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PROFESSOR WIES LAW SZLENK (1935–1995)

1. Life and activity. Wies law Szlenk was born in Warsaw in 1935
and died in Barcelona in 1995. His university education started in 1953 at
the Faculty of Mathematics, Physics and Chemistry of Warsaw University.
Being a very good student he was offered a position of deputy assistant
(second assistant) in 1956. In 1958 he completed his study and started a
full time employment at Warsaw University. His first scientific interests
were in functional analysis where he worked under the supervision of Sta-
nis law Mazur. Szlenk’s mathematical skills revealed in solving several open
problems and proving new important theorems. In close cooperation with
Aleksander Pe lczyński he solved the Mazur problem for numerical series [20]
and the problem of Singer [21]. Then he extended the Banach–Saks theo-
rem to L1-spaces [22]. In [23] Szlenk solved Banach and Mazur’s problem
49 from the Scottish Book showing the non-existence of a universal reflexive
Banach space. In the course of this work Szlenk prepared his Ph.D. dis-
sertation “On some properties of weakly convergent sequences in Banach
spaces”. It was completed in 1963 under the supervision of S. Mazur.

In 1964 Mazur arranged for W. Szlenk’s (and Karol Krzyżewski’s) re-
search stay at Moscow University. They had an opportunity to select from
several mathematical seminars (cf. [27]). They chose the one on dynamical
systems led by Yasha Sinai. It was a very important moment in Szlenk’s sci-
entific career. He decided to turn from functional analysis to dynamical sys-
tems where he achieved his most important mathematical results and showed
great teaching abilities. The study he started in Moscow was continued in
the following years in Warsaw. In 1967 Sinai came to Warsaw University as
a visiting professor. During that visit he initiated a seminar on dynamical
systems. After his departure the seminar was led by Krzyżewski and Szlenk.
The seminar (still existing after more than 30 years) was the starting point
of research in dynamical systems in Warsaw. Wies law Szlenk was a leading
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figure in this activity for several years. He proved a number of important
theorems (to mention just a few: on the existence of invariant measures for
expanding transformations on manifolds [15]—with K. Krzyżewski, on the
characteristics of entropy [17], [18]—with M. Misiurewicz, on the existence
of an invariant measure for some rational transformations of the Riemann
sphere [14]—with P. Grzegorczyk and F. Przytycki). In 1977 he received
habilitation for the thesis “Properties of orbits of continuous functions in
topological dynamical systems and their connection with invariant measures
and entropy”. Wies law Szlenk was also the author of other important results
in pure mathematics (see the review [19] in Polish).

Independently of his research activity Wies law Szlenk was lecturing a lot.
He attracted many gifted young mathematicians to the new scientific field,
creating a very active research group. He lectured not only in Warsaw, but
also at many universities abroad (in Denmark, Mexico, Spain). The result of
his teaching experience was the book [25], the first monograph on dynamical
systems in Polish. Its English translation [26] also got a favourable reception.
Moreover, he was the author of the first high-school text-book in probability
in Polish [24].

In 1979 Wieslaw Szlenk, already an associate professor, moved to the
Warsaw University of Agriculture (SGGW), where he worked until 1982.
During this period he developed contacts with biologists and was attracted
by possible applications of mathematics in biology and medicine. He soon
obtained interesting results in modelling adhesion dynamics ([8]–[10], with
J. Doroszewski, J. Jakubas and K. Lewandowska), plant growth ([30]–[33],
with W. Żelawski), growth of baleen whale population ([5], with F. Bofill),
immune systems ([4], [6], [29], with F. Bofill, R. Quentallia, A. Borkowska
and C. Vargas), and estimation of rainfalls ([11], with B. Dżura and W. Hyb).
The interest in applications of mathematics lasted until his last years. His
last article concerned the model of mixing in rumen [28].

In 1982, Szlenk returned to Warsaw University. From the beginning he
was deeply engaged (jointly with Andrzej Palczewski) in developing a new
curriculum in applied mathematics. This resulted in a substantial increase
of the number of students choosing applied mathematics as their field of
interest. It also helped create the Institute of Applied Mathematics and
Mechanics, which greatly extended the area of research and education in
mathematics.

Wies law Szlenk was a man of action with marvellous organizational skills.
This was soon recognized by his colleagues who elected him several times
to various academic posts. In the years 1972–78 he was the deputy director
of the Institute of Mathematics at Warsaw University. From 1979 to 1982
he was the director of the Institute of Applied Mathematics and Statistics
at the Warsaw University of Agriculture. In 1993–95 he was the deputy
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director of the Institute of Applied Mathematics and Mechanics at Warsaw
University. Since 1974 he was a member, and from 1986 to 1993 the head
of the Board of Mathematical Olympics in Poland.

I met Professor Szlenk for the first time attending his lecture on ”Math-
ematical models in biology”. The subject and the personality of the lecturer
attracted me so much that I chose mathematical biology as theme of my mas-
ter thesis. I was very happy when he offered me the possibility of writing a
Ph.D. thesis under his supervision. During the years when I was preparing
the thesis he proved to be very helpful and tutelary, always having time for
discussion, encouraging to publish results, providing new scientific contacts.

