ bg/(1 −Bg) ∀f ∈ F.

Therefore

(25) sup
f∈F

µf (W ) ≤ bg/(1−Bg).

(b) Note that, by Assumption 3.1(e1), the constants

(26) ̺f := µf (Cf )/µf (τf ), f ∈ F,

are well defined. Moreover, observing that

|̺f | ≤
1

θ
µf (|Cf |) ≤

k1
θ
µf (W ),

where θ and k1 are as in Assumption 3.1(e1), from (25) we obtain

(27) |̺f | ≤ L ∀f ∈ F,

with L := k1bg/(θ(1−Bg)).
(c) For each f ∈ F, we have

(28) J(f, x) = lim
n→∞

1

Ef
xTn

Ef
x

n−1∑

k=0

Cf (xt) = ̺f ∀x ∈ X,

and

J1(f, x) = lim
n→∞

[ n−1∑

k=0

τf(xk)
]−1

n−1∑

k=0

Cf (xk)(29)

= ̺f P f
x -a.s, ∀x ∈ X.

To obtain (28), observe that (16) implies that for every x ∈ X,

lim
n→∞

1

n
Ef

x

n−1∑

k=0

Cf (xt) = µf(Cf ) and lim
n→∞

1

n
Ef

x

n−1∑

k=0

τf (xt) = µf (τf ).

Thus, from (8), we see that (28) holds. Similarly, (29) follows on noting that
Remark 3.3(a) and the Strong Law of Large Numbers for Markov chains
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([24], p. 411) yield

lim
n→∞

1

n

n−1∑

k=0

Cf (xt) = µf (Cf ), lim
n→∞

1

n

n−1∑

k=0

τf (xt) = µf (τf ), P f
x -a.s.

Lemma 4.2. For each f ∈ F, the function

(30) hf (x) :=

∞∑

k=0

Ef
x [Cf (xk)− ̺fτf (xk)], x ∈ X,

is in BW (X) and is such that the pair (̺f , hf ), with ̺f as in (26), satisfies
the Poisson equation

(31) hf (x) = Cf (x)− ̺fτf (x) +
\
X

hf (y)Qf (dy |x) ∀x ∈ X.

Moreover ,

(32) sup
f∈F

‖hf‖W < ∞.

P r o o f. Fix f ∈ F and observe that for each k = 0, 1, . . . ,

Cf (xk)− ̺fτf (xk) = [Cf (xk)− µf (Cf )] + [̺fµf (τf )− ̺fτf (xk)];

thus, for each x ∈ X, we see that

|hf (x)| ≤
∞∑

k=0

{|Ef
xCf (xk)− µf (Cf )|+ |̺fE

f
xτf (xk)− ̺fµf (τf )|},

which, by Remark 3.3(b) and Assumptions 3.1(e1) and 3.4, implies that

|hf (x)| ≤ M(1 + |̺f |)k1W (x)/(1− γ) ∀x ∈ X.

Then hf ∈ BW (X) and, by (27), we conclude that (32) holds.

Finally, (31) follows from the Markov property and the fact that

(33) hf (x) = Cf (x)− ̺f τf(x) +

∞∑

k=1

Ef
x [Cf (xk)− ̺fτf (xk)]

for each f ∈ F.

Lemma 4.3. Let f ∈ F be a fixed but arbitrary policy. Suppose that there

exist a constant ̺ and a function h ∈ BW (X) such that

(34) h(x) ≥ Cf (x)− ̺τf (x) +
\
X

h(y)Qf (dy |x) ∀x ∈ X.

Then

(35) ̺ ≥ J(f, ·) = ̺f .
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Moreover , if ̺ = ̺f then there exists a measurable subset Nf of X with

µf (Nf ) = 1 such that

(36) h(x) = hf (x) + sf ∀x ∈ Nf , h(x) ≥ hf (x) + sf ∀x ∈ X,

where sf := µf (h− hf ).

