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ORTHOGONAL SERIES REGRESSION ESTIMATORS

FOR AN IRREGULARLY SPACED DESIGN

Abstract. Nonparametric orthogonal series regression function estimation
is investigated in the case of a fixed point design where the observation points
are irregularly spaced in a finite interval [a, b]i⊂R. Convergence rates for the
integrated mean-square error and pointwise mean-square error are obtained
in the case of estimators constructed using the Legendre polynomials and
Haar functions for regression functions satisfying the Lipschitz condition.

1. Introduction. Consider the partition of the interval A = [a, b] ⊂ R

into n subintervals A1 = [a0, a1], Ai = (ai−1, ai], i = 2, . . . , n, where a =
a0 < a1 < . . . < an = b. Suppose that the observations y1, . . . , yn follow the
model yi = f(xi)+ηi, where f : [a, b] → R is an unknown function satisfying
certain smoothness conditions specified below, xi ∈ Ai, i = 1, . . . , n, and
ηi, i = 1, . . . , n, are independent identically distributed random variables
with mean zero and finite variance σ2

η > 0. For simplicity the dependence
of xi and ai on n is not indicated in the notation.

Let the functions ek, k = 0, 1, . . . , form a complete orthonormal system
in the space L2[a, b]. We assume that the regression function f is an element
of this space and consequently it has a representation

f =
∞∑

k=0

ckek, where ck =

b\
a

f(s)ek(s) ds, k = 0, 1, . . .

As an estimator of f we take

(1) f̂N(x) =

N∑

k=0

ĉkek(x), where ĉk =

n∑

i=1

yi

ai\
ai−1

ek(s) ds.
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This formula can be rewritten in the form

f̂N (x) =

n∑

i=1

yi

ai\
ai−1

K(x, s) ds, where K(x, y) =

N∑

k=0

ek(x)ek(y),

so it is easy to see that our estimator resembles the Gasser–Müller kernel
regression function estimator [4].

Sufficient conditions for almost sure convergence of the above estimator,
constructed using the trigonometric functions and Legendre polynomials,
were investigated by Rutkowski [9]. Results concerning convergence rates
of the integrated mean-square error of the estimator constructed using the
trigonometric functions were obtained in [3]. Orthogonal series estimators
which attain an optimal IMSE convergence rate were constructed by Rafaj-
 lowicz [7].

However, in [3] it is assumed that the observation points satisfy

(2)

xi\
a

p(s) ds = (i− 1)/n, i = 1, . . . , n,

where p ∈ L1[a, b] is a density satisfying certain smoothness conditions, and
in [7] the observation points coincide with knots of numerical quadratures.

The aim of the present work is to obtain asymptotic results, in partic-
ular convergence rates for IMSE and pointwise mean-square error of the
estimator (1), for fixed point designs different from the ones considered so
far, under milder restrictions on the observation points. This seems to be
important since it may be numerically difficult to determine exactly the
points xi satisfying (2) or the knots of appropriate numerical quadratures,
especially when their number is large.

The present work also shows that there exist series type regression func-
tion estimators with asymptotic properties comparable to or even better
than those of the least squares polynomial estimators investigated in [8],
[11], which were examined only for special fixed point designs, e.g. when the
observation points are equidistant.

Observe that calculating the integrals occurring in the definition of the
Fourier coefficient estimators in (1) is straightforward in the case of trigono-
metric functions and Haar functions but may be difficult for other orthonor-
mal systems. However, orthogonal polynomials often satisfy recurrence for-
mulae [10] which facilitate calculation of such integrals, e.g. for Legendre
polynomials forming an orthonormal system in L2[−1, 1] we can apply the
recurrence formula [10]

xe′k(x) = kek(x) + e′k−1(x), where e′k(x) =
d

dx
ek(x), k = 1, 2, . . .
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Indeed, for −1 ≤ c < d ≤ 1 we have

d\
c

se′k(s) ds = k

d\
c

ek(s) ds + ek−1(d) − ek−1(c),

and integrating by parts gives

dek(d) − cek(c) −
d\
c

ek(s) ds = k

d\
c

ek(s) ds + ek−1(d) − ek−1(c),

so that finally

(k + 1)

d\
c

ek(s) ds = dek(d) − cek(c) − ek−1(d) + ek−1(c).

Thus, to calculate the integrals occurring in (1) in the case of Legendre
polynomials one only needs to calculate the point values of such polynomials,
which can be accomplished using well known formulae [10].

