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COMPLEMENTARY ANALYSIS OF THE

INITIAL VALUE PROBLEM

FOR A SYSTEM OF O.D.E. MODELLING THE

IMMUNE SYSTEM AFTER VACCINATIONS

Abstract. Complementary analysis of a model of the human immune
system after a series of vaccinations, proposed in [7] and studied in [6], is
presented. It is shown that all coordinates of every solution have at most
two extremal values. The theoretical results are compared with experimental
data.

1. Introduction. In this paper, we prove the theorem which was pre-
sented in [6] without proof. The model proposed in [7] and studied in [6],
and in this paper, is a modification of Marchuk’s model ([1], [11], [12]) of the
immune system. High concentration of antibodies after a series of vaccina-
tions is taken into account. The idea of modifications to Marchuk’s model
is based on the simple one-dimensional model proposed in [2]. Immune
processes in such a physical situation were described in [8]–[10].

Let V (t), C(t), F (t) denote the concentrations of antigens, plasma cells
and antibodies, respectively, at time t. We study the model

(1)





V̇ = −γFV,
Ċ = αV F − µc(C − C∗),
Ḟ = ̺C − µfF − ν(F − F ∗)2 − ηγV F,

with non-negative coefficients. The interpretation of the equations and co-
efficients is the following:

• The antigens injected in vaccination are not able to reproduce. There-
fore, the number of antigens depends only on the suppression by antibodies.

1991 Mathematics Subject Classification: 34C35, 34D05, 34A50.
Key words and phrases: antigen, antibody, plasma cell, B-cell, VT-complex, lympho-

cyte, ordinary differential equations, phase space, stationary state, stability.

[103]
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• γ is a coefficient expressing the probability of the antigen-antibody
meeting and their interactions.

• Stimulation of B-cells (which are some kind of immune cells) by VT-
complexes (which are structures built on the basis of antigens and lympho-
cytes) is a trigger of the plasma cell production process (to simplify the
model, it is assumed that the VT-complex rate depends on the number of
antigen-antibody meetings).

• α is an immune process stimulation coefficient.

• The plasma cell production decreases with the increasing deviation
from the physiological level, denoted by C∗.

• µc is a plasma cell coefficient, with µ−1
c equal to the mean plasma cell

lifetime.

• In normal physical situation, the number of antigens depends on their
production rate and death due to immune processes and natural ageing.

• ̺ is the antibody production rate per plasma cell.

• η is the rate of antibodies necessary to suppress one antigen.

• µf is an antibody coefficient, with µ−1
f equal to the mean antibody

lifetime.

• In the situation considered in this paper, there is a very high level of
antibodies in the organism. This causes additional mortality of antibodies.

• ν is a coefficient of additional mortality of antibodies.

The model defined by (1) with the initial condition (V0, C0, F0),

V0 ≥ 0, C0 ≥ C∗, F0 ≥ 0,

will be referred to as VCN (see [7]). We assume that

(2) 2νF ∗ < µf ,

where F ∗ = ̺C∗/µf is the physiological level of antibodies. (2) means that
the density coefficient ν is small compared with the antibody coefficient µf

(and it is the real situation). We also assume that

(3) α̺ > ηγµc,

which means that the immune system is efficient. For example, (3) is satis-
fied in the case of large immune process stimulation coefficient.

Define

κ = α̺− ηγµc.

By (3), κ > 0.

2. Qualitative analysis. Setting

c(t) = C(t)− C∗, φ(t) = F (t)V (t)
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yields

(4)





V̇ = −γφ,
ċ = αφ− µcc,
Ḟ = ̺c− µf (F − F ∗)− ν(F − F ∗)2 − ηγφ.

In [7], it was proved that

• there exists a unique and non-negative solution of VCN, for every t > 0;
• if (2) and (3) hold, then VCN has a unique stationary state.

Let X = (0, C∗, F ∗) denote the unique stationary state of VCN. It was
also proved that every solution X(t) of VCN has a limit as t → ∞, and

lim
t→∞

X(t) = X.