P r o o f. The inequality in (35) follows by integration of both sides of
(34) with respect to the invariant probability measure µf .

Now suppose that ̺ = ̺f . Subtracting the Poisson equation (31) for f
from (34), we find that

H(·) := h(·)− hf (·)

is a superharmonic function, that is,

H(x) ≥
\
X

H(y)Qf (dy |x) ∀x ∈ X,

which implies that

H(x) ≥
\
X

H(y)Qn
f (dy |x) ∀x ∈ X, n ∈ N.

Then, taking the limit as n → ∞, we obtain

(37) H(x) ≥ µf(H) ∀x ∈ X,

which implies infx H(x) = µf (H). Thus, H(·) = µf (H) µf -a.e., which
jointly with (37) proves (36).

Lemma 4.4. There exists a policy f∗ such that

̺∗ := inf
f

̺f = ̺f∗ .

P r o o f. Consider a sequence {fn} of stationary policies such that ̺n :=
̺fn converges to ̺∗ as n → ∞. Moreover, for each n ∈ N, let hn := hfn ∈
BW (X) be the solution to the Poisson equation for the policy fn as in (30).
Now, define

h∗(x) := lim inf
n→∞

hn(x), x ∈ X,

and observe that, by (32), h∗(·) is in BW (X).

Next, we shall prove the existence of a policy f∗ ∈ F such that

(38) h∗(x) ≥ Cf∗(x)− ̺∗τf∗(x) +
\
X

h∗(y)Qf∗(dy |x) ∀x ∈ X,

which together with Lemma 4.3 implies that ̺∗ = ̺f∗ ≤ ̺f for all f ∈ F.

Let x ∈ X be a fixed but arbitrary state and {n(k)} a subsequence such
that

hn(k)(x) → h∗(x) as k → ∞.
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For each k ∈ N, we have

hn(k)(x) = Cfn(k)
(x)− ̺n(k)τfn(k)

(x) +
\
X

hn(k)(y)Qfn(k)
(dy |x).

Now, since A(x) is a compact subset of A, there exist ax ∈ A(x) and a sub-
sequence {m(k)} ⊂ {n(k)} such that fm(k)(x) → ax as k → ∞. Thus, from
Assumption 3.1(a)–(c) and (generalized) Fatou’s Lemma (see [1], p. 48),
taking lim inf on both sides of the equality

hm(k)(x) = Cfm(k)
(x)− ̺m(k)τfm(k)

(x) +
\
X

hm(k)(y)Qfm(k)
(dy |x)

we obtain

h∗(x) ≥ C(x, ax)− ̺∗τ(x, ax) +
\
X

[lim inf
k→∞

hm(k)(y)]Q(dy |x, ax).

Then, since [lim infk→∞ hm(k)(·)] ≥ h∗(·), we have

h∗(x) ≥ C(x, ax)− ̺∗τ(x, ax) +
\
X

h∗(y)Q(dy |x, ax)

≥ min
a∈A(x)

[
C(x, a)− ̺∗τ(x, a) +

\
X

h∗(y)Q(dy |x, a)
]
.

Finally, from the Measurable Selection Theorem ([14], Proposition D.5,
p. 182), the latter inequality implies the existence of a policy f∗ ∈ F satis-
fying (38).

With the above preliminaries we are now ready for the proof of The-
orem 3.5 itself. This is based on a “modified” policy iteration algorithm
which was already used in [31] and [23] for Markov and semi-Markov con-
trol processes, respectively; however, for the sake of completeness, we repeat
the arguments here.

Proof of Theorem 3.5. (a) Let f∗ ∈ F and ̺∗ be as in Lemma 4.4. Put
f0 := f∗ and let h0 := hf0 be a solution to the Poisson equation for f0 as
in (30), that is,

h0(x) = Cf0(x)− ̺∗τf0(x) +
\
X

h0(y)Qf0(dy |x) ∀x ∈ X.

