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REFINED RATES OF BIAS CONVERGENCE

FOR GENERALIZED L-STATISTICS IN THE I.I.D. CASE

Abstract. Using tools of approximation theory, we evaluate rates of bias
convergence for sequences of generalized L-statistics based on i.i.d. sam-
ples under mild smoothness conditions on the weight function and simple
moment conditions on the score function. Apart from standard methods of
weighting, we introduce and analyze L-statistics with possibly random coef-
ficients defined by means of positive linear functionals acting on the weight
function.

1. Introduction. We consider a sequence Xn, n ∈ N, of independent
identically distributed (i.i.d.) random variables with a common distribution
function F . For a sample of size n, the sequence of order statistics is denoted
by X1:n, . . . ,Xn:n. A sequence Ln, n ∈ N, of (generalized) L-statistics is
defined by

(1.1) Ln =
n∑

i=1

ci,ng(Xi:n), n ∈ N,

where real coefficients ci,n, 1 ≤ i ≤ n < ∞, and a measurable score func-
tion g are given. L-statistics have numerous applications in statistical in-
ference (see, e.g., Balakrishnan and Cohen (1991), and David (1981)). The
expectation of (1.1) is given by

(1.2) EFLn =
n∑

i=1

nci,n

1\
0

g(F−1(y))pn−1,i−1(y) dy,
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where

(1.3) pn,i(x) =

(
n

i

)
xi(1− x)n−i, i = 0, 1, . . . , n,

form the Bernstein basis of the linear space of polynomials on [0, 1] of degree
at most n for n ∈ N ∪ {0}. When asymptotic properties of L-statistics are
studied, it is usually assumed that the coefficients are defined by means of
some weight function f : [0, 1] → R in two ways, resulting in the following
definitions of L-estimate sequences:

Ln(f, g) =

n∑

i=1

li,ng(Xi:n)(1.4)

= n−1
n∑

i=1

f

(
i− 1

n− 1

)
g(Xi:n), n ∈ N \ {1},

(cf., e.g., Chernoff, Gastwirth and Johns (1967), Shorack (1969, 1972), Ma-
son (1981)), and

Kn(f, g) =

n∑

i=1

ki,ng(Xi:n)(1.5)

=

n∑

i=1

[ i/n\
(i−1)/n

f(t) dt
]
g(Xi:n), n ∈ N,

(cf., e.g., Boos (1979), van Zwet (1980), Mason and Shorack (1992)). Under
some regularity conditions on the weight, score and distribution functions
f , g and F , respectively, both (1.4) and (1.5) tend to

(1.6) µ(f, g, F ) = EF [g(X1)f(F (X1))] =

1\
0

g(F−1(y))f(y) dy

in various modes of convergence. Briefly mentioning some results, we do
not pretend to present a comprehensive list of relevant references. Strong
laws of large numbers for (1.4) and (1.5) were obtained in Wellner (1977a),
Sen (1978), van Zwet (1980), Mason (1982), and Norvaǐsa (1994). Asymp-
totic normality was studied by Chernoff, Gastwirth and Johns (1967), Sho-
rack (1969, 1972), Stigler (1974), Sen (1978), Boos (1979), Mason (1981),
Helmers and Ruymgaarts (1988), and Mason and Shorack (1992). Laws of
the iterated logarithms were established in Wellner (1977b), Boos (1979),
Lea and Puri (1988), and Norvaǐsa and Zitikis (1991), and Berry–Essen
bounds were obtained in Helmers, Janssen and Serfling (1990), and Bog-
dan (1994).

The objective of this paper is to analyze rates of convergence to (1.6)
for sequences of expected L-statistics (1.2) defined by (1.4), (1.5) and other
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formulae under mild conditions on f , g and F . The problem was investigated
by Stigler (1974), Mason (1981) and Xiang (1995). Xiang (1995) proposed
a method of bias reduction for L-statistics with weight functions having
high order derivatives. We impose no smoothness conditions on the score
and distribution functions, assuming merely the finiteness of the moments
EF |g(X1)|q for some q ≥ 1. Another natural requirement that will be tacitly
assumed throughout the paper and makes possible defining (1.6) is

EF |g(X1)f(F (X1))| =
1\
0

|g(F−1(y))f(y)| dy < ∞.

The only regularity conditions concern the weight function f . In contrast to
known results (see, e.g., the above cited articles), where smoothness of func-
tions is mainly expressed by existence and properties of their derivatives,
we shall use tools of approximation theory, including moduli of smooth-
ness and K-functionals. In many approximation problems, measuring the
smoothness by differentiability is too crude, and the moduli enable us to do
that more subtly for larger classes of possibly nondifferentiable functions.