In personal contact, Wies law Szlenk was open and straightforward. He
used to tell numerous anecdotes about the famous mathematicians he had
met. He was also a climber and speleologist. Unfortunately I never was with
him in the mountains but I have heard many stories about his mountain
adventures.

Professor Szlenk was a real authority for me and for many of his collab-
orators. And as such he will stay in our memory.

It is to notice that some of Szlenk’s collaborators prepared articles ded-
icated to his memory: Tomasz Nowicki [19] in Poland, Luis Alsedà [1] in
Barcelona, and Karol Krzyżewski, Micha l Misiurewicz and Feliks Przytycki
edited papers [12] in pure mathematics dedicated to the memory of Wies law
Szlenk.

2. Activity in biomathematics. From the seventies till the end of
his life, Wies law Szlenk was attracted by the applications of mathematics
to biology and medicine. From the mathematical point of view, most of the
models he investigated were classical dynamical systems (both continuous
and discrete).

2.1. Dynamics adhesion and cell flow. Initially, Szlenk was interested
in the study of dynamics adhesion and cell flow on a glass bead column
([8]–[10]). The quantitative analysis of interactions between lymphocytes
and substratum is important in view of a number of problems concerning
the physiological role and kinetics of these cells in vivo, and in connection
with the adhesion method for separation of lymphocytes T and B.

The class of models proposed by J. Doroszewski, J. Jakubas and
W. Szlenk ([8], [9]) and based on experiments [7] describes the retention
of lymphocytes in a glass tube. Lymphocytes of the rat thymus labeled
with 51Cr were suspended in a phosphate-buffered solution. The cell sus-
pension passed through a glass column filled partly with soda-glass beads.
The diameters of the beads varied from 300 to 400 µm. The concentration
of cells flowing into the column was 4×106 cells/ml. The volume velocity of
the flow was 2.3 ml/min. The temperature inside the column was between
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36.8◦C and 37.2◦C. The pH of the medium used for perfusion was 7.0–7.2.
The lengths of the columns were different in different experiments (1.2, 1.6,
2.0, 2.4, 2.8 cm). By measuring 51Cr activity, the concentration of the cells
flowing out of the column was determined and the fraction of cells retained
on the bead bed was calculated as a function of the perfusion duration.

At the beginning of perfusion, the cell concentration in the suspension
flowing out from the bead bed was low. It slowly increased to a value close
to the concentration in the inflowing suspension. Therefore, the number of
cells retained on the bead bed increased with the perfusion duration. The
character of the curves describing the change of concentration indicated
that the rate of cell retention on the bead bed decreased in time, i.e. the
effectiveness of filtration in the bead layer decreased.

In the class of models of [8], [9], it is assumed that:

• On the surface of the glass, there are a finite number of hypothetical
active centers which retain the flowing cells.

• In the process of retaining, one cell occupies one active center.

• The number of cells retained on the bead bed per time unit depends
on the concentration of inflowing cells, the number of active centers
and the adhesion properties of the cell.

• The maximal number of cells stopped on each cross-section of the col-
umn by a plane perpendicular to the axis of the tube is constant (be-
cause of the homogeneous packing of the beads).

During the perfusion, the increasing number of cells causes accumulation
in the perfused layer. The accumulated cells occupy more and more ac-
tive centers, and the rate of cell retention decreases, since with continuing
perfusion, the number of free active centers is diminished. The amount of
retained cells and the retention rate depend on the length of the layer. The
concentration of cells is not uniform. It is higher in the upper part (closer
to the inlet) than in the lower part.

In the particular layers of the bead bed, the phenomenon occurs similarly
to that in the column as a whole. The concentration of cells flowing into
the deeper-situated layers varies with time, since it is dependent not only
on the flowing cell concentration, but also on the retention rate in the upper
layers, i.e. on the number of cells retained there.

In a layer of very small length dx, the change of cell concentration is
negligible. The process of cell retention in the bed as a whole is the result
of events occurring in every layer.

Let g = g(x, t) denote the suspension concentration in the layer of coor-
dinate x (i.e. x is the distance from the entry of the column) at time t.

Let AM denote the maximal capacity of the layer (AM is assumed to be
independent of x).
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Let A(x, t) denote the density of cells captured up to time t at level x.

The most general description of the above phenomenon is given by the
equation

∂A

∂t
= f(g,AM −A, x, t).

Some similarities to physico-chemical aspects of the adhesion process are
suggested by the equation ([8], [9])

(1)
∂A

∂t
= αn(AM −A), n = vgS,

where α is a constant, v is the mean linear velocity of the flow of cellular
suspension into the packing and S is the mean area of the cross-section of
the bed. If v is constant and s(x) is the area of the cross-section at level x,
then S = a−1

Ta
0
s(x) dx, where a is the length of the column.

The second equation is the transport equation

(2)
1

S

∂A

∂t
+

∂g

∂t
+ v

∂g

∂x
= 0.

The domain for (1) and (2) is {x ≥ 0, t ≥ x/v} and the boundary
conditions are

(3) g(0, t) = g0 = const and A(x, x/v) = 0.