Then there exists f1 ∈ F such that for every x ∈ X,

h0(x) ≥ min
a∈A(x)

[
C(x, a)− ̺∗τ(x, a) +

\
X

h0(y)Q(dy |x, a)
]

= Cf1(x)− ̺∗τf1(x) +
\
X

h0(y)Qf1(dy |x).
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Now, from Lemma 4.3, we have ̺f1 = ̺∗ and also there exists a subset
N1 ⊂ X with µf1(N1) = 1 such that [writing h1 := hf1 ; see (30)]

h0(x)− h1(x) = s1 := µf1(h0 − h1) ∀x ∈ N1

and

h0(x)− h1(x) ≥ s1 ∀x ∈ X.

Proceeding inductively we obtain sequences {fn} ⊂ F, {hn} = {hfn} ⊂
BW (X), and {Nn} ⊂ B(X) satisfying the following:

(i) J(fn, x) = ̺fn = ̺∗ for all x ∈ X, n ∈ N0;

(ii) hn solves the Poisson equation for the policy fn, that is,

(39) hn(x) = Cfn(x)− ̺∗τfn(x) +
\
X

hn(y)Qfn(dy |x) ∀x ∈ X, n ∈ N0;

(iii) for all x ∈ X and n ∈ N0,

(40) Thn(x) = Cfn+1
(x)− ̺∗τfn+1

(x) +
\
X

hn(y)Qfn+1
(dy |x)

where, for x ∈ X,

(41) Thn(x) := min
a∈A(x)

[
C(x, a)− ̺∗τ(x, a) +

\
X

hn(y)Q(dy |x, a)
]
;

(iv) moreover,

hn(x) = hn+1(x) + sn+1 ∀x ∈ Nn+1(42)

and

hn(x) ≥ hn+1(x) + sn+1 ∀x ∈ X,(43)

where µfn+1
(Nn+1) = 1 and sn+1 := µfn+1

(hn − hn+1).

Now define

N :=

∞⋂

n=1

Nn,

and observe that N 6= ∅, since ϕ(Nn) = ϕ(X) > 0 for all n ∈ N [where ϕ is
the common irreducibility measure in Assumption 3.2(b)]. Let z be a fixed
but arbitrary state in N and define

h∗

n(x) := hn(x)− hn(z), x ∈ X, n ∈ N0.

Then, from (42)–(43), we see that for each n ∈ N0,

(44) h∗

n(·) ≥ h∗

n+1(·).

Define

(45) h∗(x) := lim
n→∞

h∗

n(x) = inf
n

h∗

n(x), x ∈ X.
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Then, noting that h∗ ∈ BW (X) [see (32)] and using similar arguments to
those in the proof of Lemma 4.4, we have

(46) h∗(x) ≥ min
a∈A(x)

[
C(x, a)−̺∗τ(x, a)+

\
X

h∗(y)Q(dy |x, a)
]

∀x ∈ X.

Next, we shall prove that the reverse inequality holds. To do this, first
observe that (40), (44), (39) and (45) yield, for all x in X,

Th∗

n(x) = Cfn+1
(x)− ̺∗τfn+1

(x) +
\
X

h∗

n(y)Qfn+1
(dy |x)

≥ Cfn+1
(x)− ̺∗τfn+1

(x) +
\
X

h∗

n+1(y)Qfn+1
(dy |x)

= h∗

n+1(x) ≥ h∗(x).

In consequence, for all (x, a) ∈ K and n ∈ N0,

C(x, a)− ̺∗τ(x, a) +
\
X

h∗

n(y)Q(dy |x, a) ≥ h∗(x).

Thus, if we let n go to infinity, the Dominated Convergence Theorem implies

C(x, a)− ̺∗τ(x, a) +
\
X

h∗(y)Q(dy |x, a) ≥ h∗(x),

from which we have

min
a∈A(x)

[
C(x, a)− ̺∗τ(x, a) +

\
X

h∗(y)Q(dy |x, a)
]
≥ h∗(x) ∀x ∈ X.

