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LOCAL CONVERGENCE

OF INEXACT NEWTON METHODS

UNDER AFFINE INVARIANT CONDITIONS AND

HYPOTHESES ON THE SECOND FRÉCHET DERIVATIVE

Abstract. We use inexact Newton iterates to approximate a solution
of a nonlinear equation in a Banach space. Solving a nonlinear equation
using Newton iterates at each stage is very expensive in general. That is
why we consider inexact Newton methods, where the Newton equations
are solved only approximately, and in some unspecified manner. In earlier
works [2], [3], natural assumptions under which the forcing sequences are
uniformly less than one were given based on the second Fréchet derivative of
the operator involved. This approach showed that the upper error bounds
on the distances involved are smaller compared with the corresponding ones
using hypotheses on the first Fréchet derivative. However, the conditions on
the forcing sequences were not given in affine invariant form. The advantages
of using conditions given in affine invariant form were explained in [3], [10].
Here we reproduce all the results obtained in [3] but using affine invariant
conditions.

1. Introduction. In this study we are concerned with approximating
a solution x∗ of the equation

(1) F (x) = 0,

where F is a nonlinear operator defined on a Banach space E1 with values in
a Banach space E2 with the properties: F belongs to the class of operators
Pλ(r) defined for any λ ∈ [0, 1] and r > 0 by Pλ(r) = {F | F : D ⊆
E1 → E2, where D is open and convex; there exists x∗ ∈ D such that
F (x∗) = 0; U(x∗, r) ⊆ D, where U(x∗, r) = {x ∈ E1 | ‖x − x∗‖ < r};
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F is twice Fréchet-differentiable on U(x∗, r); F ′′ is continuous on U(x∗, r);
F ′(x∗)−1 ∈ L(E2, E1), the space of bounded linear operators from E2 into
E1; there exists aλ > 0 such that for all x ∈ U(x∗, r),

(2) ‖F ′(x∗)−1[F ′′(x)− F ′′(x∗)]‖ ≤ aλ‖x− x∗‖λ}.

Here F ′′(x) ∈ L(E1, L(E1, E2)) (x ∈ D) denotes the second Fréchet deriva-
tive of F evaluated at x ∈ D [3], [8].

An inexact Newton method is any procedure which, given an initial guess
x0, generates a sequence {xn} (n ≥ 0) of approximations to x∗ as follows:

FOR n = 0 STEP 1 UNTIL Convergence DO.
Find some step sn which satisfies

(3) F ′(xn)sn = −F (xn) + rn (n ≥ 0),

where

(4)
‖F ′(xn)

−1rn‖

‖F ′(xn)−1F (xn)‖
≤ cn ≤ c (n ≥ 0).

Set

(5) xn+1 = xn + sn (n ≥ 0).

The numbers cn depend on xn (n ≥ 0). In particular for cn = 0 (n ≥ 0) we
obtain Newton’s method [1]–[3], [7]—[9].

In [5], [6] the local behavior of such inexact Newton methods is analysed
in the special case when E1 = E2 = R

i (i ∈ N). However, instead of
condition (2) above they use

(6) ‖F ′(x∗)−1[F ′(x)− F ′(y)]‖ ≤ a′λ‖x− y‖λ,

which is in some sense stronger than (2). The condition

(7)
cn

‖F (xn)‖
≤ ηn ≤ η (n ≥ 0)

was used in [5], [6], but assumption (4) was employed in [10]. The advantages
of using conditions in affine invariant form over the ones that do not have
been explained in some detail in [3], [4], [10]. Using (2) and (7) we showed
that all results on convergence developed in [5], [6] also hold in our setting
[3]. Moreover, we showed that our upper error bounds on the distances
involved are smaller. Here we further improve upon these results by using
(4) instead of (7). We conclude that all results obtained in [3] also hold in
the new setting.

2. Convergence analysis. If F ∈ Pλ(r), then we define

(8) mλ(x
∗) ≡ sup

{

‖F ′(x∗)−1[F ′′(x)− F ′′(x∗)]‖

‖x− x∗‖λ

∣

∣

∣

∣

x 6= x∗, x ∈ U(x∗, r)

}
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and

(9) b(x∗) ≡ ‖F ′(x∗)−1F ′′(x∗)‖.

