
APPLICATIONES MATHEMATICAE

27,1 (2000), pp. 67–79

R. RUDNICKI (Katowice)

MARKOV OPERATORS: APPLICATIONS TO

DIFFUSION PROCESSES AND POPULATION DYNAMICS

To the memory of Wies law Szlenk

Abstract. This note contains a survey of recent results concerning asymp-
totic properties of Markov operators and semigroups. Some biological and
physical applications are given.

1. Introduction. Dynamical systems and dynamical systems with
stochastic perturbations can be effectively studied using Markov operators
and Markov semigroups. Semigroups of Markov operators are generated by
partial differential equations (transport equations). Equations of this type
appear in the theory of diffusion processes and in population dynamics. In
this note we present new results in the theory of Markov operators and
illustrate them by some biological and physical applications. The results
presented are based on the papers [16–18, 22].

The organization of the paper is as follows. Section 2 contains the defi-
nitions of a Markov operator and a Markov semigroup and some examples
of them. In the next section we study asymptotic properties of Markov op-
erators and semigroups: asymptotic stability and sweeping. Theorems con-
cerning asymptotic stability and sweeping allow us to formulate the Foguel
alternative. This alternative says that under suitable conditions a Markov
operator (semigroup) is asymptotically stable or sweeping. Then we define
a new notion called a Hasminskĭı function. This notion is very useful in
proofs of asymptotic stability of Markov semigroups. In Section 4 we give
some applications of the general results to differential equations connected
with diffusion and jump processes.
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2. Markov operators and semigroups

2.1. Definitions. Let the triple (X,Σ,m) be a σ-finite measure space.
Denote by D the subset of the space L1 = L1(X,Σ,m) which contains all
densities

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}.

A linear mapping P : L1 → L1 is called a Markov operator if P (D) ⊂ D.
A family {P (t)}t≥0 of Markov operators which satisfies conditions

(a) P (0) = Id,
(b) P (t+ s) = P (t)P (s) for s, t ≥ 0,
(c) for each f ∈ L1 the function t 7→ P (t)f is continuous

is called a Markov semigroup.

2.2. Markov operators. Now we give some examples of Markov opera-
tors.

1. Frobenius–Perron operator. This operator describes statistical prop-
erties of simple point to point transformations [10]. Let (X,Σ,m) be a
σ-finite measure space and let S be a transformation of X. If a measure µ
describes the distribution of points in the phase space X, then the measure
ν given by ν(A) = µ(S−1(A)) describes the distribution of points after S.
Assume that S is non-singular, that is, if m(A) = 0 then m(S−1(A)) = 0.
If µ is absolutely continuous with respect to m, then ν is also absolutely
continuous. If f is the density of µ and if g is the density of ν then we define
the operator PS by PSf = g. This operator can be extended to a linear
operator PS : L1 → L1. In this way we obtain a Markov operator which is
called the Frobenius–Perron operator for the transformation S.

2. Iterated function system. Let S1, . . . , Sn be non-singular transforma-
tions of the space X. Let P1, . . . , Pn be the Frobenius–Perron operators cor-
responding to the transformations S1, . . . , Sn. Let p1(x), . . . , pn(x) be non-
negative measurable functions defined on X such that p1(x)+. . .+pn(x) = 1
for all x ∈ X. We consider the following process. Take a point x. We choose
a transformation Si with probability pi(x) and Si(x) describes the position
of x after the action of the system. The evolution of densities of the distri-
bution is described by the Markov operator

Pf =

n
∑

i=1

Pi(pif).

3. Integral operator. If k : X × X → [0,∞) is a measurable function
such that \

X

k(x, y)m(dx) = 1
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for each y ∈ X, then

Pf(x) =
\
X

k(x, y)f(y)m(dy)

is a Markov operator.

Now we give an example of integral Markov operator which appears in a
model of cell cycle proposed by J. Tyrcha [26] which generalizes the model
of Lasota–Mackey [11] and the tandem model of Tyson–Hannsgen [27].