Therefore, combining this with (46), we see that h∗(·) satisfies the Average
Cost Optimality Equation

(47) h∗(x) = min
a∈A(x)

[
C(x, a)− ̺∗τ(x, a) +

\
X

h∗(y)Q(dy |x, a)
]

∀x ∈ X.

Finally, the Measurable Selection Theorem guarantees the existence of a
policy f∗ ∈ F such that

(48) h∗(x) = Cf∗(x)− ̺∗τf∗(x) +
\
X

h∗(y)Qf∗(dy |x) ∀x ∈ X.

Parts (b) and (c) follow from (47) and (48) using standard arguments
after noting that

Eπ
xTn = Eπ

x

n−1∑

k=0

τ(xk, ak) ≥ nθ ∀x ∈ X, π ∈ Π,

where θ is the constant in Assumption 3.1(e1).
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5. Proof of Theorem 3.7. Throughout this section we suppose that

the assumptions of Theorem 3.7 hold. Consider the function

(49) w(x) := W 1/p(x), x ∈ X,

where p is as in Assumption 3.6, and the normed linear space Bw(X) consists
of measurable functions u on X such that

‖u‖w := sup
x∈X

|u(x)|

w(x)
< ∞.

Then, using the inequality

(50) (a+ b)r ≤ ar + br ∀a, b ≥ 0 and 0 ≤ r ≤ 1,

with r = 1/p, and Jensen’s inequality, we obtain

(51)
\
X

w(y)Qf (dy |x) ≤ B′

fw(x) + b′fIKf
(x) ∀f ∈ F, x ∈ X,

with B′

f := B
1/p
f and b′f := b

1/p
f . On the other hand, from Assumption 3.6,

we have
(52)

|C(x, a)| ≤ r
1/p
1 w(x) and θ1/p<τ(x, a) ≤ r

1/p
1 w(x) ∀(x, a) ∈ K.

Therefore, as in Remark 3.3 and Lemma 4.2, we have the following:

Lemma 5.1. For each stationary policy f ∈ F:

(a) {xn} is w-geometrically ergodic; that is, there exist positive constants

γ̂f < 1 and M̂f < ∞ such that
∣∣∣
\
X

u(y)Qn
f (dy |x)− µf (u)

∣∣∣≤‖u‖wM̂f γ̂
n
fw(x) ∀x ∈ X, u∈Bw(X), n∈N;

(b) the function hf in (30) belongs to Bw(X); hence, the solution h∗(·)
to the Average Cost Optimality Equation (17) is in Bw(X).

The next two lemmas play a key role in the proof of Theorem 3.7. Their
proofs are similar to those of Lemmas 4.3 and 4.4 in [17].

Lemma 5.2. For each policy π ∈ Π and initial state x ∈ X, we have

(a) Eπ
x

∑
∞

k=1 k
−pW (xk) < ∞;

hence, the following statements hold Pπ
x -a.s.:

(b)
∑

∞

k=1 k
−pW (xk) < ∞;

(c) k−pW (xk) → 0;
(d) k−1w(xk) → 0.

P r o o f. Since W ≥ w ≥ 1, it is clear that (a)⇒(b)⇒(c)⇒(d). Thus, it
suffices to prove part (a).



360 O. Vega-Amaya and F. Luque-Vásquez

To prove (a), let g be a stationary policy as in (23)–(24). Thus,\
X

W (y)Q(dy |x, a) ≤ BgW (x) + bgIKg
(x) ∀(x, a) ∈ K.

Now, from the properties in Remark 2.2, we see that for each policy π and
initial state x,

(53) Eπ
x [W (xk+1) |hk, ak] = Eπ

x [W (xk+1) |xk, ak] ≤ BgW (xk) + bg,

which implies that

Eπ
xW (xk+1) ≤ BgE

π
xW (xk) + bg.

Then, by induction, we see that

(54) Eπ
xW (xk) ≤ Bk

gW (x) + bg(1−Bg)
−1.

