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PERIODIC DYNAMICS IN A MODEL OF

IMMUNE SYSTEM

Abstract. The aim of this paper is to study periodic solutions of Mar-
chuk’s model, i.e. the system of ordinary differential equations with time
delay describing the immune reactions. The Hopf bifurcation theorem is
used to show the existence of a periodic solution for some values of the
delay. Periodic dynamics caused by periodic immune reactivity or periodic
initial data functions are compared. Autocorrelation functions are used to
check the periodicity or quasiperiodicity of behaviour.

1. Introduction. In 1980 Marchuk proposed ([13]) a mathematical
model of an infectious disease. It is a system of four (three in the simplified
form) differential equations with time delay. Although many papers study-
ing the properties of solutions were published (see [1–6, 8, 9, 14, 15, 17]),
several problems are still open. One of them is the existence of periodic solu-
tions of the model. Studying oscillations and periodicity in the models with
delay is a challenging problem (see e.g. [7, 10, 12]). In the present paper we
study Marchuk’s model with the immune reactivity coefficient depending on
time, as proposed in [3, 4] (in [13] it was assumed that, for small damage
of the organ-target, the immune reactivity coefficient α is constant). We
investigate the periodic dynamics of Marchuk’s model caused by different
reasons.

The first reason is Hopf bifurcation. Analytical and numerical results
presented in [8] and [9] suggest that if a solution of Marchuk’s model os-
cillates, then it has a limit equal to the positive stationary solution, which
describes the chronic form of a disease. In this paper we prove that a Hopf
bifurcation may occur. We consider the Hopf bifurcation with respect to

2000 Mathematics Subject Classification: 37C10, 34D05, 37G15.
Key words and phrases: Hopf bifurcation, periodicity, autocorrelation function, im-

mune system organ-target, antigen, antibody, plasma cell.

[113]



114 M. Bodnar and U. Foryś

the delay as bifurcation parameter. In such a case a non-trivial periodic
solution exists, for some values of parameters and delay.

The second reason of periodic dynamics is that the immune reactivity
coefficient is a periodic function of time. Fundamental properties of the
model with time-dependent immune reactivity were studied in [3, 4].

The next reason is initial data. If one investigates Marchuk’s model
with constant immune reactivity but with periodic initial functions, then
the solution may be periodic. This type of initial data has not been studied
earlier. The most typical initial data used in the literature (see [1–4, 8,
9, 14, 15]) is such that a healthy organism is infected by some dose of an
antigen at an initial time moment. Mathematically a healthy organism is
described by one of the stationary solutions (where the antigen is absent in
the organism).

We compare all these types of periodic dynamics using numerical simu-
lations.

1.1. Presentation of the model. Marchuk’s model is derived under the
assumptions presented in detail in [14]. We consider the case of small dam-
age of the organ-target. In this case Marchuk’s model is written as a system
of three ODEs with time delay.

The following notations are used:

1) V (t) is the antigen concentration at time t,
2) C(t) is the plasma cell concentration at time t,
3) F (t) is the antibody concentration at time t.

We consider two types of immune reactivity: constant reactivity (as
proposed in [13]) and periodic reactivity (as proposed in [3]). We study the
system

(1)





V̇ (t) = (β − γF (t))V (t)
Ċ(t) = α(t)V (t− τ)F (t− τ)− µc(C(t)− C∗)
Ḟ (t) = ̺C(t)− (µf + ηγV (t))F (t)

where:

• β is the antigen reproduction rate coefficient;
• γ is a coefficient expressing the probability of the antigen-antibody

meeting and their interactions;
• α(t) is the immune reactivity coefficient; α is a constant or a smooth

(at least C1) periodic function;
• τ is a constant delay of immune reaction;
• µc is the plasma cell coefficient, with µ−1

c equal to the mean plasma
cell lifetime;

• ̺ is the antibody production rate per one plasma cell;
• η is the rate of antibodies necessary to suppress one antigen;
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• µf is the antibody coeffcient, with µ−1
f equal to the mean antibody

lifetime;

and all coefficients are non-negative.
In this paper the model defined by (1) will be referred to as the MM.
We consider the MM with initial data (0,X0(t)), where

(2) X0(t) = (V 0(t), C0(t), F 0(t)), t ∈ [−τ, 0],

and V 0, C0, F 0 are given periodic functions of class C1, or

(3) X0(t) =

{
(0, C∗, F ∗) for t ∈ [−τ, 0),
(V0, C

∗, F ∗) for t = 0,

where F ∗ = ̺C∗/µf is the physiological level of antibodies and V0 is the
level of antigen concentration at the beginning of an infection.