In the Tyrcha model it is assumed that the cell cycle consists of two
phases A and B. Phase A begins at birth and lasts until the occurrence of a
critical event which is necessary for mitosis. Then cell enters phase B. The
end of phase B coincides with cell division. The duration tB of phase B
is constant, while the length tA of phase A is random. More precisely, the
probability that the critical moment occurs in the interval [t, t+∆t] equals

Prob(t ≤ tA ≤ t+∆t | tA ≥ t) = ϕ(x(t))∆t + o(∆t)

where x(t) is the size (or amount of mitogen) of cell at time t and ϕ is a
given non-negative function. Further, it is assumed that the cell size grows
according to the equation

(2.1)
dx

dt
= g(x), x(0) = r

where g(x) > 0 for x > 0 and g(0) = 0. Denote by xn the initial size of
cell in the nth generation. Evidently, xn can be considered as a random
variable. Using the above assumptions it can be shown that

(2.2) xn+1 = λ−1{Q−1[Q(xn) + ξn ]}

where

Q(x) =

x\
0

ϕ(y)

g(y)
dy, λ(x) = π(−tB, 2x)

and π(t, r) is the solution of equation (2.1). The random variables ξn are
independent and have the common distribution function Prob(ξn < x) =
H(x). An elementary calculation shows that the transition operator for the
dynamical system (2.2) has the form

(2.3) Pf(x) =

λ(x)\
0

∂

∂x
{H(Q(λ(x)) −Q(y))}f(y) dy.

We assume that Q, H, and λ are absolutely continuous, non-decreasing and

lim
x→∞

Q(x) = lim
x→∞

λ(x) = ∞, λ(0) = 0.

These conditions imply that P is an integral Markov operator on L1([0,∞)).
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2.3. Markov semigroups

4. Fokker–Planck equation. In the d-dimensional space R
d the Fokker–

Planck equation has the form

(2.4)
∂u

∂t
=

d
∑

i,j=1

∂2(aij(x)u)

∂xi∂xj

−
d

∑

i=1

∂(bi(x)u)

∂xi

, u(x, 0) = v(x).

We assume that the functions aij and bi are sufficiently smooth and

d
∑

i,j=1

aij(x)λiλj ≥ α|λ|2

for some α > 0 and every λ ∈ R
d and x ∈ R

d. The solution of this equation
describes the distribution of a diffusion process. This equation generates a
Markov semigroup given by P (t)v(x) = u(x, t), where v(x) = u(x, 0).

5. Liouville equation. If we assume that aij ≡ 0 in (2.4), then we obtain
the Liouville equation

(2.5)
∂u

∂t
= −

d
∑

i=1

∂

∂xi

(

bi(x)u
)

.

As in the previous example, (2.5) generates a Markov semigroup given by
P (t)v(x) = u(x, t), where v(x) = u(x, 0). This equation has the following
interpretation. In the space R

d we consider the movement of points given
by the differential equation

x′(t) = b(x(t)), x(0) = x0.

We assume that this problem has a unique solution defined for all t. We look
at this movement statistically, that is, we consider the evolution of densities
of the distribution of points. Then this evolution is described by (2.5).

6. Randomly flashing diffusion. Consider the stochastic equation

(2.6) dXt = (Ytσ(Xt))dWt + b(Xt)dt,

where Yt is a homogeneous Markov process with values 0 and 1 indepen-
dent of Wt and X0. Equation (2.6) describes the process which randomly
jumps between stochastic and deterministic states. Such processes appear
in transport phenomena in sponge-type structures [1, 4, 12]. This process
also generates a Markov semigroup but on the space L1(R × {0, 1}). The
density of the distribution of this process satisfies the following system of
equations:
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(2.7)















∂u1

∂t
= −pu1 + qu0 +

∂2

∂x2
(a(x)u1)−

∂

∂x
(b(x)u1),

∂u0

∂t
= pu1 − qu0 −

∂

∂x
(b(x)u0).

In a similar way we can introduce the notion of a multistate diffusion
process [22] and check that it generates a Markov semigroup. The density of
the distribution of a two-state diffusion process corresponds to the following
system of equations:

(2.8)















∂u1

∂t
= −p(x)u1 + q(x)u0 +A1u1,

∂u0

∂t
= p(x)u1 − q(x)u0 +A0u0,

where the operators A1 and A0 are the right-hand sides of a Fokker–Planck
or a Liouville equation.

7. Transport equations. If the equation ∂u
∂t

= Au generates a Markov
semigroup, P is a Markov operator, and λ > 0, then the equation

(2.9)
∂u

∂t
= Au− λu+ λPu

also generates a Markov semigroup. Equations of this type appear in such
diverse areas as population dynamics [13, 15], in the theory of jump pro-
cesses [19, 25], and in astrophysics—where they describe the fluctuations in
the brightness of the Milky Way [5]. For instance, the operator P can be
the Frobenius–Perron operator corresponding to some transformation S. If
we have a movement of points described by an ordinary differential equa-
tion x′ = b(x) and we assume that points can randomly jump from x to
S(x), with probability ∆t in a time interval of length ∆t, then a density of
distribution of these points satisfies (2.9) with the operator A given by

Au = −

d
∑

i=1

∂

∂xi

(bi(x)u).