We need the lemmas:

Lemma 1. Let F ∈ Pλ(r). Then there exists r1 ≤ r such that F ∈ Pλ(r1),
F ′(x) is nonsingular for all x ∈ U(x∗, r1), and for all x, y ∈ U(x∗, r1),

(10) ‖F ′(y)−1[F ′′(x)− F ′′(x∗)]‖

≤
mλ(x

∗)

1− b(x∗)‖y − x∗‖ − mλ(x∗)
λ+1

‖y − x∗‖λ+1
‖x− x∗‖λ,

(11) mλ(x) ≤
mλ(x

∗)

1− b(x∗)‖x− x∗‖ − mλ(x∗)
λ+1

‖x− x∗‖λ+1
,

(12) b(x) ≤
b(x∗)

1− b(x∗)‖x− x∗‖ − mλ(x∗)
λ+1

‖x− x∗‖λ+1
,

where

(13) mλ(x) ≡ sup

{

‖F ′(x)−1[F ′′(x)− F ′′(x∗)]‖

‖x− x∗‖λ

∣

∣

∣

∣

x 6= x∗, x ∈ U(x∗, r1)

}

and

(14) b(x) = ‖F ′(x)−1F ′′(x∗)‖.

P r o o f. Define the function

(15) h(t) =
mλ(x

∗)

λ+ 1
tλ+1 + b(x∗)t− 1

for each fixed λ ∈ [0, 1]. Since h is continuous, h(0) = −1 and h(t) > 0
for sufficiently large t, by the intermediate value theorem there exists a
minimum positive number r0 such that h(r0) = 0. Choose r1 = min{r, r0}.
Then

(16) h(t) < 0 for all t ∈ [0, r1).

Using (8), (9), (15), (16) and the identity

F ′(x∗)−1[F ′(x∗)− F ′(x)] = − F ′(x∗)−1[F ′(x)− F ′(x∗)

− F ′′(x∗)(x− x∗) + F ′′(x∗)(x− x∗)]

= −

1\
0

F ′(x∗)−1{F ′′[x∗ + t(x− x∗)]

− F ′′(x∗)}(x− x∗) dt

− F ′(x∗)−1F ′′(x∗)(x− x∗),
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we get

‖F ′(x∗)−1[F ′(x∗)− F ′(x)]‖

≤ mλ(x
∗)

1\
0

‖t(x− x∗)‖λ‖x− x∗‖ dt+ b(x∗)‖x− x∗‖

≤
mλ(x

∗)

λ+ 1
‖x− x∗‖λ+1 + b(x∗)‖x− x∗‖

<
mλ(x

∗)

λ+ 1
rλ+1
1 + b(x∗)r1 ≤ 1,

and

(17) ‖F ′(x)−1F ′(x∗)‖ ≤

[

1− b(x∗)‖x− x∗‖ −
mλ(x

∗)

λ+ 1
‖x− x∗‖λ+1

]

−1

.

It follows by the Banach Lemma on invertible operators [4], [8] that F ′(y)−1

exists for all y ∈ U(x∗, r1) so that (10) holds. By (10), (13) and the estimate

(18) ‖F ′(x)−1[F ′′(z)− F ′′(x∗)]‖

= ‖[F ′(x)−1F ′(x∗)][F ′(x∗)−1(F ′′(z) − F ′′(x∗))]‖

≤ ‖F ′(x)−1F ′(x∗)‖ · ‖F ′(x∗)−1(F ′′(z)− F ′′(x∗))‖,

for all x, z ∈ U(x∗, r1), we obtain (11). Moreover, by (9), (14) and the
estimates

‖F ′(x)−1F ′′(x∗)‖ = ‖[F ′(x)−1F ′(x∗)][F ′(x∗)−1F ′′(x∗)]‖(19)

≤ ‖F ′(x)−1F ′(x∗)‖ ‖F ′(x∗)−1F ′′(x∗)‖

for all x ∈ U(x∗, r1), we obtain (12).