For f ∈ C[0, 1], we define the first (order) modulus of continuity and the
second (order) modulus of continuity (smoothness) as

(1.7) ω1(f, h) = sup{|f(u)− f(v)| : u, v ∈ [0, 1], |u− v| ≤ h},

ω2(f, h) = sup

{∣∣∣∣f(u)− 2f

(
u+ v

2

)
+ f(v)

∣∣∣∣ :

u, v ∈ [0, 1], |u− v| ≤ 2h

}
,

h > 0, respectively. In general, for f ∈ Lp[a, b], 1 ≤ p ≤ ∞, we define the
rth forward difference

∆r
h(f, x) =

r∑

k=0

(
r

k

)
(−1)r−kf(x+ kh),

and Arh = [a, b − rh]. The rth modulus of smoothness for f ∈ Lp[a, b],
1 ≤ p < ∞, and f ∈ C[a, b], p = ∞, is defined by

(1.8) ωr(f, t)p = sup
0<h≤t

‖∆r
h(f, ·)‖p,Arh

, t ≥ 0,

(see DeVore–Lorentz (1993, pp. 40–46) and Schumaker (1981, pp. 53–55)).
The latter index of the norm describes the domain of each element of Lp-
space and it will be dropped if it coincides with the unit interval. One can
check that ωr(f, t)p is a finite, continuous and increasing function of t, with
ωr(f, 0)p = 0 and ωr(f, t)p → 0 as t → 0. There are also some modifications
of definitions (1.7)–(1.8) that will be introduced in the sequel. However,
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these modified moduli of smoothness share the nice properties of the above
ones.

Loosely speaking, K-functionals enable us to describe parametrically the
accuracy of approximating a function of a space by elements of a subspace.
Below we define the Ditzian–Totik version of the K-functional, and others
will be presented later. Define the second order symmetric difference as

∆̃2
s(f, x) =

{
f(x+ s)− 2f(x) + f(x− s) if [x− s, x+ s] ⊂ [0, 1],
0 otherwise.

Consider ∆̃2
hϕ(·)(f, ·) for h > 0 and ϕ(x) =

√
x(1− x), x ∈ [0, 1], and

W 2
∞(ϕ) = {g ∈ C[0, 1] : g′ is absolutely continuous on [0, 1]

and ‖ϕ2g′′‖∞ < ∞}.
We define the Ditzian–Totik K-functional by

(1.9) K(f, t) = K(f, t;C,W 2
∞(ϕ)) = inf

g∈W 2
∞

(ϕ)
{‖f − g‖∞ + t‖ϕ2g′′‖∞}

and the Ditzian–Totik modulus of smoothness by

(1.10) ωϕ
2 (f, t) = sup

0≤h≤t
‖∆̃hϕ(·)(f, ·)‖∞

(see DeVore and Lorentz (1993, p. 322)). The latter is a representative of
weighted moduli of smoothness, with less emphasis laid on the smoothness
at the borders of the domain.

In Section 2 we describe rates of convergence to (1.6) for expectations
of (1.4) and (1.5) in terms of moduli of smoothness and K-functionals,
making use of their mutual relations to the Bernstein and Kantorovich op-
erators, respectively. In Section 3, we also present nonstandard methods of
constructing L-statistics with possibly randomized coefficients determined
by a given weight function. Using a general notion of positive linear func-
tionals, we show that the nonstandard L-statistics tend to (1.6) and evaluate
the rates of their bias decrease. The rates will be specified more precisely for
L-statistics related to Bernstein–Durrmeyer, Mache and Stancu operators.
It is worth pointing out that the rates presented here are optimal for the
wide classes we study and best constants of approximation are also given
in some cases. In Section 4 we refer to saturation theorems that indicate
classes of weight functions generating L-statistics with faster vanishing bias.

2. L-Statistics with standard weights. Let

(2.1) (Bnf)(x) =

n∑

k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)

stand for the nth Bernstein operator of a function f ∈ C[0, 1]. In The-
orems 1–3 we apply approximation properties of the operator to estimate
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rates of bias convergence of (1.4). In Theorem 1, we describe a relation
between the operator and the L-statistic, and evaluate the bias in terms
of the modulus of continuity of the derivative of the weight function and
the first absolute moment of the score function. Theorem 2 contains anal-
ogous results when the derivative of f is replaced by the function itself. In
Theorem 3, we apply the notions of K-functional and weighted modulus of
smoothness.

Theorem 1. For an i.i.d. sequence Xi, i ∈ N, with a common distribu-

tion function F and E|g(X1)| < ∞, and the L-statistic defined by (1.4), we
have

(2.2) EFLn(f, g) =

1\
0

g(F−1(y))(Bn−1f)(y) dy.