In this case P is a Markov operator which describes the jumps of points.

Time and size dependent models of populations can be described by a
transport equation of the form (2.9), namely

(2.10)
∂u

∂t
+

∂(V (x)u)

∂x
= −u(x, t) + Pu(x, t).

Here the function V (x) is the velocity of the growth of the size of a cell and
P is a Markov operator describing the process of replication. If we assume
that the size of a daughter cell is exactly half of the size of the mother
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cell, then Pf(x) = 2f(2x). If we consider unequal division then P is some
integral operator.

It is interesting that more advanced models of population dynamics lead
to equations similar to (2.10), but instead of the operator P − I on the
right-hand side of (2.10) appears a nonbounded linear operator Q (see e.g.
[6]). Also these equations often generate Markov semigroups [24].

3. Asymptotic properties of Markov operators and semigroups.

Now we introduce some notions which characterize the behaviour of Markov
semigroups {P (t)}t≥0 as t → ∞ and powers of Markov operators Pn as
n → ∞. Since the powers of Markov operators also form a (discrete time)
semigroup we will consider only Markov semigroups.

3.1. Asymptotic stability. Consider a Markov semigroup {P (t)}t≥0.
A density f∗ is called invariant if P (t)f∗ = f∗ for each t > 0. The Markov
semigroup {P (t)}t≥0 is called asymptotically stable if there is an invariant
density f∗ such that

lim
t→∞

‖P (t)f − f∗‖ = 0 for f ∈ D.

If the semigroup {P (t)}t≥0 is generated by some differential equation then
asymptotic stability means that all solutions of the equation starting from
a density converge to the invariant density.

In order to formulate the main result of this section we need an auxiliary
definition. A Markov semigroup {P (t)}t≥0 is called partially integral if there
exist t0 > 0 and a measurable nonnegative function q(x, y) such that

(3.1)
\
X

\
X

q(x, y)m(dx)m(dy) > 0

and

(3.2) P (t0)f(x) ≥
\
q(x, y)f(y)m(dy) for every f ∈ D.

The main result of this part is

Theorem 1 [22]. Let {P (t)}t≥0 be a partially integral Markov semigroup.

Assume that {P (t)}t≥0 has an invariant density f∗ and has no other periodic

points in the set of densities. If f∗ > 0 then {P (t)}t≥0 is asymptotically

stable.

Now we formulate a corollary which is often used in applications. Let f
be a measurable function. The support of f is defined up to a set of measure
zero by the formula

supp f = {x ∈ X : f(x) 6= 0}.
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We say that a Markov semigroup {P (t)}t≥0 spreads supports if for every set
A ∈ Σ and for every f ∈ D we have

lim
t→∞

m(suppP (t)f ∩A) = m(A).

Corollary 1 [22]. A partially integral Markov semigroup which spreads

supports and has an invariant density is asymptotically stable.

This corollary generalizes some earlier results [2, 14, 20, 21] for integral
Markov semigroups. The proof bases on the abstract theory of Markov
semigroups given in the book [7]. Another proof of Theorem 1 is given
in [3].

Corollary 1 remains true also for the Frobenius–Perron operators. Pre-
cisely, let S be a double-measurable transformation of a probabilistic mea-
sure space (X,Σ,m). If S preserves the measure m and the Frobenius–
Perron operator PS spreads supports, then the powers of PS are asymp-
totically stable [22]. It is interesting that if we assume only that a Markov
operator (or semigroup) P has an invariant density f∗ and spreads supports,
then P is weakly asymptotically stable (mixing). It means that for every
f ∈ D the sequence Pnf converges weakly to f∗. One can expect that we
can omit in Corollary 1 the assumption that the semigroup is partially inte-
gral. But then it is not longer true. Indeed, in [23] we construct a Markov
operator P : L1[0, 1] → L1[0, 1] which spreads supports and P1 = 1 but
which is not asymptotically stable.

3.2. Sweeping. A Markov semigroup {P (t)}t≥0 is called sweeping with
respect to a set A ∈ Σ if for every f ∈ D,

(3.3) lim
t→∞

\
A

P (t)f(x)m(dx) = 0.