The solution of (1) and (2) with the boundary conditions (3) is

g = g0

[
1 − (eαAMx − 1)eαnx/ve−αnt

1 + (eαAMx − 1)eαnx/ve−αnt

]
,

where g0 = const is the concentration of the incoming suspension.

Let W (x, t) denote the cell retention. For the column of length x the
experimental results ([7], [8]) are approximated by the function

W (x, t) = 1 − Svg(x, t)

Svg0
,

and (1) and (2) yield

(4) W (x, t) =
(eαAMx − 1)eαnx/ve−αnt

1 + (eαAMx − 1)eαnx/ve−αnt
.

It occurs that, for constant bed length x, there exist two parameters,
α and AM , such that the theoretical curve fits the experimental one, but
universal values of the parameters for all possible x do not exist (for example,
for x = 1.2 and x = 2.8, the maximal error is not less than 0.31).

In [8], [9], the authors investigated a function which fits the experimental
data [7]. They used the generalization of (4) in which the coefficient b varies
with x. This concept was based on the fact that, for each given x, the
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parameters α and AM could be chosen such that they well approximated
the experimental data.

The generalization has the form

(5) W (x, T ) =
c(x)e−b(x)t

1 + c(x)e−b(x)t
.

Putting

c(x) = (eαAMx − 1)eαg0Sx, b(x) = αg0vS

in (5) gives (4).

The differential equation of a thin layer, based on (2) and (5), is then

(6)
∂A

∂t
=

g

g0
b(x)(AM −A) + gv

b′(x)

b(x)
log

g0
g

with the same boundary conditions.

Fitting the curve described by (5) to the experimental one yields the
functions

b(x) = λe−βx, c(x) = α(ex − 1)e−βx.

The best approximation was obtained for λ = 0.31, β = 0.28, α = 3.1.

For b = const, (6) takes the form (1). It occurs (see [9]) that the function
on the right-hand side of (6) depends explicitly on x, i.e.

Theorem 1. There exists no function H(g,AM − A) of two variables

only such that

∂A

∂t
= H(g,AM −A).

Theorem 1 provides an interesting conclusion concerning the described
process. The layers in the column do not act independently, i.e. the adhesion
process is not a direct sum of processes in the layers. The action of every
layer depends on its place in the column.

The next model proposed by J. Doroszewski, K. Lewandowska and
W. Szlenk is based on the two mechanisms involved in cell passage, i.e.
labyrinth effect and random delay (see [10]). The following assumptions on
the model are made:

• The structure of the labyrinth is homogeneous, i.e. it consists of a large
number of similar structural units such that the border regions can be
neglected. The shape of the labyrinth is cylindrical.

• There is the most probable direction of the flow in the labyrinth, par-
allel to the cylinder axis.

• The channel diameter (i.e. the diameter of the family of flow trajecto-
ries homotopic inside the free space in the labyrinth) is large enough
such that a free flow of particles is possible.
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The labyrinth bed is perfused with the fluid flowing with constant velocity.
A small amount of cell suspension is injected into the perfusing fluid. The
dilution of cells which pass through the labyrinth is estimated by measuring
their concentration in the fluid flowing out of the bed. The cells which are
retained in the labyrinth bed influence only the normalizing parameter of
the dilution curve.

Assume that the bed is cut by the family of horizontal planes with con-
stant distance between them. Let Qi, i = 1, . . . , n, denote the family of the
resulting isometric parts. Let ξ denote the time of passing the column by
a particle, and ξi = ξ|Qi

. The authors assume that the random variables ξi
are independent and have the same distribution. If n is large enough, then
in view of the Central Limit Theorem the density fξ(x) of the random vari-
able ξ is close to normal distribution. Let m and σ denote its parameters.
This simple mechanism of particle passage through the bed corresponds to
a pure “labyrinth effect” in which the dispersion of particles has the Gaus-
sian distribution. The experimental dilution curves [10], however, are not
symmetrical, and thus they cannot be Gaussian. Therefore, another phe-
nomenon should be taken into account. The authors of [10] suppose that the
overall phenomenon is caused by two components—the labyrinth effect and
a second mechanism which results in an additional delay of particles. This
delay may be connected with the interactions of particles with themselves
and with the labyrinth, and/or with the flow in regions near the wall. The
authors assume that the particle delay is a random variable η and it corre-
sponds to a Markov process. Let fη denote the density of η. The authors
assume

fη(x) = c · e−cx,

where c is a parameter.

Now, an interesting random variable is ζ = ξ + η with density fζ(t). It
is assumed that ξ and η are independent, therefore fζ is the convolution of
fξ and fη, i.e.

fζ(t) =

∞\
−∞

fξ(x)fη(t− x) dx.

This means that

fζ(t) =
c

σ
√

2π
ecd−c2σ2/2e−ct

t\
−∞

e−(x−d)2/(2σ2) dx,

where d = cσ2 + m.