Thus, since p > 1,

Eπ
x

∞∑

k=1

k−pW (xk) < ∞ ∀π ∈ Π, x ∈ X.

Let π ∈ Π and x ∈ X be arbitrary and define Fn := σ(hn, an), the
σ-algebra generated by (hn, an), for each n ∈ N0. Moreover, let h∗ be
a solution to the Average Cost Optimality Equation (17) and define the
random variables

(55)

Yk(π, x) := h∗(xk)− Eπ
x [h∗(xk) | Fk−1]

= h∗(xk)−
\
X

h∗(y)Q(dy |xk−1, ak−1), k ∈ N,

and

(56) Mn(π, x) :=
n∑

k=1

Yk(π, x), n ∈ N.

Lemma 5.3. For each π ∈ Π and x ∈ X, the process (Mn,Fn) is a

Pπ
x -martingale, and the following statements hold Pπ

x -a.s.:

lim
n→∞

1

n
Mn(π, x) = 0,(57)

lim
n→∞

1

T̂n

Mn(π, x) = 0.(58)

P r o o f. First, note that (57) implies (58). Indeed, from Assumption
3.1(e1), we have

lim inf
n→∞

1

n

n−1∑

k=0

τ(xk, ak) ≥ θ,

which combined with (57), yields (58).
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We next prove that (57) holds. To do this, fix π ∈ Π and x ∈ X, and
observe that

|Yk(π, x)| ≤ |h∗(xk)|+ Eπ
x [|h∗(xk)| |xk−1, ak−1], k ∈ N.

Thus,

(59) |Yk(π, x)| ≤ ‖h∗‖w{w(xk) + Eπ
x [w(xk) |xk−1, ak−1]}, k ∈ N,

from which, using (54), we see that

Eπ
x |Yk(π, x)| ≤ 2‖h∗‖wE

π
xw(xk) ≤ 2‖h∗‖wE

π
xW (xk) < ∞.

Hence,
Eπ

x |Mn(π, x)| < ∞ for every n ∈ N.

Now, since Mn(π, x) is Fn-measurable, from (55) we conclude that

Eπ
x [Mn+1(π, x)−Mn(π, x) | Fn] = 0 Pπ

x -a.s.,

that is, (Mn(π, x),Fn) is a (Pπ
x -) martingale.

Thus, (57) follows from the Strong Law of Large Numbers for martingales
([12], Theorem 2.18, p. 35) provided that

(60)

∞∑

k=1

k−pEπ
x [|Yk(π, x)|

p | Fk−1] < ∞ Pπ
x -a.s.

To prove (60), we use the inequality

(a+ b)p ≤ 2p−1(ap + bp) a, b ≥ 0, p ≥ 1,

combined with the fact that wp(·) = W (·) and Jensen’s inequality to deduce
from (59) that

Eπ
x [|Yk(π, x)|

p | Fk−1] ≤ 2p‖h∗‖
p
wE

π
x [W (xk) | Fk−1] ∀k ∈ N.

Then, from (53),

Eπ
x [|Yk(π, x)|

p | Fk−1] ≤ 2p‖h∗‖
p
w(Bg + bg)W (xk−1),

which implies that
∞∑

k=1

k−pEπ
x [|Yk(π, x)|

p | Fk−1] ≤ K
{
W (x0) +

∞∑

k=2

k−pW (xk−1)
}

≤ K
{
W (x0) +

∞∑

k=1

k−pW (xk)
}
,

where K := 2p‖h∗‖
p
w(Bg+ bg). Hence, from Lemma 5.2(b), we see that (60)

holds.