If f ∈ C1[0, 1], then for n ∈ N \ {1},

|EFLn(f, g)− µ(f, g, F )| ≤ 25

32
(n− 1)−1/2ω1

(
f ′,

1

4
(n− 1)−1/2

)
EF |g(X1)|.

P r o o f. Combining (1.2), (1.4) and (2.1), we obtain

EFLn(f, g) = EFn
−1

n∑

i=1

f

(
i− 1

n− 1

)
g(Xi:n)

=

1\
0

g(F−1(y))

n∑

i=1

f

(
i− 1

n− 1

)
pn−1,i−1(y) dy

=

1\
0

g(F−1(y))(Bn−1f)(y) dy,

which proves (2.2). Therefore, applying Anastassiou (1993, Corollary 7.3.4,
p. 230), we have, for n ∈ N \ {1},

|EFLn(f, g)−µ(f, g, F )| =
∣∣∣
1\
0

g(F−1(y))[(Bn−1f)(y)− f(y)] dy
∣∣∣

≤ ‖Bn−1f − f‖∞
1\
0

|g(F−1(y))| dy

≤ 25

32
(n−1)−1/2ω1

(
f ′,

1

4
(n−1)−1/2

)
EF |g(X1)|.

Theorem 2. Under the assumptions and notations of Theorem 1, with
f ∈ C[0, 1], for all n ∈ N \ {1} we have
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(2.3) |EFLn(f, g)− µ(f, g, F )|
≤ ‖Bn−1f − f‖∞EF |g(X1)|

≤





4306 + 837
√
6

5832
ω1

(
f,

1√
n− 1

)

35

32
ω2

(
f,

1√
n− 1

)





EF |g(X1)|.

Moreover , the first of the two estimates is optimal.

P r o o f. See Sikkema (1961) for the best constant

4306 + 837
√
6

5832
< 1.09

and Paltanea (1995) for the constant 35/32 < 1.094, which is not optimal.

Remark 1. We have the following approximations of f ∈ C[0, 1] by its
Bernstein operators, expressed in terms of the Ditzian–Totik K-functional
and modulus of smoothness (cf. (1.9) and (1.10)):

‖Bnf − f‖∞ ≤ 2K(f, n−1),

‖Bnf − f‖∞ ≤ Cωϕ
2 (f, n

−1/2),

respectively, where n ∈ N, and C > 0 is an absolute constant (see DeVore
and Lorentz (1993, pp. 323–325)).

Direct application of this remark yields

Theorem 3. With notations and assumptions as in Theorem 2, for all

n ∈ N \ {1} we have

|EFLn(f, g) − µ(f, g, F )| ≤
{
2K(f, (n− 1)−1)

Cωϕ
2 (f, (n− 1)−1/2)

}
EF |g(X1)|.

Remark 2. Applying (1.3), we introduce the Kantorovich operators

(2.4) (Knf)(x) = (n+1)

n∑

k=0

( (k+1)/(n+1)\
k/(n+1)

f(t) dt
)
pn,k(x), n ∈ N ∪ {0},

for either f ∈ Lp[0, 1] or f ∈ C[0, 1] in the cases 1 ≤ p < ∞ and p = ∞,
respectively. We also define the Gonska–Zhou version of the K-functional:

(2.5) K∗(f, t)p = inf{‖f − g‖p + t2‖(ϕ2g′)′‖p : g ∈ C2[0, 1]},

where ϕ(x) =
√

x(1− x), x ∈ [0, 1]. We shall need the following three
theorems:
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Theorem 4 (Gonska and X.-L. Zhou (1995)). There exists C > 0 such

that

C−1K∗(f, n−1/2)p ≤ ‖Knf − f‖p ≤ CK∗(f, n−1/2)p, 1 ≤ p ≤ ∞.

Theorem 5 (Gonska and X.-L. Zhou (1995)). We have

K∗(f, t)p ∼ ωϕ
2 (f, t)p + ω1(f, t

2)p, 1 ≤ p ≤ ∞.

Theorem 6 (Gonska and D.-X. Zhou (1995)). Let f ∈ C[0, 1] and n ∈ N.

Then

‖Knf − f‖∞ ≤ M

n

[ 1/2\
n−1/2

ωϕ
2 (f, t)∞t−3 dt+ E0(f)∞

]
,

where M > 0 is independent of f and n, and

(2.6) E0(f)∞ = inf
c∈R

‖f − c‖∞.

We are now in a position to analyze L-statistics (1.5) with coefficients
defined by integrals.