In the experiment [10], only a fraction of particles are observed flowing
out of the labyrinth (because some particles may be arrested in the bed).
Therefore, the authors introduce a normalizing parameter and obtain a the-
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oretical curve

f(t) = A · fζ(t)

which they compare with the experimental curves. In all the cases studied
(i.e. for lymphocytes, leukemic cells and a dye) the relative error is not
greater than 10%, while for the Poisson model (which was used previously)
it reached almost 50%.

2.2. Plant growth. In the eighties, the main interest of Szlenk was mod-
elling of plant growth ([30]–[33]). In those articles, Szlenk and W. Żelawski
investigated the differences between the growth of plants and other popula-
tions. The same mathematical approach is usually applied in plant or/and
animal growth studies, disregarding the fact that various organisms have dif-
ferent life strategies, and augment their dimensions or quantities in different
ways.

Following von Bertalanffy [2], the authors suggested [31] that whereas
the growth of many animals is limited to the juvenile stage, the plants
continue to grow during their whole life and their different parts grow in-
dependently to a large extent. Whereas animals gain their weight through
the consumption of food that is taken up in the form of organic matter,
the plant body is formed through some processes occurring in photosyn-
thesizing leaves. The growth of animals, being essentially the realisation
of a genetically predetermined program, can hardly be modified other than
by changing the general growth rate. In plants, the genotype determines
the range of phenotypical variation rather than the final size and shape of
the body. The growth of a plant is the sum of growths of all its growing
parts, but the role played in the total productivity by assimilatory organs
themselves is a special one; the partitioning of photosynthetic products into
assimilatory and non-assimilatory parts, which varies phenotypically, is of
great importance for the growth of the whole plant.

Szlenk and Żelawski assumed that there are two main features depen-
dent on the availability of such extremal factors as water, fertilizers, light,
carbon dioxide, etc. These are the efficiency of assimilatory organs, and the
partitioning of photosynthetic products between the two compartments, i.e.
assimilatory and non-assimilatory organs.

The class of models in [30]–[33] is based on the following assumptions.
Let Wn and Vn denote the dry weight of assimilatory and non-asimilatory
organs, Mn = Wn + Vn. The organic matter, which is photosynthetically
produced during the nth time unit (usually one day), is proportional to Wn

with the coefficient of proportionality αn (which represents the efficiency of
assimilatory organs, see [30]) or, in the general case ([31]–[33]), αn = α(Wn),
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where α is decreasing, continuous, and such that

(7) α(0) = α0 > 0, lim
W→∞

α(W ) = 0.

The organic matter is distributed between the assimilatory and non-
assimilatory organs with certain proportions β and 1 − β. The coefficient β
depends on the ratio λn = Wn/Vn, Vn > 0, and on a parameter σ ∈ [0, 1],
which represents environmental conditions. In the class of models [30]–[33],
σ = const, hence β = β(λ).

β ∈ (0, 1) is a decreasing function of λ, and

(8) β(0, σ) = 1, lim
λ→∞

β(λ, σ) = 0.

If Vn ≫ Wn, then β is close to 1, and almost all dry substance α(Wn)Wn

produced is used to build the assimilatory part. If Vn ≪ Wn, then β is close
to 0, and almost all material α(Wn)Wn is used for the extension of the
non-assimilatory part.

The class of models in [30]–[33] is described by the following system of
equations:

(9)
Wn+1 = Wn + β(λn)α(Wn)Wn,

Vn+1 = Vn + [1 − β(λn)]α(Wn)Wn.

Let

Vn =
1

1 + λn
Mn, Wn =

λn

1 + λn
Mn.

Then equations (9) take the form

(10)

Mn+1 = Mn + α(λnMn/(1 + λn)) · λnMn/(1 + λn)

λn+1 =
1 + β(λn)α(λnMn/(1 + λn))

1 + (1 − β(λn))α(λnMn/(1 + λn))λn
λn.

Let the right-hand sides of (10) be denoted by F1(M,λ), F2(M,λ), respec-
tively. Equations (10) define a mapping F of D = {(M,λ) : M ≥ 0, λ ≥ 0}
into itself: for a point (M,λ) ∈ D,

(11) F (M,λ) = (F1(M,λ), F2(M,λ)) ∈ D.

Equations (10) describe the iterations of the map F, i.e.

(Mn+1, λn+1) = F (Mn, λn) = Fn(M0, λ0).

Szlenk and Żelawski proved the following.

Lemma 1. The mapping F is a map of D into itself , but it is not sur-

jective.

One can see that there exists a unique λ > 0 such that

λ =
β(λ)

1 − β(λ)
.
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From now on, it is assumed that the functions α and β are of class C1.

Lemma 2. There exists a number M > 0 such that if M > M and λ ≤ λ,
then F1(M,λ) ≤ λ.

Theorem 2. For any M0 > 0, λ0 > 0,

lim
n→+∞

Mn = +∞, lim
n→+∞

F1(Mn, λn) = λ,

and λ is a unique positive fixed point of F2.

It turns out that if M0 is large enough, then the sequence (λn) is mono-
tone. One can expect that if λ0 is close to 0 and M0 is small, then this
sequence oscillates arround λ.