Proof of Theorem 3.7. (a) Define the “discrepancy” function on K:

D(x, a) := C(x, a)− ̺∗τ(x, a) +
\
X

h∗(y)Q(dy |x, a)− h∗(x),
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and note that it is nonnegative because h∗(·) is a solution to the Average
Cost Optimality Equation (17). Then observe that for every n ∈ N,

n−1∑

k=0

D(xk, ak) =
n−1∑

k=0

C(xk, ak)− ̺∗T̂n −Mn(π, x) − h∗(x0) + h∗(xn),

which, since D is nonnegative, yields

1

T̂n

n−1∑

k=0

C(xk, ak) ≥ ̺∗ +
1

T̂n

[Mn(π, x) + h∗(x0)− h∗(xn)].

Hence, from Lemma 5.2(d) and (58), we get

(61) J1(π, x) ≥ lim inf
n→∞

1

T̂n

n−1∑

k=0

C(xk, ak) ≥ ̺∗ Pπ
x -a.s.

(b) This part is an immediate consequence of part (a), Remark 4.1(c)
and Theorem 3.5.

6. Proof of Theorem 3.8. In this section we suppose that the assump-

tions of Theorem 3.8 hold. For each π ∈ Π and x ∈ X, define the random
variables

(62) Zk(π, x) := δk − Eπ
x [δk | Fk−1], k ∈ N,

where Fn = σ(hn, an) for each n ∈ N, and

(63) M ′

n(π, x) :=

n∑

k=1

Zk(π, x), n ∈ N.

Observe, from Remark 2.2, that

(64) Zk(π, x) = δk − τ(xk−1, ak−1), M ′

n(π, x) = Tn − T̂n, k, n ∈ N.

Theorem 3.8 is an immediate consequence of Lemmas 6.1 and 6.2.

Lemma 6.1. For each π ∈ Π and x ∈ X, the process (M ′

n(π, x),Fn) is a
(Pπ

x -) martingale and

(65) lim
n→∞

1

n
M ′

n(π, x) = 0 Pπ
x -a.s.

P r o o f. Let π ∈ Π and x ∈ X be fixed but arbitrary. To prove that
(M ′

n(π, x),Fn) is a (Pπ
x -) martingale, from (62)–(63), it only remains to

check that
Eπ

x |M
′

n(π, x)| < ∞ ∀n ∈ N0.

This follows on noting that

|Zk(π, x)| ≤ δk + τ(xk−1, ak−1) ∀n ∈ N.
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Thus,
Eπ

x [|Zk(π, x)| | Fk−1] ≤ 2τ(xk−1, ak−1) ≤ 2r2W (xk−1),

where r2 is the constant in (22). Then, by (54),

Eπ
x |Zk(π, x)| ≤ 2r2E

π
xW (xk−1) < ∞.

Hence, (M ′

n(π, x),Fn) is a (Pπ
x -) martingale.

As in the proof of Lemma 5.3, (65) follows from the Strong Law of Large
Numbers for martingales ([12], Theorem 2.18, p. 35) provided that

(66)
∞∑

k=1

k−pEπ
x [|Zk(π, x)|

p | Fk−1] < ∞ Pπ
x -a.s.

We next prove (66). In order to do this, observe

|Zk(π, x)|
p ≤ [δk + τ(xk−1, ak−1)]

p ≤ 2p−1[δpk + τp(xk−1, ak−1)].

Then

Eπ
x [|Zk(π, x)|

p | Fk−1] ≤ 2p−1[η(xk−1, ak−1) + τp(xk−1, ak−1)].

Now, from (22) and Jensen’s inequality, we have

Eπ
x [|Zk(π, x)|

p | Fk−1] ≤ 2pη(xk−1, ak−1) ≤ 2pr2W (xk−1).

Thus, proceeding as in the proof of Lemma 5.3, we conclude that
∞∑

k=1

k−pEπ
x [|Zk(π, x)|

p | Fk−1] ≤ L̂
{
W (x0) +

∞∑

k=1

k−pW (xk)
}
< ∞

holds Pπ
x -a.s., where L̂ := 2pr2(Bg + bg).