The notion of sweeping was introduced by Komorowski and Tyrcha [9].
The crucial role in theorems concerning sweeping is played by the following
condition. We say that a Markov semigroup {P (t)}t≥0 and a set A ∈ Σ
satisfy condition (KT) if there exists a measurable function f∗ such that:
0 < f∗ < ∞ a.e., P (t)f∗ ≤ f∗ for t ≥ 0, f∗ /∈ L1 and

T
A
f∗ dm < ∞.

Theorem 2 [9]. Let {P (t)}t≥0 be an integral Markov semigroup which

has no invariant density. Assume that the semigroup {P (t)}t≥0 and a set

A ∈ Σ satisfy condition (KT). Then {P (t)}t≥0 is sweeping with respect

to A.

In the paper [22] it was shown that Theorem 2 holds for a wider class of
operators than integral ones. In particular, the following result was proved:

Theorem 3. Let {P (t)}t≥0 be a Markov semigroup which has no invari-

ant density and spreads supports. Assume that {P (t)}t≥0 and a set A ∈ Σ
satisfy condition (KT). Then {P (t)}t≥0 is sweeping with respect to A.
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The main difficulty in applying Theorems 2 and 3 is to prove that a
Markov semigroup satisfies condition (KT). Now we formulate a new crite-
rion for sweeping which will be useful in applications.

Theorem 4 [22]. Let X be a metric space, and Σ be the σ-algebra of

Borel sets. We assume that a Markov semigroup {P (t)}t≥0 spreads supports

and for every y0 ∈ X there exist ε > 0 and a measurable function η ≥ 0
such that

T
η dm > 0 and

q(x, y) ≥ η(x)1B(y0, ε)(y),

where q is a function satisfying (3.1) and (3.2). If {P (t)}t≥0 has no invari-

ant density then it is sweeping with respect to compact sets.

3.3. Foguel alternative. We say that a Markov semigroup {P (t)}t≥0

satisfies the Foguel alternative if it is asymptotically stable or sweeping from
a sufficiently large family of sets. For example, this family can be all compact
sets.

From Corollary 1 and Theorem 4 we immediately get

Theorem 5. Let X be a metric space, and Σ be the σ-algebra of Borel

sets. Let {P (t)}t≥0 be a Markov semigroup. We assume that there exist

t > 0 and a continuous function q : X ×X → (0,∞) such that

(3.4) P (t)f(x) ≥
\
X

q(x, y)f(y)m(dy) for f ∈ D.

Then this semigroup is asymptotically stable or is sweeping with respect to

compact sets.

Using Theorem 5 one can check that the Foguel alternative holds for
multistate diffusion processes [12, 17, 22], diffusion with jumps [18] and
transport equations (2.9) [16].

More general results concerning the Foguel alternative can be found in
[22]. These results were applied to the Markov operator P from the cell cycle
model (2.3). We find that if H ′(x) is a continuous and positive function then
P satisfies the Foguel alternative: it is asymptotically stable or sweeping
from bounded sets [21, 22].

3.4. Hasminskĭı function.Now we consider only continuous time Markov
semigroups. Sometimes we know that a given semigroup satisfies the Foguel
alternative. We want to prove that this semigroup is asymptotically stable.
In order to exclude sweeping we introduce a new notion called a Hasminskĭı
function.

Consider a Markov semigroup {P (t)}t≥0 and let A be the infinitesimal
generator of {P (t)}t≥0. Let R = (I − A)−1 be the resolvent operator at
the point 1. A measurable function V : X → [0,∞) is called a Hasminskĭı
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function for the Markov semigroup {P (t)}t≥0 and a set Z ∈ Σ if there exist
M > 0 and ε > 0 such that

(3.5)
\
X

V (x)Rf(x) dm(x) ≤
\
X

(V (x)− ε)f(x) dm(x) +
\
Z

MRf(x) dm(x).

Theorem 6. Let {P (t)} be the Markov semigroup generated by the equa-

tion
∂u

∂t
= Au.

Assume that there exists a Hasminskĭı function for the semigroup {P (t)}t≥0

and a set Z. Then {P (t)} is not sweeping with respect to Z.

In application we take V such that the function A∗V is “well defined”
and it satisfies the condition A∗V (x) ≤ −c < 0 for x /∈ Z. Then we check
that V satisfies inequality (3.5). This method was applied to multistate
diffusion processes [17] and diffusion with jumps [18], where (3.5) was proved
by using some generalization of the maximum principle. This method was
also applied to transport equations (2.9) in [16] but the proof of (3.5) is
different and it bases on approximation of V by a sequence of elements from
the domain of the operator A∗.