In [6], we presented a preliminary analysis of the phase space (F, c) of
(4). In the case of solutions of VCN, the functions F and c are functionals
of V (t) (see [4], [5]). We know that (see [6], [7])

V (t) → 0 as t → ∞.

Let I1 and I2 denote the isoclines at time t. Then

I1 =

{
(F, c) : c =

αV

µc

F

}
,(5)

I2 =

{
(F, c) : c =

1

̺
[ν(F − F ∗)2 + µf (F − F ∗) + ηγV F ]

}
.(6)

The isoclines I1 and I2 have one common point (F, c), for every t > 0.
Let R1, R2, R3, R4 denote the regions limited by the curves I1, I2 and

the lines c = 0, F = 0, as in Figure 1.

Fig. 1. VCN phase space
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Let Γ (t) denote an arbitrary trajectory of VCN, i.e.

Γ (t) = {(F (t), c(t)) : t ≥ 0}.

In [6], it was proved that only some kinds of behaviour of Γ are possible:

• Γ can pass from R3 to R4.
• Γ can pass from R3 to R2.
• Γ can pass from R2 to R1.
• Γ can pass from R1 to R2.
• Γ can pass from R1 to R4.
• Γ can pass from R4 to R1.
• If Γ passes from R2 to R1, then it cannot return to R2.

Now, we prove the following

Theorem 1. If the trajectory Γ passes from the region R1 to R4, then
it cannot return to R1.

P r o o f. Assume that the trajectory passes from R1 to R4, and next
returns to R1. Then there exists an interval (t0, t) such that Γ (t) ∈ R4 for
t ∈ (t0, t), Γ (t) ∈ R1 for t < t0, and Γ (t0) ∈ I2, Γ (t) ∈ I2. In this case,

F (t) ≥ F , c(t) ≥ c.

Assume that F (t) = F and c(t) = c. The functions V (t), c(t), F (t) are
decreasing on the interval (t0, t), and

(7)

V (t0) > V (t) > V (t),

c(t0) > c(t) > c,

F (t0) > F (t) > F.

Therefore,

c = c(t0)e
−µc(t−t0) + αe−µct

t\
t0

eµcsV (s)F (s) ds

> c(t0)e
−µc(t−t0) +

α

µc

V (t)F (1 − e−µc(t−t0)).

The point (F , c) is in I1, hence c = α
µc

V (t)F. Therefore, c > c(t0), which

contradicts (7).
Now, assume that F (t) > F and c(t) > c. We show that there exists an

interval (t̂, t) on which

(8) Ḟ ≤
κ

αµc

ċ.

The definitions of t0, t are such that F has a local maximum at t0, and a
local minimum at t. Therefore, F̈ (t0) ≤ 0 and F̈ (t) ≥ 0. Hence, there exists
t1 ∈ (t0, t) such that
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F̈ (t1) = 0, F̈ (t)

{
≥ 0 for t ∈ [t1, t],
≤ 0 for t < t1.

This means that F̈ is increasing at t1, and then

(9)
d3F

dt3
(t1) ≥ 0.

One has

0 ≤ F̈ (t) = ̺ċ− ηγφ̇− µf Ḟ − 2ν(F − F ∗)Ḟ for t ∈ [t1, t].

Therefore,

Ḟ ≤
̺ċ− ηγφ̇

µf + 2ν(F − F ∗)
.

To show (8), one needs to compare ċ and φ̇. Assume that

(11) c̈(t1) ≤ 0.

Then

d3F

dt3
(t1) = ̺c̈(t1)− ηγφ̈(t1)− µf F̈ (t1)− 2ν(Ḟ (t1))

2(12)

− 2ν(F (t1)− F ∗)F̈ (t1)

< − ηγφ̈(t1)

= − ηγ[V̈ (t1)F (t1) + 2V̇ (t1)Ḟ (t1) + V (t1)F̈ (t1)]

= − ηγ[−γF (t1)(V̇ (t1)F (t1) + V (t1)Ḟ (t1)) + 2V̇ (t1)Ḟ (t1)].