Recall that according to well known results on uniform polynomial ap-
proximation (e.g. Theorem 3.11 of [5]) for any function f ∈ C[−1, 1] there
exists a polynomial qN of degree N > 0 such that

(3) sup
−1≤t≤1

|f(t) − qN(t)| ≤ 6ω(f, 1/N),

where ω(f, δ) = sup|t−s|≤δ |f(t) − f(s)| for δ > 0. Since for Legendre poly-

nomials we have |ek(t)| ≤
√

(2k + 1)/2, k = 0, 1, . . . , for t ∈ [−1, 1] (see
[10]), we easily obtain

(4)
N∑

k=0

e2k(t) ≤
N∑

k=0

(2k + 1)/2 = (N + 1)2/2 for t ∈ [−1, 1].

Instead of Legendre polynomials also the Haar functions [6], forming a
complete orthonormal system in L2[0, 1], can be used. Assume that these
functions are ordered as follows [6]: χ1(t) ≡ 1, and for n = 2m + k, k =
1, . . . , 2m, m = 0, 1, . . . ,

χn(t) = χk
m(t) =

{√
2m for t ∈ ((2k − 2)/2m+1, (2k − 1)/2m+1),

−
√

2m for t ∈ ((2k − 1)/2m+1, 2k/2m+1),
0 otherwise.

If f ∈ C[0, 1] and

fN (t) =

N∑

j=1

cjχj(t), where cj =

1\
0

f(s)χj(s) ds, j = 1, 2, . . . ,

denotes the Nth partial sum of the Haar series of f , then by [6], we have

(5) |f(t) − fN(t)| ≤ 2ω(f, 1/N)
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almost everywhere for t ∈ [0, 1]. Moreover, for t ∈ [0, 1] and N = 2m + k,
k = 1, . . . , 2m, m = 0, 1, . . . , we have

(6)

N∑

j=1

χ2
j(t) ≤ 1 + 20 + . . . + 2m = 2m+1 ≤ 2(N − 1).

2. Integrated mean-square error. To investigate the asymptotic
properties of our estimator we need the following lemma giving bounds for
the variance and squared bias of the Fourier coefficient estimators defined
in (1).

Lemma 2.1. If f ∈ L2[a, b], then the Fourier coefficient estimators ĉk,
k = 0, 1, . . . , given by (1), satisfy

E(ĉk − Eĉk)2 ≤ σ2
ηDn, |ck − Eĉk|2 ≤ ω2(f,Dn)(b− a),

where Dn = max1≤i≤n(ai − ai−1).

P r o o f. As Eĉk =
∑n

i=1 f(xi)
T
Ai

ek(s) ds we immediately see that

E(ĉk − Eĉk)2 = E
( n∑

i=1

ηi
\
Ai

ek(s) ds
)2

= σ2
η

n∑

i=1

( \
Ai

ek(s) ds
)2

≤ σ2
η

n∑

i=1

(ai − ai−1)
\
Ai

e2k(s) ds ≤ σ2
ηDn

n∑

i=1

\
Ai

e2k(s) ds

= σ2
ηDn

\
A

e2k(s) ds = σ2
ηDn,

since A =
⋃n

i=1Ai and the functions ek, k = 0, 1, . . . , form an orthonormal
system in L2[a, b]. For the bias term we easily obtain

|ck − Eĉk|2 =
[ n∑

i=1

\
Ai

f(s)ek(s) ds −
n∑

i=1

f(xi)
\
Ai

ek(s) ds
]2

≤
[ n∑

i=1

\
Ai

|f(s) − f(xi)| · |ek(s)| ds
]2

≤
[ n∑

i=1

( \
Ai

(f(s) − f(xi))
2 ds

)1/2( \
Ai

e2k(s) ds
)1/2]2

≤
n∑

i=1

\
Ai

(f(s) − f(xi))
2ds ·

n∑

i=1

\
Ai

e2k(s)ds,
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and since
∑n

i=1

T
Ai

e2k(s) ds = 1 we finally have

|ck −Eĉk|2 ≤ ω2(f,Dn)

n∑

i=1

(ai − ai−1) = ω2(f,Dn)(b− a).

It is easy to show the following formula for the IMSE of f̂N :

RN = E‖f − f̂N‖2 =

N∑

k=0

E(ck − ĉk)2 + ‖f − fN‖2,

where fN =
∑N

k=0 ckek. Lemma 2.1 yields

RN =
N∑

k=0

[(ck − Eĉk)2 + E(Eĉk − ĉk)2] + ‖f − fN‖2(7)

≤ (N + 1)[σ2
ηDn + ω2(f,Dn)(b− a)] + ‖f − fN‖2.