The function V was called a Hasminskĭı function because he showed [8]
that the semigroup generated by the Fokker–Planck equation (2.4) has an
invariant density if there exists a positive function V such that A∗V (x) ≤
−c < 0 if ‖x‖ ≥ r.

4. Applications

4.1. The Fokker–Planck equation. The Markov semigroup generated by
the Fokker–Planck equation is an integral semigroup. That is,

P (t)f(x) =
\
Rd

q(t, x, y)f(y) dy, t > 0,

and the kernel q is continuous and positive. The Foguel alternative implies

Corollary 2. Let {P (t)}t≥0 be a Markov semigroup generated by the

Fokker–Planck equation. Then this semigroup is asymptotically stable or is

sweeping with respect to compact sets.

It is easy to check that if this semigroup is not asymptotically stable,
then it is sweeping with respect to the family of sets with finite Lebesgue
measures.

In the case of the Fokker–Planck equation the operator A∗ is given by

A∗V =
d

∑

i,j=1

aij
∂2V

∂xi∂xj

+
d

∑

i=1

bi
∂V

∂xi

.
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If there exist a non-negative C2-function V , ε > 0 and r ≥ 0 such that

A∗V (x) ≤ −ε for ‖x‖ ≥ r

then the Markov semigroup generated by the Fokker–Planck equation is
asymptotically stable.

Since a lot of transport equations generate a partially integral semigroup
which spreads supports we can obtain similar results for these equations.

4.2. Diffusion with jumps. Consider the equation

(4.1)
∂u

∂t
= Au− λu+ λPu

where λ > 0,

Au =

d
∑

i,j=1

∂2(aiju)

∂xi∂xj

−

d
∑

i=1

∂(biu)

∂xi

and P is a Markov operator corresponding to the iterated function system

(S1(x), . . . , SN (x), p1(x), . . . , pN (x)).

The probabilistic interpretation of (4.1) is similar to that of (2.9). We
assume that for each j we have

lim
‖x‖→∞

‖Sj(x)‖ = ∞.

Assume that

lim
‖x‖→∞

2〈x, b(x)〉 + λ
n
∑

j=1

pj(x)(‖Sj(x)‖
2 − ‖x‖2) = −∞,

where 〈·, ·〉 is the scalar product in R
d. Then a Markov semigroup {P (t)}t≥0

generated by equation (4.1) is asymptotically stable [18].

4.3. Transport equation. Consider a partial differential equation with
an integral perturbation

(4.2)
∂u

∂t
+ λu = −

d
∑

i=1

∂(biu)

∂xi

+ λ
\
k(x, y)u(t, y) dy.

If k(x, y) is a continuous and strictly positive function and there exists a
C1-function V : X → [0,∞) such that

d
∑

i=1

bi
∂V

∂xi

− λV (x) + λ
\
k(y, x)V (y) dy ≤ −c < 0

for ‖x‖ ≥ r, r > 0, then the Markov semigroup {P (t)}t≥0 generated by
equation (4.2) is asymptotically stable [16].
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4.4. Randomly interrupted diffusion. This process was described by the
following system of equations:















∂u1

∂t
= −pu1 + qu0 +A1u1,

∂u0

∂t
= pu1 − qu0 +A0u0.

The semigroup generated by this system satisfies the Foguel alternative.
In order to prove asymptotic stability it is sufficient to construct a proper
Hasminskĭı function. One can check that if there exist non-negative C2-
functions V1 and V2 such that

−p(x)V1(x) + p(x)V2(x) +A∗
1V1(x) ≤ −ε,

q(x)V1(x)− q(x)V2(x) +A∗
2V2(x) ≤ −ε

for ‖x‖ ≥ r, then the corresponding Markov semigroup is asymptotically
stable [17].

4.5. Population dynamics equation. Some models of size-structured cell
populations lead to transport equations similar to (2.9), but these equations
do not generate Markov semigroups. Also in these cases we can often apply
results presented in Section 3. We consider here a model derived in [24],
which generalized some earlier models of cell populations (e.g. [6]).