The two extremal cases λ = 0 and λ = +∞ are also biologically inter-
pretable (see [33]). The case λ = 0 may correspond to the situation of a
plant devoid of assimilatory organs (e.g. a deciduous tree in spring). The
case λ = +∞ may be a shoot alone without root (e.g. a leaf or a stem
before rooting when vegetatively propagated). For any M > 0, the points
λ = 0 and λ = +∞ are repulsive, i.e. the plant tends to escape from
the state where either assimilatory or non-assimilatory organs are lacking.
Regeneration of the missing part is then very vigorous.

The real growth of plants may be interrupted in a catastrophic way (e.g.
wind, deterioration of water regime, disease). Under certain conditions,
α(Wn) may approach 0 causing a complete cessation of growth. However,
even under the natural conditions, it is possible that α reaches 0 quickly
due to the sudden deterioration of photosynthetic activity, for instance at
the end of the growing season. Hence the plant growth curve is usually of
sigmoidal shape.

Assume that α(W ) = const and

(12) β(λn) =
σ

σ + (1 − σ)λn
, 0 < σ < 1.

Then

λ =

√
σ

1 − σ
.

Usually, the assimilation rate α is < 1, and in this case, the following
corollary of Theorem 2 holds:

Corollary 1. If α < 1, then for every initial value λ0, limn→∞ λn = λ.

The ratio λ is experimentally measurable. It is the ratio towards which
the plant adjusts itself during the process of adaptive growth. The growth
under constant conditions for some time leads to the stabilization of the
proportion of assimilatory and non-assimilatory organs.
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Considering the experimental data [30], it occurs (due to self-shading
effects and an increasing ballast of non-photosynthesizing tissue) that the
coefficient α decreases in an inverse proportion to the size of assimilatory
organs ([31]–[33]):

(13) α(W ) =
a0

W + a
, αn = α(Wn),

where a0, a are some constants. Due to the daily variation of the environ-
ment, the coefficient a, reducing the potential unit leaf rate α, is introduced
to the model. Mathematically, αn is a stochastic process.

In [32] the following is proved.

Theorem 3. If α is of the form (13) and β is of class C1 and satisfies

conditions (8), then there exist constants P , Q, R such that

lim
n→+∞

(Mn − (Pn + Q lnn + R)) = 0.

This means that for large n, the total mass of the plant increases almost
as a linear function (Pn + R). The total error of approximation tends to 0
as n tends to +∞. If one considers the growth curves of wood accumulation
in trunks of large trees, one can see that being at the beginning exponential,
they become gradually more and more similar to linear ones.

Let Wα/2 denote the dry weight of assimilatory organs for αn = α0/2.
Then

αn =
α0Wα/2

Wα/2 + Wn
,

and equations (9), for β defined by (12), take the form

(14)

Wn+1 = Wn +
Wα/2dα0σVnWn

(Wα/2 + Wn)[σVn + (1 − σ)Wn]
,

Vn+1 = Vn +
Wα/2dα0(1 − σ)W 2

n

(Wα/2 + Wn)[σVn + (1 − σ)Wn]
,

which is the form of the model used in [31] to compare with experiments [30].
The experimental data [30], obtained during the first growing season of

Scots pine, were used to test the model. The initial values W0 and V0 where
taken from experimental data when the cotyledons and first primary needles
were already formed. The parameter σ was calculated as σ = λ2/(1 + λ2),
where λ was established at the end of the growing season. The parameter
α0 was first estimated from the linear regression between 1/α and W (for all
periods when such a relation did hold with correlation coefficient r > 0.98)
and then fitted more precisely by trial-and-error, simultaneously with Wα/2.
The parameter d was assumed to be either 1 (for laboratory experiments)
or sin π

2 [(185 − n)/125] (for experiments at natural day length and light
intensity). The approximation of growth curves to the experimental points,
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representing mean values of numerous plants, was fully satisfactory, not only
under laboratory conditions but also under uniform weather conditions.

2.3. Immunology. One of the latest research fields of Szlenk was mod-
elling in immunology ([4], [6], [29]). He was interested in Marchuk’s model,
which is a system of four differential equations with a time delay

(15)





V̇ = (β − γF )V,
Ċ = αξ(m)V (t− τ)F (t− τ) − µc(C − C∗),
Ḟ = ̺C − (µf + ηγV )F,
ṁ = σV − µmm for m ≤ 1,

where V (t), C(t), F (t) are the antigen, plasma cell and antibody concen-
trations at time t; m(t) is a characteristic of the damage of the organ-target;
the function ξ has the following properties: ξ is 1 for m < m∗ (where m∗ is
some level of the damage), and is linearly decreasing to 0 for m ∈ (m∗, 1];
the parameter τ = const denotes the delay of immune reactions.

Szlenk and C. Vargas (see [29]) analysed a simple form of Marchuk’s
model. They assumed that the damage of the organ-target is small, m < m∗.
In this case the model reduces to three equations in V , C, F . They also
assumed that the delay is negligible. These assumptions lead to the following
model:

(16)





V̇ = (β − γF )V,
Ċ = αV F − µc(C − C∗),
Ḟ = ̺C − (µf + ηγV )F,

with all coefficients positive.