2. Hopf bifurcation. In this section we assume that the immune
reactivity coefficient is constant. We apply the Hopf bifurcation theorem to
show the existence of a non-trivial periodic solution of the MM, for some
values of the parameters and the delay. We use the delay as a parameter
of bifurcation. Therefore, the periodicity is a result of changing the type
of stability—from a stable stationary solution to a limit cycle. The MM
can have two stationary solutions. The first one, (0, C∗, F ∗), describes the
healthy state of an organism. For this point a Hopf bifurcation cannot
occur, because the characteristic values are always real (see e.g. [2, 15]).
Such behaviour is possible for the second stationary solution of the MM,
which is

X = (V , C, F ) =

(
µcµf (β − γF ∗)

β(α̺− ηγµc)
,
αβµf − ηγ2µcC

∗

γ(α̺− ηγµc)
,
β

γ

)
.

This stationary solution describes the chronic form of disease (for details
see [8, 9]), and exists only if α̺ > ηγµc and β > γF ∗ or α̺ < ηγµc and
β < γF ∗.

First, we write the MM in the form useful to check the assumptions of
the Hopf bifurcation theorem (see e.g. [7] or [12]). Consider the equation

(4) ẋ(t) = L(α, xt) +G(α, xt),

where xt(h) = x(t+h), h ∈ [−τ, 0], α is a parameter, L is a linear operator, G
is continuous together with its first derivative, G(α, 0) = 0 and ∂G

∂xt

(α, 0) = 0
for every α.

Let

x(t) = (v(t), c(t), f(t)) = (V (t)− V ,C(t)− C,F (t)− F ).

Now, we can rewrite the MM using notation (4), where

L = (L1, L2, L3), G = (G1, G2, G3),
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and

(5)

L1(τ, vt, ct, ft) = −γV ft(0),

L2(τ, vt, ct, ft) = αFvt(−τ) + αV ft(−τ)− µcct(0),

L3(τ, vt, ct, ft) = ̺ct(0)− (ηγV + µf )ft(0) − ηγFvt(0),

G1(τ, vt, ct, ft) = −γvt(0)ft(0),

G2(τ, vt, ct, ft) = αvt(−τ)ft(−τ),

G3(τ, vt, ct, ft) = −ηγvt(0)ft(0).

It is obvious that L is linear, G is continuous together with its derivative (as a
polynomial of the second degree in xt(0) and xt(−τ)), G(τ, 0, 0, 0) = (0, 0, 0)
and ∂G

∂xt

(τ, 0, 0, 0) = (0, 0, 0).

Theorem 1. Assume that α̺ > ηγ(µc + β), β > γF ∗ + µc and µf is

sufficiently small. Then there exists τ0 > 0 such that the MM has a Hopf

bifurcation at τ0.

P r o o f. Calculating the characteristic function yields the quasipolyno-
mial

M(τ, λ) = −λ3 − aλ2 − bλ+ g(λ+ β)e−λτ ,

where

a = µc + µf + ηγV > 0, b = µcµf + (ηγµc − ηβγ)V ,

d = ηγβµcV > 0, g = α̺V > 0.

Let λ = x+ iy. We are looking for a pure positive imaginary characteristic
value. Then x = 0, y > 0 and

(6)

{
0 = Re(M(τ, y)) = ay2 + d+ gβ cos(yτ) + gy sin(yτ),
0 = Im(M(τ, y)) = y3 − by − gβ sin(yτ) + gy cos(yτ).

Now, let

(7) y0τ0 = π(2k + 1),

where k is an integer. In this case (6) takes the form

(8)

{
ay20 + d− gβ = 0,
y30 − by0 − gy0 = 0.

To have a positive solution of (8) one needs gβ − d > 0 and b + g > 0. If
α̺ > ηγµc + ηγβ, then both these inequalities are satisfied. Hence, if

(9)
gβ − d

a
= b+ g,

then (8) has a positive solution. Now (9) is equivalent to

(10) H(V ) = AV 2 +BV +D = 0,
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where

A = ηγ(α̺+ ηγµc − ηβγ),

B = ηγµcµf + (µc + µf )(α̺ + ηγµc − ηβγ)− β(α̺− ηγµc),

D = µcµf (µc + µf ).