Lemma 2. Let F ∈ Pλ(r1). Then, for any x ∈ U(x∗, r1),

‖G(x) − x∗‖ ≤
1

λ+ 2
mλ(x)‖x − x∗‖λ+2(20)

+
1

2
b(x)‖x− x∗‖2

and

(21) ‖G(x) − x∗‖ ≤ q(x)‖x− x∗‖,

where

(22) q(x) =
1

λ+2mλ(x
∗)‖x− x∗‖λ+1 + 1

2b(x
∗)‖x− x∗‖

1− b(x∗)‖x− x∗‖ − mλ(x∗)
λ+1

‖x− x∗‖λ+1

and

(23) G(x) = x− F ′(x)−1F (x) (x ∈ D).
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P r o o f. By (13), (14) and (23) we can write

G(x)− x∗ = F ′(x)−1[F (x∗)− F (x)− F ′(x)(x∗ − x)]

= F ′(x)−1
1\
0

[F ′′(x∗ + t(x− x∗))− F ′′(x∗)]t dt (x− x∗)2

+
1

2
F ′(x)−1F ′′(x∗)(x− x∗)2.

By taking norms above we get

‖G(x) − x∗‖ ≤
1

λ+ 2
mλ(x)‖x − x∗‖λ+2 +

1

2
b(x)‖x− x∗‖2,

which is (20). Estimate (21) follows from (11), (12) and (20).

We can prove the following main local convergence theorem for the in-
exact Newton method {xn} (n ≥ 0) generated by (5).

Theorem 1. Assume condition (4) holds for F ∈ Pλ(r1). Then the

inexact Newton method {xn} (n ≥ 0) generated by (5) with xn ∈ U(x∗, r1)
satisfies

(24) ‖xn+1 − x∗‖ ≤ dn‖xn − x∗‖,

where

(25) dn ≡ cn + (1 + cn)q(x)

(n ≥ 0), where q is defined in (22). Moreover , if cn ≤ c < 1 (n ≥ 0), define
the function g by

(26) g(t) = α1t
λ+1 + α2t+ α3,

where

(27) α1 =
mλ(x

∗)[2λ + 3− c]

(λ+ 1)(λ+ 2)
, α2 =

b(x∗)

2
(3− c), α3 = c− 1.

Then

(a) there exists a minimum positive number r2 such that g(r2) = 0 and

(28) g(t) < 0, h(t) < 0 for all t ∈ [0, r∗), r∗ = min{r1, r2},

where the function h is given in (15);
(b) for x0 ∈ U(x∗, r∗),

(29) dn ≤ d

= c+
(1 + c)

[

1
s+2mλ(x

∗)‖x0 − x∗‖λ+1 + 1
2b(x

∗)‖x0 − x∗‖
]

1− b(x∗)‖x0 − x∗‖ − mλ(x∗)
λ+1 ‖x0 − x∗‖λ+1

∈ (0, 1)

(n ≥ 0), and

(30) lim
n→∞

xn = x∗.
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P r o o f. We use induction on n ≥ 0 to show that estimate (24) holds and
the nth step of the inexact Newton method is defined so that there exist sn
satisfying (3)–(5) for all n ≥ 0. Assume ‖xn − x∗‖ ≤ ‖x0 − x∗‖ for some
n ≥ 0. It follows that xn ∈ U(x∗, r1), so F ′(xn)

−1 exists and mλ(xn) is
defined. Hence, the nth step of the inexact Newton method is defined so
that there exists sn satisfying (3)–(5). Since sn = F ′(xn)

−1(−F (xn) + rn),
we get

(31) xn+1 − x∗ = F ′(xn)
−1[F (x∗)− F (xn)− F ′(xn)(x

∗ − xn) + rn].

By (4) we also have

‖F ′(xn)
−1rn‖ ≤ cn‖F

′(xn)
−1F (xn)‖

and

‖F ′(xn)
−1F (xn)‖ ≤ ‖F ′(xn)

−1[F (x∗)− F (xn)− F ′(xn)(x
∗ − xn)]‖(32)

+ ‖xn − x∗‖,

and by (21) and (25),

‖xn+1 − x∗‖ ≤ cn‖xn − x∗‖

+ (1 + cn)‖F
′(xn)

−1[F (x∗)− F (xn)− F ′(xn)(x
∗ − xn)]‖

≤ dn‖xn − x∗‖,

which shows (24) for all n ≥ 0.
As with the function h in Lemma 1, we can find a minimum positive

number r2 such that g(r2) = 0. This shows (28). Since cn ≤ c < 1, it can
easily be seen that dn ∈ [0, 1) (n ≥ 0) if

(33) g(‖x0 − x∗‖) < 0 and h(‖x0 − x∗‖) < 0,

which is true by (28) and the choice of r∗.
The induction is now complete.
Moreover, by (24) and (29) we get

‖xn+1 − x∗‖ ≤ dn+1‖x0 − x∗‖ ≤ dn+1r∗ → 0 as n → ∞,

which shows (30).