Lemma 6.2. For each policy π ∈ Π and x ∈ X, the following facts hold

Pπ
x -a.s.:

(a) limn→∞ Tn = ∞;

(b) limn→∞ Tn/T̂n = 1;

(c) limn→∞ T̂n+1/T̂n = limn→∞ Tn+1/Tn = 1;
(d) limt→∞ Tη(t)+1/Tη(t) = limt→∞(1/t)Tη(t) = 1.

P r o o f. (a) Let π ∈ Π and x ∈ X be fixed but arbitrary. We see, from
(65) and Assumption 3.1(e1), that

(67) lim inf
n→∞

1

n
Tn = lim inf

n→∞

1

n
T̂n ≥ θ Pπ

x -a.s.,

which implies that
lim

n→∞

Tn = ∞.

(b) Using (65) again and (67), we have

lim
n→∞

M ′

n

Tn
= lim

n→∞

[
1−

T̂n

Tn

]
= 0 Pπ

x -a.s.,
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or equivalently,

lim
n→∞

T̂n

Tn
= 1 Pπ

x -a.s.

(c) Observe that, from (49) and (52), the following inequalities hold:

1 ≤
T̂n+1

T̂n

= 1 +
τ(xn, an)

T̂n

≤ 1 +
1

θ1/p
1

n
τ(xn, an) ≤ 1 +

r1
θ1/p

1

n
w(xn).

Thus, Lemma 5.2(d) yields

(68) lim
n→∞

T̂n+1

T̂n

= 1 Pπ
x -a.s.

Now observe that

(69)
Tn+1

Tn
=

Tn+1

T̂n+1

T̂n+1

T̂n

T̂n

Tn
;

hence, from part (b), (68) and (69),

lim
n→∞

Tn+1

Tn
= 1 Pπ

x -a.s.

(d) Since Tn < ∞, for every n ∈ N0, and Tn → ∞ Pπ
x -a.s., we deduce

that for every nonnegative real t ∈ R
+ there exists a nonnegative integer

k ∈ N0, depending on the realization of the process, such that

Tk ≤ t < Tk+1.

Thus,
Tη(t)+1

Tη(t)
=

Tk+1

Tk
if Tk ≤ t < Tk+1.

Hence, from (c),

(70) lim
t→∞

Tη(t)+1

Tη(t)
= 1 Pπ

x -a.s.

To prove the second equality, observe that

Tη(t) ≤ t < Tη(t)+1 ∀t > 0;

equivalently,

1 ≤
t

Tη(t)
<

Tη(t)+1

Tη(t)
.

Thus, from (70), we see that

lim
t→∞

Tη(t)

t
= 1 Pπ

x -a.s.
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Proof of Theorem 3.8. (a) Let π ∈ Π and x ∈ X be fixed but arbitrary.
From Lemma 6.2(b), the following holds Pπ

x -a.s.:

J0(π, x) = lim sup
n→∞

{
T̂n

Tn

1

T̂n

n−1∑

k=0

C(xk, ak)

}

= lim sup
n→∞

1

T̂n

n−1∑

k=0

C(xk, ak) = J1(π, x),

which proves the first equality. To prove the second one, first note that
Lemma 6.2(c) yields

J2(π, x) = lim sup
t→∞

1

t

η(t)∑

k=0

C(xk, ak)

= lim sup
t→∞

{
Tη(t)+1

Tη(t)

Tη(t)

t

1

Tη(t)+1

η(t)∑

k=0

C(xk, ak)

}

= lim sup
t→∞

1

Tη(t)+1

η(t)∑

k=0

C(xk, ak).

Thus, using similar arguments to those in the proof of Lemma 6.2(d), we
see that

J0(π, x) = lim sup
n→∞

1

Tn

n−1∑

k=0

C(xk, ak) = lim sup
t→∞

1

Tη(t)+1

η(t)∑

k=0

C(xk, ak),

which proves that J0(π, x) = J2(π, x) P
π
x -a.s.

(b) This part is a direct consequence of part (a) and Theorem 3.7(b).
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