One can calculate

∆ = B2 − 4AD,

and if µcµf = 0, then ∆ > 0 and B < 0. Therefore, there exist values of µf

such that ∆ > 0 and B < 0. Hence, (10) has a positive solution in this case.

If α̺ > ηγµc + ηγβ, β > γF ∗ + µc, and H(V ) = 0, then (8) has a
solution, and then (6) has a solution of the form (7). It is easy to see that
such a solution (τ0, y0) of (6) is unique for fixed τ0.

Let (τ0, y0) denote the unique solution of (6). Using the implicit function
theorem, one calculates dx

dτ
(τ) as

(11)
dx

dτ
(τ) =

∂F1

∂τ
(τ, x, y)∂F2

∂y
(τ, x, y) − ∂F2

∂τ
(τ, x, y)∂F1

∂y
(τ, x, y)

∂F2

∂x
(τ, x, y)∂F1

∂y
(τ, x, y) − ∂F1

∂x
(τ, x, y)∂F2

∂y
(τ, x, y)

,

where

M(τ, x+ iy) = F1(τ, x, y) + iF2(τ, x, y)

and

F1(τ, x, y) = − x3 + 3xy2 − ax2 + ay2 − bx+ d

+ e−xτg(x+ β) cos(yτ) + e−xτgy sin(yτ),

F2(τ, x, y) = − 3x2y + y3 − 2axy − by

− e−xτg(x+ β) sin(yτ) + e−xτgy cos(yτ).

The relevant derivatives at (τ0, 0, y0) are

∂F1

∂τ
(τ0, 0, y0) = −gy0β sin(y0τ0) + gy20 cos(y0τ0),

∂F2

∂y
(τ0, 0, y0) = 3y20 − b+ g(1 − βτ0) cos(y0τ0)− gy0τ0 sin(y0τ0),

∂F2

∂τ
(τ0, 0, y0) = −gy0β cos(y0τ0)− gy20 sin(y0τ0),

∂F1

∂y
(τ0, 0, y0) = 2ay0 + g(1− βτ0) sin(y0τ0) + gy0τ0 cos(y0τ0),

∂F1

∂x
(τ0, 0, y0) = 3y20 − b+ g(1 − βτ0) cos(y0τ0)− gy0τ0 sin(y0τ0),

∂F2

∂x
(τ0, 0, y0) = −2ay0 − g(1− βτ0) sin(y0τ0)− gy0τ0 cos(y0τ0).
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Therefore,

∂F1

∂y
(τ0, 0, y0) = −

∂F2

∂x
(τ0, 0, y0) and

∂F2

∂y
(τ0, 0, y0) =

∂F1

∂x
(τ0, 0, y0)

and then
∂F2

∂x
(τ0, 0, y0)

∂F1

∂y
(τ0, 0, y0)−

∂F1

∂x
(τ0, 0, y0)

∂F2

∂y
(τ0, 0, y0)

= −

(
∂F1

∂y
(τ0, 0, y0)

)2

−

(
∂F1

∂x
(τ0, 0, y0)

)2

≤ 0.

For the point (τ0, y0) one calculates

dx

dτ
(τ0) = −y20g

−3y20 + b+ g − 2aβ

y20(2a− gτ0)2 + (3y20 − b− g(1 − βτ0))2
.

Due to (10) we have 3y20 6= b+g−2aβ. Therefore, if τ0 6= 2a, then dx
dτ
(τ0) 6= 0

and this completes the proof of the existence of a Hopf bifurcation for the
MM.

Remark 1. Suppose β < γF ∗ and α̺ is sufficiently small. Then a Hopf

bifurcation with respect to τ cannot occur in the MM.

P r o o f. Consider the first equation of (6). If τ = 0, then

0 = Re(M(0, y)) = ay2 + d+ gβ,

and this equation has no positive solutions.
Comparing the functions

Φ(y) = ay2 + d+ gβ cos(yτ) and Ψ(y) = −gy sin(yτ),

for arbitrary τ, we see that Φ(y) ∈ [ay2 + d− gβ, ay2 + d+ gβ] and Ψ(y) ∈
[−gy, gy], for every y > 0. Therefore, if Φ(y) > Ψ(y) for every y > 0, then
there are no positive solutions of (6). Hence, if

(12) ay2 − gy + d− gβ > 0 for every y > 0,

then there are no solutions. Inequality (12) is equivalent to

(13) 4β(ηγµc − α̺)(µc + µf + ηγV ) > α2̺2V .