Following Marchuk (see [16]), they discussed the model with initial con-
dition X0 = (V0, C

∗, F ∗), where C∗ is the physiological level of plasma cells
and F ∗ = ̺C∗/µf is the physiological level of antibodies. This type of ini-
tial conditions may describe the situation of a healthy organism (which is
expressed by the physiological level of plasma cells and antibodies) infected
at time 0 by a small dose of the antigen (V0 > 0).

Equations (16) have one or two stationary states. The first one exists
for any positive values of the parameters, and is equal to (0, C∗, F ∗) (i.e.
it describes the healthy state). In the case of small physiological level of
antibodies and large stimulation coefficient α or large physiological level of
antibodies and small coefficient α, there exists a second stationary state

X =

(
µcµf (β − γF ∗)

β(α̺ − µcηγ)
,
αβµf − ηγ2µcC

∗

γ(α̺− ηγµc)
,
β

γ

)
,

which describes the chronic form of the disease.

In [29], two important theorems are proved, concerning the cases of large
and small physiological level of antibodies.
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Theorem 4. Let α̺ > (µc +β)ηγ and γF ∗ > β. Then for every V0 ≥ 0,
the solution X(t) of (16) has a limit and

lim
t→+∞

X(t) = (0, C∗, F ∗).

Theorem 4 means that every solution of (16) tends to the unique (in this
case) stationary state of the system.

In the case described in Theorem 4, if there exists a point t0 such that
F (t0) > F ∗, then there exists t̂ > t0 such that F has a local maximum at t̂.
One can show that

V (t̂) <
µcµf

κ− ηβγ + ηγ2F (t̂ )
,

where

κ = α̺− ηγµc.

It also turns out that the function C(t) decays to C∗ faster than the
exponential function, and the function F (t) converges to F ∗ exponentially,
i.e. there exist some constants K1, K2, K3 such that

C(t) − C∗ ≤ K1e
−µct

and

K2e
−µct ≤ |F (t) − F ∗| ≤ K3e

−µct,

for sufficiently large t.
The characteristic equation, for the point X, is

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = µc + µf + ηγV ,

a2 = µcµf (1 − d/F ) − ηγ2V F ,(17)

a3 = γdµcµf ,

and X = (V ,C, F ), d = F − F ∗.
It is easy to see that one characteristic value is real and negative, two

other may be real or complex.

Theorem 5. Let α̺ > (µc + β)ηγ and γF ∗ < β. If the point X is

either asymptotically stable, or there are two complex characteristic values

with positive real parts, then each solution X(t) of (16) is bounded and has

time-average value X, i.e.

lim
t→+∞

1

t

t\
0

X(s) ds = X.

Both Theorems 4 and 5 describe the case of an efficient immune sys-
tem (α̺ > ηγµc), which reacts immediately (τ = 0). In Theorem 4, the
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physiological level of antibodies is high (F ∗ > β/γ), and then the organ-
ism recovers even if the initial level of antigens is high. In Theorem 5, the
physiological level of antibodies is low (F ∗ < β/γ), and then the organism
cannot recover, even if the initial level of antigens is very low.

Next, Szlenk in cooperation with A. Borkowska analysed the special case
of immune reactions, i.e. reactions after a series of vaccinations (against
hepatitis B). Basing on the same ideas as in Marchuk’s model, and taking
into account some effects connected with the high density of antibodies in
such a situation, they proposed [6] a simple model of the antibody (F (t))
decline after vaccination:

(18) Ḟ (t) = −A(F (t) −D) −B(F (t) −D)2, B ≪ A.

The first term on the right-hand side of (18) corresponds to the mortality
of antibodies, the second one is caused by mutual collisions of antibodies,
due to their high concentration after a series of vaccinations.

Equation (18) has the solution

F (t) =
D + L(A−BD)e−At

1 −BLe−At
, L =

F0 −D

A + B(F0 −D)
,

where F0 is the initial level of antibodies. This solution was used to pre-
dict the rate of decrease of antibody concentration in the organism after
a series of vaccinations, for experimental data published by Gesemann and
Scheiermann [13].

Also Marchuk’s model in the case of vaccination, i.e. for β = 0, was
investigated by Szlenk with coworkers—F. Bofill and R. Quentallia ([4]). In
[4], it is proved that for an efficient immune system (α̺ > ηγµc), there are
only the following types of the solution behavior:

• F has two extremal values, C has one maximum,

• C has two extremal values, F has one maximum,

• F has one minimum, C has one maximum,

• F is decreasing, C has one maximum,

• F is increasing, C has two extremal values.

It is obvious that limt→+∞ F (t) = F ∗ and limt→+∞ C(t) = C∗. Such types
of behavior of the concentration F (t) are observed after a series of vaccina-
tions. The model explains the two different types of behavior observed in
experiments (e.g. [3]): the first when the concentration constantly decreases,
and the second when F (t) has extremal values.