Defining rates of convergence in the same way as in [3], [6], [10] we can
extend the results obtained in [3].

Theorem 2. Let F ∈ Pλ(r1). Assume the inexact Newton method {xn}
(n ≥ 0) generated by (5) converges to x∗. Then

(a) {xn} (n ≥ 0) converges superlinearly if and only if

lim sup
n→∞

‖F ′(xn)
−1rn‖

‖F ′(xn)−1F (xn)‖
= 0,

or if and only if lim supn→∞
cn = 0;
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(b) {xn} (n ≥ 0) converges with order 1 + λ if and only if

lim sup
n→∞

‖F ′(xn)
−1rn‖

‖F ′(xn)−1F (xn)‖1+λ
< ∞,

or if and only if

lim sup
n→∞

cn

‖F ′(xn)−1F (xn)‖λ
< ∞;

(c) {xn} (n ≥ 0) converges with weak order at least 1 + λ if and only if

lim
n→∞

‖F ′(xn)
−1rn‖

(1+λ)−n

< 1,

or if

lim sup
n→∞

c(1+λ)−1

n
< 1.

P r o o f. The results follow directly using the techniques of [3]. Alter-
natively they can also be regarded as corollaries of the results in [3], by
noting that if β is a bound on the condition number (see (4)) of F ′(x) in a
neighborhood of x∗, then by Lemma 1 in [3] or Lemma 3.1 in [6],

1

β
·

‖rn‖

‖F (xn)‖
≤

‖F ′(xn)
−1rn‖

‖F ′(xn)−1F (xn)‖
≤ β

‖rn‖

‖F (xn)‖
(n ≥ 0).

3. Applications

Remark 1. As noted in [3]–[6], [10] the results obtained here can be
used for projection methods such as Arnoldi’s method, the generalized min-
imum residual method (GMRES), the generalized conjugate residual method
(GCR), and for combined inexact-Newton/finite-difference projection meth-
ods.

Remark 2. The results obtained here can also be used to solve equations
of the form F (x) = 0, where F ′ satisfies the autonomous differential equation

(34) F ′(x) = T (F (x)),

with T : E2 → E1 being a known continuously Fréchet-differentiable opera-
tor at x∗. Since F ′(x∗) = T (F (x∗)) = T (0), F ′′(x∗) = F ′(x∗)T ′(F (x∗)) =
T (0)T ′(0), we can apply the results obtained here without actually knowing
the solution x∗ of equation (1).

Below, we provide such an example.

Example. Let E1 = E2 = R, D = U(0, 1), and define the function F

on D by

(35) F (x) = ex − 1.
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Then it can be easily seen that we can take T (x) = x+ 1 in (34). That is,
F ′ satisfies the autonomous differential equation (34).

For Newton’s method, set c = 0, and take λ = 1. Then using (8), (9),
(15) and (26), we can easily obtain the following:

m1(x
∗) = e, b(x∗) = 1, r2 = .411254048, r1 = .5654448, r∗ = r2.

Hence, the conclusions of Theorem 1 hold if

(36) ‖x0 − x∗‖ < r∗ = .411254048.

To compare our results with the corresponding ones obtained in [5], [6],
[10] we first define as in [10]

(37) µλ(x
∗) ≡ sup

{

‖F ′(x∗)−1[F ′(y)− F ′(z)]‖

‖y − z‖λ

∣

∣

∣

∣

y 6= z, y, z ∈ U(x∗, r)

}

.

Then, by Theorem 3.1 in [10, p. 585] we must have

(38) ‖x0 − x∗‖ ≤ 2
3µλ(x

∗)−1 ≡ r∗1 .

As above, using (35), (37) and (38) we get µ1(x
∗) = e, and r∗1 = .245253 <

r∗. Hence, our Theorem 1 provides a wider choice for x0 than the corre-
sponding Theorem 3.1 in [10, p. 585]. This observation is important and
finds applications in steplength selection in predictor-corrector continuation
procedures [4], [5], [6], [10].
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