Inequality (13) holds only if α̺ < ηγµc, and then β < γF ∗.
Assume that α̺ = 0. In this case (13) takes the form

4ηγµc(βµc + γF ∗µf ) > 0,

which is obviously satisfied, and therefore, for sufficiently small values of α̺,
(6) has no solutions.

Remark 1 means that if the organism is weak (small α̺) and the anti-
gen reproduction rate β is small (i.e. β < γF ∗), then a Hopf bifurcation
cannot occur, independently of the magnitude of the delay. This is not
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surprising. In this case the stationary state X is not stable (see [2]), and
for a small initial value of the antigen the solution has a limit equal to the
stationary solution (0, C∗, F ∗), but for larger initial values of the antigen,
the concentration of the antigen increases to infinity in time (see [9]).

3. Periodic immune reactivity. In this section we show some in-
teresting numerical results about the behaviour of solutions of the MM for
periodic functions α. Our numerical methods are similar to those presented
in [11]. In order to use the values of the coefficients published in [2] and
[13], we define new variables, without changing the notation of the previous
section:

v =
V

VM

, c =
C

C∗
, f =

F

F ∗
,

where VM is the maximal value of the antigen concentration in the organism,
and therefore, v ≤ 1.

Fig. 1. Phase space of the MM for β = 1.2 and δ = 0.9

Fig. 2. Phase space of the MM for β = 1.16 and δ = 0.9

Let

γ1 = γF ∗, η1 = ηγVM , α1(t) =
α(t)F ∗VM

C∗
.
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In computations we use the immune reactivity of the form

α1(t) = αc

(
1 + δ sin

(
2π

τ
t

))
.

In the case of time-dependent immune reactivity, the MM has only one
stationary solution—the healthy state (0, C∗, F ∗) (see [3, 4]), but we have
calculated the solution in the neighbourhood of the second stationary state
X for an appropriate model with constant coefficient, i.e. α = αc. In the
paper we present the most interesting results of computations. One of such
results was observed for the coefficients

γ1 = 0.8, µF = 0.17, µC = 0.5, η1 = 8, αc = 1000,

and the time delay τ = 0.5 and β = 1.16 or β = 1.2.

The result for β = 1.16 and δ = 0.9 is presented in Fig. 2 as the phase
space of the MM.

For β = 1.2 and δ = 0.9 we have got a phase portrait which looks like a
ring or Möbius strip (see Fig. 1). In the second case it is possible that the

Fig. 3. Autocorrelation functions for solutions of MM for β = 1.2

Fig. 4. Autocorrelation functions for solutions of MM for β = 1.16
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dynamics is chaotic. In order to check it we calculate an autocorrelation
function (see [16]). Let the time average of the function f be given

fav = lim
T→+∞

1

T

T\
0

f(s) ds.

In [3] it was shown that this limit exists for the strong immune system,
i.e. for large values of α̺ (and then β > γF ∗). Now, we calculate the
autocorrelation function for f using the formula

af (t) = lim
T→+∞

1

T

T\
0

f̂(s+ t)f̂(s) ds,

where f̂(s) = f(s) − fav. The autocorrelation functions for v and c are
also calculated using similar expressions (averages for v and c are calculated
only numerically). In Figs. 3, 4 we can see the results. The autocorrelation
function for v is presented as a line, for c as “line-space-line” and for f as
“line-dot”. The regular behaviour of the autocorrelation functions suggests
that the dynamics is periodic or quasiperiodic.

3.1. Symmetric solutions for symmetric α(t). Now, we compare solutions
of the MM for symmetric functions α, i.e. we consider the function α of the
form

α+(t) = αc(1 + α0(t)) and α−(t) = αc(1− α0(t)),

where α0 is periodic, i.e. α0(t)=α0(t+T ) for some T > 0, and
TT
0
α0(s) ds=0

(for example α0(t) = sin t, T = 2π).