2.4. Baleen whales. Szlenk also studied other biological processes in
single articles. In [5] Szlenk and F. Bofill proposed a simplification of the
evolution model of the baleen whale population. The International Whaling
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Commission used the following model:

xn+1 = (1 − µ)xn + R(xn−τ ), n = 0, 1, 2, . . . ,

where xn is the population of whales at time n, µ is the probability that an
individual does not survive to the next time moment, τ is the time interval in
which a newly born individual becomes sexually mature (τ = 7 years), and
R(x) = (1 − µ)τx[p + a[1 − (x/K)r]], where p, a, r, K are some constants.

Szlenk and Bofill assumed that τ = 1 and replaced R(x) by the function

φλ(x) =

{
λx for x ∈ [0, 1/2],
λ(1 − x) for x ∈ (1/2, 1],

with parameters λ ∈ (0, 2], µ = λ/2.

Then the corresponding process is expressed by the dynamical system
Tλ : Q → Q, where Q = [0, 1]2 is the phase space and

Tλ(x, y) = (y, φλ(x) + (1 − λ/2)y).

The dynamics of the system (Q,T ) depends on λ, and may be regular or
random. The system has two fixed points: X1 = (0, 0) and X2 = (2/3, 2/3).
It is easy to see that X1 is a saddle point, and X2 is a focus, stable for λ < 1
and unstable for λ > 1. The following theorems about the regularity of the
dynamical system were presented in [5]:

Theorem 6. If 0 < λ < 1, then for every point Y 6= (0, 0), the limit

limn→∞ TnY exists, and

lim
n→∞

TnY = X2.

Theorem 7. If λ ∈ (41/3, 2), then the corresponding dynamical system

with its absolutely continuous invariant measure µλ is exact , which corre-

sponds to random behavior.

2.5. Rainfall estimation. Some methods of rainfall estimation were
proposed by W. Szlenk, B. Dżura and W. Hyb in [11]. The first one is
referred to as the PBAM (piecewise biharmonic approximation method),
where the area considered is divided into rectangles, and the approximation
function is a polynomial of the third degree. Another one is referred to
as the PLAM (piecewise linear approximation method), where the area is
divided into triangles, and the approximation function is linear.

The rainfall function is the map

(point of the area, time period) 7→ value of rainfall.

Such a function was found in [11], as a function minimizing some func-
tional. More precisely, let D denote a nonempty, open, convex, bounded
subset of R

k (k = 1, 2, 3) with piecewise continuous boundary, and D be
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the closure of D. Let W 2,2(D) denote the Sobolev space of all real func-
tions which are square integrable in D, and which have square integrable
generalized derivatives of the first and second order in D.

Let zi ∈ D and fi ≥ 0, i = 1, . . . ,m,

A = {f ∈ W 2,2(D) : f(zi) = fi, i = 1, . . . ,m},
B = {f ∈ A : f(r) ≥ 0 for r ∈ D},

|grad f |2 =

k∑

j=1

(
∂f

∂xj

)2

, |d2f |2 =

k∑

i,j=1

(
∂2f

∂xi∂xj

)2

.

Let Pa : W 2,2(D) → R, a ∈ [0, 1], denote the class of functionals such
that

Pa(f) = a
\
D

|grad f(x)|2 dx + (1 − a)
\
d

|d2f(x)|2 dx for f ∈ W 2,2(D).

Definition 1. A surface {f(r) : r ∈ D} is called minimally folded if
the following conditions hold:

• f ∈ W 2,2(D),

• f(zi) = fi, i = 1, . . . , k,

• there exists some a ∈ [0, 1] such that f minimizes the functional Pa.

Such an f is called a minimizing function. It is known that for k = 2
and a = 0 such a function is biharmonic, i.e.

∑2
i,j=1 ∂

4f/∂x2
i ∂x

2
j = 0. For

example, it can be a polynomial of degree at most three.

Now, let D represent a part of the river basin, zi ∈ D represent the
points of a rainfall station network in D and fi be the value of rainfall at
zi, i = 1, . . . ,m. Assume that D ⊂ R

2 and zi = (xi, yi).

In the case of the PBAM, D is divided into rectangles in the following
way:

• the edges are parallel to the axes,

• any rectangle contains from 3 to 9 of the points zi.

We look for an estimator of the form

f(x, y) = a0x
3 + a1x

2y + a2xy
2 + a3y

3 + b0x
2 + b1xy + b2y

2 + c1x+ c2y + d.

Let (x0, y0) ∈ D. One wants to calculate f(x0, y0). Let zi = (xi, yi), i =
1, . . . , k, belong to the rectangle containing (x0, y0). To find the polynomial
f such that f(zi) = fi, i = 1, . . . , k, and f minimizes Pa in the class of
polynomials of degree at most three, for fixed a ∈ [0, 1], one applies the
method of Lagrange multipliers and one obtains a very complicated system
of linear equations.



Professor Wies law Szlenk (1935–1995) 17

It is possible to obtain a negative value of f ; then the PBAM is modified
so that

f0 = max{f(x0, y0), 0}.
In the case of the PLAM, D is represented by the triangulation with zi

as vertices, and the estimator has the form

f(x, y) = ax + by + c.