The functions V and F are decreasing at t1, hence (12) implies that

d3F

dt3
(t1) < 0,

which contradicts (9).
Therefore, c̈(t1) > 0. We show that

(13) c̈(t) > 0 for t ∈ [t1, t].

If not, then there exists t2 ∈ (t1, t) such that c̈(t2) = 0 and c̈(t) > 0 for
t ∈ [t1, t2). Hence the function c̈(t) decreases at t2, i.e.

(14)
d3c

dt3
(t2) ≤ 0.

But

d3c

dt3
(t2) = αφ̈(t2)(15)

= α[V̈ (t2)F (t2) + 2V̇ (t2)Ḟ (t2) + V (t2)F̈ (t2)]

= α[−γF (t2)(V̇ (t2)F (t2) + V (t2)Ḟ (t2))

+ 2V̇ (t2)Ḟ (t2) + V (t2)F̈ (t2)].
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Since V̇ (t2) < 0, Ḟ (t2) < 0 and F̈ (t2) ≥ 0, we have

d3c

dt3
(t2) > 0,

which contradicts (14). Hence such a t2 does not exist, and c̈(t) > 0 for
t ∈ [t1, t], which implies that

α

µc

φ̇ > ċ.

Using (10), we obtain

Ḟ ≤
κ

α
(µf + 2ν(F − F ∗)).

Therefore, (8) is satisfied, and then

Ḟ (t) <
κ

α
ċ(t) < 0,

which contradicts the assumption that F has a minimum at t.
Hence such a t does not exist, and the trajectory Γ stays in R4.

3. Conclusions and applications. The propositions of [6] and Theo-
rem 1 prove that there are only five possible types of behaviour of solutions
of VCN:

1. F is decreasing, C has one maximum.
2. F has one minimum and one maximum, C has one maximum.
3. F has one maximum, C has one minimum and one maximum.
4. F is increasing, C has one minimum and one maximum.
5. F has one minimum, C has one maximum.

Only types 1 and 2 concern the case F0 > F ∗, i.e. describe the behaviour
after a series of vaccinations. There are exactly two types of behaviour
which are observed after a series of vaccinations—either the concentration
of antibodies decreases to F ∗, or it reaches its maximal value and next
decreases.

In [7], we have compared solutions of VCN with the experimental data
published in [8]. Now, it occurs that one can better fit the solution to those
data.

In the case of vaccinations, VCN reduces to the following model (for
details see [7]):

(16) ċ = −µcc, ḟ = ̺c− µff − νf2,

where c = C − C∗, f = F − F ∗.
We compare solutions of the VCN with the following experimental data.

Let ti denote the months after the last vaccination when the levels of anti-
bodies were measured, and Fi denotes the values of measurements (in %).
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TABLE 1. Parameters for (16) that yield a local minimum of mean-square error between
the solution of this system and experimental data

Parameter Value

̺ 0.32609
µc 0.005509
µf 0.100309
ν 0.001991

TABLE 2. Comparison between experimental data Fi and the solution f(ti) of (16) for
estimated parameters (see Table 1)

ti Fi f(ti) Error

0 100 100 0
17 8.91 8.753663 0.156337
24 4.91 5.351945 0.441945
36 3.72 3.304686 0.415314
48 2.62 2.6704 0.0504
81 2.04 2.108001 0.068001

Then the solution of (16) with parameters shown in Table 1 leads to the
result and local errors shown in Table 2 and Figures 2, 3, and to the global
error ∑

i

(Fi − f(ti))
2 = 0.399407.

time (months)f(t)(%) 100806040200
1009080706050403020100

Fig 2. Comparison between experimental data and the solution of (16) on the interval
[0, 100]

This quality of approximation has been attained by first fitting the an-
alytical solution of (16) with fixed ̺ = 0 to experimental data. Then pa-
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rameters calculated in this way were used as a starting point to looking for
better fit when ̺ 6= 0. To solve numerically general equations (16) we used
the CVODE package [3].

time (months)f(t)(%) 80706050403020
1110987654321

Fig. 3. Comparison between experimantal data and the solution of (16) on the interval
[10, 90]
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