Now consider the case where a = −1, b = 1 or a = 0, b = 1 and the esti-
mator f̂N is constructed using the complete orthonormal system of Legendre
polynomials in L2[−1, 1] or Haar functions in L2[0, 1], respectively.

Lemma 2.2. If f ∈ C[−1, 1] (resp. f ∈ C[0, 1]) satisfies the Lipschitz

condition with exponent 0 < α ≤ 1 and Dn = O(n−1), then the estimator

f̂N constructed using Legendre polynomials (resp. Haar functions) satisfies

E‖f − f̂N‖2 ≤
NB1σ

2
η

n
+

NB2

n2α
+

B3

N2α
,

where B1, B2, B3 > 0.

P r o o f. We first give the proof for the polynomial estimator. By assump-
tion, there exist constants C,L > 0 such that Dn ≤ Cn−1 and ω(f, δ) ≤ Lδα

for δ > 0. Consequently, (7) shows that

RN ≤ (N + 1)

(
Cσ2

η

n
+

2L2C2α

n2α

)
+ ‖f − fN‖2.

Since fN =
∑N

k=0 ckek, where c0, c1, . . . , cN are the Fourier coefficients of f ,
we have ‖f −fN‖2 ≤ ‖f − qN‖2 for any polynomial qN of degree not greater
than N and so ‖f − fN‖2 ≤ 72L2/N2α by (3). Thus, we finally obtain the
desired bound

RN ≤ N

(
B1σ

2
η

n
+

B2

n2α

)
+

B3

N2α
.

The proof for the Haar series estimator is analogous with the use of (5).

In view of Lemma 2.2 one can easily see that the polynomial estimator
f̂N(n) will be consistent in the sense of IMSE if the sequence of natural
numbers N(n) satisfies N(n) → ∞, N(n)/n → 0 for 1/2 < α ≤ 1, or
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N(n) → ∞, N(n)/n2α → 0 for 0 < α ≤ 1/2. The same is true for the Haar
series estimator.

Assume now that N(n) ∼ nβ , β > 0 (i.e. r1 ≤ n−βN(n) ≤ r2 for r1, r2
> 0). Lemma 2.2 easily yields IMSE convergence rates for the polynomial

or Haar series estimator f̂N(n).

Theorem 2.1. If the assumptions of Lemma 2.2 hold , then the estimator

f̂N constructed using Legendre polynomials (or Haar functions) satisfies

(a) E‖f − f̂N(n)‖2 = O(n−4α2/(2α+1)) for 0 < α ≤ 1/2 and N(n) ∼
n2α/(2α+1),

(b) E‖f − f̂N(n)‖2 = O(n−2α/(2α+1)) for 1/2 < α ≤ 1 and N(n) ∼
n1/(2α+1).

3. Pointwise mean-square error. In this section we examine the
pointwise mean-square error of the estimator f̂N and obtain convergence
rates for the estimators constructed using Legendre polynomials and Haar
functions. If the Fourier series of f converges to f(x) at some x∈ [a, b], then

E(f(x) − f̂N (x))2 = E
( N∑

k=0

(ck − ĉk)ek(x)
)2

+ r2N (x)

+ 2rN (x)
N∑

k=0

(ck − Eĉk)ek(x),

where rN (x) = f(x) −∑N
k=0 ckek(x). From the Cauchy–Schwarz inequality

it further follows that

E(f(x) − f̂N (x))2 ≤
N∑

k=0

[(ck − Eĉk)2 + E(ĉk − Eĉk)2]
N∑

k=0

e2k(x)

+ 2|rN (x)|
( N∑

k=0

(ck − Eĉk)2
)1/2( N∑

k=0

e2k(x)
)1/2

+ r2N (x),

and in view of Lemma 2.1 we finally obtain the inequality

(8) E(f(x) − f̂N (x))2 ≤ (N + 1)[σ2
ηDn + ω2(f,Dn)(b− a)]

N∑

k=0

e2k(x)

+ r2N (x) + 2|rN (x)|(N + 1)1/2ω(f,Dn)(b− a)1/2
( N∑

k=0

e2k(x)
)1/2

.