Let z0 = (x0, y0) ∈ D, and z1, z2, z3 be the vertices of the triangle which
contains z0. One finds f such that f(zi) = fi, i = 1, 2, 3. It is easy to see
that

f0 = w1f1 + w2f2 + w3f3,

where wj , j = 1, 2, 3, are the barycentric coordinates of z0 in the triangle
z1z2z3. Note that

w1 =
P1

P
, w2 =

P2

P
, w3 = 1 − (w1 + w2),

where P1, P2, P are the areas of the triangles z2z3z0, z1z3z0, z1z2z3.

The PBAM and PLAM have been verified empirically, using the rainfall
data from the Noteć river basin [11], and the autoverification method, which
consists in isolating one by one the stations from the network, approximating
the rainfall at a particular station by the given method, and comparing the
result with the actual data. It turned out that the linear method is better in
general, but in the case of continuous and abundant rainfall, the biharmonic
method is more accurate.

2.6. Mixing in rumen. The last work of Szlenk was modelling the mixing
mechanism in the rumen ([28]). In the Department of Animal Physiology
of the Warsaw University of Agriculture, the following phenomenon was
observed in the digestive process of sheep. Each sheep ate two types of
food (referred to as A and B). Every five minutes a sample of food was
taken from a fixed location in the rumen. After 1 hour the samples were
found to be composed almost entirely of either A or B. This means that the
two substances practically did not mix. In [28], Szlenk tried to answer the
question: what was the mixing mechanism in the rumen?

As the model of mixing, Szlenk proposed the following dynamical system.
Let Q = [0, 1] × [0, 1] be the phase space (corresponding to the rumen),
λ ∈ (0, 2] is a given number, Q′

0 = [0, λ−1] × [0, 1], Q′′

0 = (λ−1, 1) × [0, 1]. A
map T0 was defined as follows:

(19) T0(p) =

(
λ 0
0 λ−1

)(
x
y

)
=

(
λx

λ−1y

)
∈ Q for p = (x, y) ∈ Q′

0,
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and

(20) T0(p) =

(
1 − y
x

)
for p ∈ Q′′

0 (i.e. x > λ−1).

T0 on Q′′

0 was constructed geometrically.

Using the dynamical system (Q,T0), Szlenk defined another dynamical
system. Let R = [0, 1] × [0, λ−1]. For each p ∈ Q, one of the points

T0(p), T 2
0 (p), T 3

0 (p)

belongs to R. Let i = i(p) denote the smallest integer such that T i(p) ∈ R,
i = 1, 2, 3. A new map T : R → R is defined as T (p) = T i(p) for i = i(p), p ∈
R. Explicitly,

T (x, y)=





(λx, λ−1y) if x ≤ λ−1 (i(p) = 1),
(λ(1 − y), λ−1x) if x > λ−1 and y> 1− λ−1 (i(p)=2),
(λ(1 − x), λ−1(1 − y)) if x > λ−1 and y≤ 1− λ−1 (i(p)=3).

Theorem 8. Let λ ∈ (21/(k+2), 21/(k+1)) for some integer k ≥ 1. Then
there exists a set of rectangles Qi, i = 1, . . . , 4k, such that T 4k|Qi

= id.
Therefore, the map T does not mix points in

U =

4k⋃

i=1

Qi.

The general description of the dynamics of (R,T ) is the following: for a
given n one can split the space R into a finite number of rectangles Pj such
that Tn|Pj

has the form

Tn(p) = (An
j − λ−knx,Bn

j − λkny)

or

Tn(p) = (An
j − λ−kny,Bn

j − λknx),

where An
j , Bn

j are some numbers associated with the rectangle Pj , and kn
is an integer depending on n, which can oscillate between −∞ and +∞.

Let λ be the solution of the equation

(21) λr+2 − λr+1 − 1 = 0,

for some natural r. Equation (21) has exactly one root in (1, 2), and implies
that

λ− 1 =
1

λr+1
, 1 − 1

λ
=

1

λr+2
.

Let

E =

[(
0,

1

λr+1

)
×

(
0,

1

λ

)]
∪

r+1⋃

i=1

[(
1

λr−i
,

1

λr−i+1

)
×

(
0,

1

λi+1

)]
.
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Theorem 9. There are at least two invariant sets, U and E, for the

dynamical system (R,T ). The dynamical system (U, T ) is periodic, i.e. there
exists m such that Tm = id, and the system (E,T ) is random, i.e. its

trajectories behave as realizations of a stochastic process.

The mixing process described by the model is different in different parts
of the rumen. Coexistence of a periodic process and a random one seems to
be strange, but it occurs to be the reality of some physiological processes.
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edited by K. Krzyżewski, M. Misiurewicz and F. Przytycki.

[13] M. Gesemann and N. Sche iermann, Kinetics of hepatitis B vaccine-induced
anti-HBS antibodies during an 82 month post-booster period , in: Internat. Sympo-
sium on Viral Hepatitis and Liver Diseases, Tokyo, 1993.

[14] P. Grzegorczyk, F. Przytyck i and W. Szlenk, On iterations of Misiurewicz’s
rational maps on the Riemann sphere, Ann. Inst. H. Poincaré Phys. Théor. 53
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