We assume that a cell is fully characterized by its size x which ranges
from x = a to x = 1. The cell size grows according to equation (2.1).
Cells can die or divide with rates µ(x) and b(x). We assume that the cells
cannot divide before they have reached a minimal size a0 ∈ (a, 1). Since the
cells have to divide before they reach the maximal size x = 1, we assume
that limx→1

Tx
a
b(ξ) dξ = ∞. If x ≥ a0 is the size of a mother cell at the

point of cytokinesis, then a newly born daughter cell has the size which is
randomly distributed in the interval (a, x−h], where h is a positive constant.
We denote by P(x, [x1, x2]) the probability for a daughter cell born from a
mother cell of size x to have a size between x1 and x2.

The function N(x, t) describing the distribution of the size satisfies the
equation

(4.3)
∂N

∂t
= −

∂(gN)

∂x
− (µ+ b)N + 2P (bN),

where P : L1(a, 1) → L1(a, 1) is a Markov operator such that P ∗1B(x) =
P(x,B). The main result concerning (4.3) is the following

Theorem 7. There exist λ ∈ R and continuous and positive functions

f∗ and w defined on the interval (a, 1) such that e−λtN(·, t) converges to

f∗Φ(N) in L1(a, 1), where Φ(N) =
T1
a
N(x, 0)w(x) dx.
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The proof of Theorem 7 goes as follows. (4.3) can be written as an
evolution equation N ′(t) = AN . First we show that A is an infinitesi-
mal generator of a continuous semigroup {T (t)}t≥0 of linear operators on
L1(a, 1). Then we prove that there exist λ ∈ R and continuous and pos-
itive functions v and w such that Av = λv and A∗w = λw. From this it
follows that the semigroup {P (t)}t≥0 given by P (t) = e−λtT (t) is a Markov
semigroups on the space L1(X,Σ,m), where m is a Borel measure on the
interval [a, 1] given by m(B) =

T
B
w(x) dx. Moreover, for some c > 0 the

function f∗ = cv is an invariant density with respect to {P (t)}t≥0. Finally,
from Theorem 1 we conclude that this semigroup is asymptotically stable.
Since the Lebesgue measure and the measure m are equivalent we deduce
that e−λtN(·, t) converges to f∗Φ(N) in L1(a, 1).

Acknowledgements. This research was supported by the State Com-
mittee for Scientific Research (Poland) Grant No. 2 P03A 010 16.

References

[1] V. Balakr ishnan, C. Van den Broeck and P. Hanggi, First-passage times
of non-Markovian processes: the case of a reflecting boundary , Phys. Rev. A 38
(1988), 4213–4222.

[2] K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by
Volterra type integrals, Ann. Polon. Math. 58 (1993), 161–175.

[3] W. Bartoszek and T. Brown, On Frobenius–Perron operators which overlap sup-
ports, Bull. Polish Acad. Sci. Math. 45 (1997), 17–24.

[4] V. Bezak, A modification of the Wiener process due to a Poisson random train of
diffusion-enhancing pulses, J. Phys. A 25 (1992), 6027–6041.

[5] S. Chandrasekhar and G. Münch, The theory of fluctuations in brightness of
the Milky-Way , Astrophys. J. 125, 94–123.

[6] O. Diekmann, H. J. A. Hei jmans and H. R. Thieme, On the stability of the
cell size distribution, J. Math. Biol. 19 (1984), 227–248.

[7] S. R. Fogue l, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold,
New York, 1969.

[8] R. Z. Hasminsk i ı̆, Ergodic properties of recurrent diffusion processes and stabi-
lization of the solutions of the Cauchy problem for parabolic equations, Teor. Vero-
yatnost. Primen. 5 (1960), 196–214 (in Russian).

[9] T. Komorowsk i and J. Tyrcha, Asymptotic properties of some Markov operators,
Bull. Polish Acad. Sci. Math. 37 (1989), 221–228.

[10] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of
Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994.

[11] —, —, Globally asymptotic properties of proliferating cell populations, J. Math.
Biol. 19 (1984), 43–62.

[12] J.  Luczka and R. Rudnick i, Randomly flashing diffusion: asymptotic properties,
J. Statist. Phys. 83 (1996), 1149–1164.

[13] M. C. Mackey and R. Rudnick i, Global stability in a delayed partial differential
equation describing cellular replication, J. Math. Biol. 33 (1994), 89–109.



Markov operators 79

[14] J. Malczak, An application of Markov operators in differential and integral equa-
tions, Rend. Sem. Mat. Univ. Padova 87 (1992), 281–297.

[15] J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured
Populations, Lecture Notes in Biomath. 68, Springer, New York, 1986.
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