Let v(t) = V (t), c(t) = C(t) − C∗, f(t) = F (t) − F ∗. Then (0, 0, 0) is
the unique stationary solution of the model with time-dependent immune
reactivity (see [3, 4]). Linearizing the MM around this point yields

(14)





v̇(t) = (β − γF ∗)v(t),
ċ(t) = −µcc(t) + α(t)F ∗v(t− τ),
ḟ(t) = ̺c(t)− µff(t)− ηγF ∗v(t).

Therefore,

v(t) = V0e
(β−γF∗)t = V0e

β1t,

where β1 = β − γF ∗, and

c(t) = V0F
∗e−µct

t\
0

α(s)e(β1+µc)s ds.

Now, denote by (v(t), c(t), f(t)) the solution for the constant coefficient
α = αc, by (v(t), c+(t), f+(t)) the solution for α+, and by (v(t), c−(t), f−(t))
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Fig. 5. The difference between the antigen coefficients of solutions of the autonomous and
noautonomous models (left: δ = 0.9, right: δ = −0.9)

Fig. 6. The difference beetween the plasma cell coefficients of the solution of the au-
tonomous and noautonomous models (left: δ = 0.9, right: δ = −0.9)

Fig. 7. The difference between the antibody coefficients of solutions of the autonomous
and noautonomous models (left: δ = 0.9, right: δ = −0.9)
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the solution for α−. Then

c+(t)− c(t) = V0F
∗e−µct

t\
0

α0(s)e
(β1+µc)s ds,

and

c−(t)− c(t) = −(c+(t)− c−(t)).

It is obvious that the functions f+ and f− are also symmetric, i.e.

f−(t)− f(t) = −(f+(t)− f(t)).

In the case of the MM the function C can also be calculated as a func-
tional of V. Integrating by parts (as in [9]) yields

C(t) = C∗ +
1

γ

[
e−µct

t\
0

V (s− τ)eµcs(µc + β + α̇(s)) ds

+ V0e
−µcte−β1τα(0) − V (t− τ)α(t)

]
.

Assume that V (t) behaves as in the linear case. Then

(15) c(t) =
V0e

−β1τ

γ

[
e−µct

t\
0

e(β1+µc)s(µc + β + α̇(s)) ds

+ α(0)e−µct − α(t)eβ1t
]
.

Hence

c+(t)− c(t)

=
V0e

−β1τ

γ

[
e−µct

t\
0

e(β1+µc)sαcα̇0(s) ds + αcα0(0)e
−µct − αcα0(t)e

−β1t
]

and again

c−(t)− c(t) = −(c+(t)− c(t)), f−(t)− f(t) = −(f+(t)− f(t)).

Our computer simulations (see Figs. 5–7) show that every relevant
coefficient of the solution of the MM for α+(t) = αc(1 + δ sin(2π

τ
t)) and

α−(t) = αc(1− δ sin(2π
τ
t)), δ = const, is symmetric.

4. Periodic initial conditions. In this section we study the behaviour
of solutions of the MM for periodic initial conditions and constant immune
reactivity α. We use the following initial functions:

ϕi(t) = xi

(
1 + ai sin

(
2πt

biτ

))
, i = v, c, f,

where x = (x1, x2, x3) = (v, c, f) denotes the chronic stationary solution of
the MM.
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Our simulations show that the periodicity of the solution is the result of
the periodicity of ϕf and ϕv. The periodicity of ϕc has no influence on the
periodicity of the solutions.

Fig. 8. The solution of the MM for av = ac = af = 0.8

Fig. 9. The solution of the MM for av = ac = af = 0.8

Fig. 10. The solution of the MM for av = af = 0.8 and ac = 0

In Fig. 8 we can see the behaviour of the solution of the MM when
every initial function is periodic. In Fig. 9 we can see the same solution
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Fig. 11. The solution of the MM for av = 0.8 and ac = af = 0

but in a longer time interval. Let us compare Fig. 8 and Fig. 10 which
shows the behaviour of solutions of the MM for the initial condition with
av = 0.8, af = 0.8 and ac = 0. We see that these figures are almost identical.
This is not surprising, because the periodicity of ϕv and ϕf implies the
periodic behaviour of c on the interval [0, τ ], and later the behaviour should
be periodic, too.

In Fig. 11 we present the solution of MM when only ϕv is periodic.
What is now surprising is that the periodic dynamics of ϕv produces the
periodicity of c and f, but v reaches the stationary value v very fast.
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