For f ∈ C[−1, 1] satisfying the Lipschitz condition with exponent 1/2 <
α ≤ 1 we can obtain a uniform upper bound for the pointwise mean-square
error of the estimator f̂N constructed using Legendre polynomials.
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Lemma 3.1. If f ∈ C[−1, 1] satisfies the Lipschitz condition with expo-

nent 1/2 < α ≤ 1 and Dn = O(n−1), then the estimator f̂N constructed

using Legendre polynomials satisfies

E(f(x) − f̂N(x))2 ≤ G1N
3

n
+

G2N
2−α

nα
+

G3

N2α−1
,

where x ∈ [−1, 1] and G1, G2, G3 > 0 are constants.

P r o o f. By assumption, there exist constants C,L > 0 such that Dn ≤
Cn−1 and ω(f, δ) ≤ Lδα for δ > 0, so by (4) and (8) we have

E(f(x) − f̂N (x))2 ≤ (N + 1)3
(
Cσ2

η

2n
+

L2C2α

n2α

)

+ 2|rN (x)|(N + 1)3/2
LCα

nα
+ r2N (x).

If f satisfies the Lipschitz condition with exponent α > 1/2, then its Fourier–
Legendre series converges uniformly and |rN (x)| ≤ B(α)/Nα−1/2 for x ∈
[−1, 1] (see Theorem 4.9 of [12]). Hence,

E(f(x) − f̂N (x))2 ≤ (N + 1)3
(
Cσ2

η

2n
+

L2C2α

n2α

)

+
2(N + 1)3/2B(α)

Nα−1/2

LCα

nα
+

B2(α)

N2α−1
,

which can be rewritten as

E(f(x) − f̂N(x))2 ≤ N3

(
F1σ

2
η

n
+

F2

n2α

)
+

G2N
2−α

nα
+

G3

N2α−1
,

and since 2α > 1 the lemma follows.

For the Haar series estimator the following lemma holds.

Lemma 3.2. If f ∈ C[0, 1] satisfies the Lipschitz condition with exponent

0 < α ≤ 1 and Dn = O(n−1), then the estimator f̂N constructed using Haar

functions satisfies

E(f(x) − f̂N(x))2 ≤ N2

(
J1
n

+
J2
n2α

)
+

J3N
1−α

nα
+

J4
N2α

almost everywhere in [0, 1], where J1, J2, J3, J4 > 0 are constants.

P r o o f. The proof is analogous to that of Lemma 3.1 except that now we
use inequality (6) and the bound (5), which yield |rN (x)| ≤ 2L/Nα almost
everywhere in [0, 1].

Now, we can formulate and prove the main results of this section concern-
ing the convergence rates of the pointwise mean-square error of the relevant
estimators.
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Theorem 3.1. If f ∈ C[−1, 1] satisfies the Lipschitz condition with expo-

nent 1/2 < α ≤ 1,Dn = O(n−1) and N(n) ∼ n1/(2(α+1)), then the estimator

f̂N constructed using Legendre polynomials satisfies

E(f(x) − f̂N(n)(x))2 = O(n−(2α−1)/(2(α+1))),

uniformly for x ∈ [−1, 1].

P r o o f. By Lemma 3.1, putting N(n) ∼ n1/(2(α+1)), we have for x ∈
[−1, 1],

E(f(x) − f̂N(n)(x))2 ≤ H1n
− 2α−1

2(α+1) + H2n
− 2α(α+1)+α−2

2(α+1) + H3n
− 2α−1

2(α+1) ,

where H1,H2,H3 > 0. In other words

E(f(x) − f̂N(n)(x))2 ≤ (H1 + H3)n− 2α−1
2(α+1) + H2n

− 2α−1
2(α+1)n− 2α2+α−1

2(α+1)

for x ∈ [−1, 1], and since 2α2 + α− 1 = 2(α + 1)(α − 1/2) > 0 for α > 1/2
the assertion follows.

Theorem 3.2. If f ∈ C[0, 1] satisfies the Lipschitz condition with expo-

nent 0 < α ≤ 1,Dn = O(n−1) and the estimator f̂N is constructed using

Haar functions, then

(a) for 0 < α ≤ 1/2 and N(n) ∼ nα/(α+1) we have

E(f(x) − f̂N(n)(x))2 = O(n−2α2/(α+1)) almost everywhere in [0, 1],

(b) for 1/2 < α ≤ 1 and N(n) ∼ n1/(2(α+1)) we have

E(f(x) − f̂N(n)(x))2 = O(n−α/(α+1)) almost everywhere in [0, 1].

P r o o f. (a) Observe that the assumptions of Lemma 3.2 hold. Conse-
quently, for 0 < α ≤ 1/2 and N(n) ∼ nα/(α+1) we have

E(f(x) − f̂N(n)(x))2 ≤ L1n
− 2α2

α+1 + L2n
−α(α+1)+α(α−1)

α+1 + L3n
− 2α2

α+1 ,

almost everywhere in [0, 1], where L1, L2, L3 > 0. Otherwise,

E(f(x) − f̂N(n)(x))2 ≤ (L1 + L2 + L3)n−2α2/(α+1)

almost everywhere in [0, 1], which proves (a).
To prove (b) observe that for 2α > 1 and N(n) ∼ n1/(2(α+1)) Lemma 3.2

gives

E(f(x) − f̂N(n)(x))2 ≤ K1n
− 2α

2(α+1) + K2n
− 2α(α+1)+α−1

2(α+1) + K3n
− 2α

2(α+1)

almost everywhere in [0, 1], where K1,K2,K3 > 0. In other words,

E(f(x) − f̂N(n)(x))2 ≤ (K1 + K3)n− 2α
2(α+1) + K2n

− 2α
2(α+1)n− 2α2+α−1

2(α+1)

almost everywhere in [0, 1], and again (b) follows.
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4. Conclusions. In [11] it was proved that the pointwise mean-square
error of the polynomial estimator obtained by the least squares method
in the case of equidistant observation points converges uniformly to zero
if the regression function f satisfies the Lipschitz condition with exponent
1/2 < α ≤ 1 and N2(n)/n → 0 for n → ∞. Earlier Rafaj lowicz [8] obtained
sufficient conditions for uniform consistency of that estimator in the sense
of pointwise mean-square error for other observation point designs, but they
are satisfied only by functions of higher smoothness. In the present work we
go one step further showing that there exist orthogonal series estimators uni-
formly consistent in the sense of pointwise mean-square error, and obtained
the convergence rate for that error, under the same smoothness conditions
on the regression function as in [11] and less restrictive assumptions on the
observation points. Theorem 3.2 shows that using Haar functions makes it
possible to obtain the convergence rate of the pointwise mean-square error
(valid almost everywhere) for a slightly larger regression function class than
in the case of Legendre polynomials. Moreover, for regression functions sat-
isfying the Lipschitz condition with exponent 1/2 < α ≤ 1, that convergence
rate is faster for the Haar series estimator.

In the present work it is also shown that the estimators considered can
attain, at least for regression functions satisfying the Lipschitz condition
with exponent 1/2 < α ≤ 1, the same optimal IMSE convergence rate as
the least squares polynomial estimators considered in [8] and orthogonal se-
ries estimators based on Legendre polynomials and numerical quadratures
[7]. Our Haar series estimator attains the same IMSE convergence rate as
the Haar series estimator for the equidistant point design considered in [2],
where only the case of regression functions satisfying the Lipschitz condition
with exponent α = 1 was examined. Hence, the asymptotic properties of our
estimator seem to be competitive in comparison to series regression estima-
tors based on orthogonal polynomials and Haar functions, considered so far.

If the regression function f satisfies the Dini–Lipschitz condition, i.e.
limδ→0 ln(1/δ)ω(f, δ) = 0, then the same technique shows that the estima-
tors constructed using Legendre polynomials or Haar functions are consis-
tent in the sense of integrated mean-square error provided N(n) → ∞ and
N(n) = O(ln2 n). Moreover, for such regression functions the pointwise
mean-square error of the Haar series estimator converges uniformly to zero
almost everywhere in [0, 1] if N(n) → ∞ and N(n) = O(lnn). In the case of
the estimator based on Legendre polynomials the known results on the uni-
form convergence of Legendre series (e.g. Theorem 4.7 of [12]) only ensure
that the error converges uniformly to zero on any interval [−1+ε, 1−ε], ε > 0,

if N(n) → ∞ and N(n) = O(ln2/3 n). In [11] Sharapudinov proved an anal-
ogous result for the least squares polynomial estimator in the case of an
equidistant point design, provided N(n) = O(n1/2).
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Since the Haar series estimators are also wavelet estimators, the results
obtained give some idea of properties of wavelet estimators in the case
where the observation points are irregularly spaced. Asymptotic proper-
ties of wavelet estimators for a random uniform design, i.e. a design with
irregular spacing of observation points, were recently investigated in [1].
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Department of Standards
Central Statistical Office
Al. Niepodleg lości 208
00-925 Warszawa, Poland
E-mail: w.popinski@stat.gov.pl

Received on 27.5.1999;

revised version on 5.1.2000