Theorem 7. Let Xi, i ∈ N, be an i.i.d. sequence of random vari-

ables. Under the assumptions and notation of Remark 2, assume also that

E|g(X1)|q < ∞ for q = p/(p− 1) and p > 1. Then

EFKn(f, g) =

1\
0

g(F−1(y))(Kn−1f)(y) dy

and

|EFKn(f, g)− µ(f, g, F )| ≤ ‖Kn−1f − f‖p(EF |g(X1)|q)1/q , n ∈ N \ {1}.

P r o o f. By (1.2), (1.6) and (2.4)

EFKn(f, g) = EF

n∑

i=1

ki,ng(Xi:n)

=

1\
0

g(F−1(y))n
[ n∑

i=1

i/n\
(i−1)/n

f(t) dt
]
pn−1,i−1(y) dy

=

1\
0

g(F−1(y))(Kn−1f)(y) dy.

Accordingly,

EFKn(f, g)− µ(f, g, F ) =

1\
0

g(F−1(y))[(Kn−1f)(y)− f(y)] dy,
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and, by the Hölder inequality,

|EFKn(f, g)− µ(f, g, F )|

≤
( 1\

0

|(Kn−1f)(y)− f(y)|p dy
)1/p( 1\

0

|g(F−1(y))|q dy
)1/q

= ‖Kn−1f − f‖p(EF |g(X1)|q)1/q .

By Theorems 4–7, we obtain

Theorem 8. Under the assumptions and notations of Theorem 7, we

have

|EFKn(f, g)− µ(f, g, F )|

≤
{CK∗(f, (n− 1)−1/2)p

C∗[ωϕ
2 (f, (n− 1)1/2)p + ω1(f, (n− 1)−1)p]

}
(EF |g(X1)|q)1/q ,

for 1 < p < ∞ and universal constants C, C∗ > 0. Moreover , if p = ∞,
then

|EFKn(f, g)− µ(f, g, F )|
≤ ‖Kn−1f − f‖∞EF |g(X1)|

≤





CK∗(f, (n− 1)−1/2)∞

C∗[ωϕ
2 (f, (n− 1)1/2)∞ + ω1(f, (n− 1)−1)∞]

M

n− 1

[ 1/2\
(n−1)−1/2

ωϕ
2 (f, t)∞t−3 dt+ E0(f)∞

]





EF |g(X1)|,

where M > 0 and E0(f)∞ is defined in (2.6).

3. L-Statistics with nonstandard weights

Remark 3. For f ∈ L1[0, 1] we define the Bernstein–Durrmeyer opera-

tors as

(3.1) (Dnf)(x) = (n+ 1)

n∑

k=0

( 1\
0

f(t)pn,k(t) dt
)
pn,k(x)

for x ∈ [0, 1] and n ∈ N∪{0}. Then there exists a universal C > 0 such that

(3.2) C−1K∗(f, n−1/2)p ≤ ‖Dnf − f‖p ≤ CK∗(f, n−1/2)p

for any 1 ≤ p ≤ ∞ (see Gonska and D.-X. Zhou (1995)).
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Define a sequence of L-statistics by

(3.3) Mn(f, g) =

n∑

i=1

mi,ng(Xi:n) =

n∑

i=1

( 1\
0

pn−1,i−1(t)f(t) dt
)
g(Xi:n).

This is a modification of (1.5) that consists in replacing the step weight
function 1((i−1)/n,i/n] in the integral representation of the coefficients ki,n,
1 ≤ i ≤ n < ∞, by smooth ones pi−1,n−1. Under the above assumptions
and notation, we have

Theorem 9. For an i.i.d. sequence of random variables Xi, i ∈ N,
with a common distribution function F and a weight function f ∈ Lp[0, 1],
1 < p ≤ ∞, assume that EF |g(X1)|q < ∞ for q = p/(p − 1) and p < ∞,
and EF |g(X1)| < ∞ for p = ∞. Then

(3.4) EFMn(f, g) =

1\
0

g(F−1(y))(Dn−1f)(y) dy, n ∈ N.

If 1 < p < ∞, then

|EFMn(f, g) − µ(f, g, F )| ≤ ‖Dn−1f − f‖p(EF |g(X1)|q)1/q(3.5)

≤ CK∗(f, (n− 1)−1/2)p(EF |g(X1)|q)1/q .
If p = ∞, then

(3.6) |EFMn(f, g)− µ(f, g, F )|

≤





CK∗(f, (n− 1)−1/2)∞

M

n− 1

[ 1/2\
(n−1)−1/2

ωϕ
2 (f, t)∞t−3 dt+ E0(f)∞

]





EF |g(X1)|.

P r o o f. Formula (3.4) can be immediately deduced from (1.2), (3.1),
(3.3). Thus

EFMn(f, g) − µ(f, g, F ) =

1\
0

g(F−1(y))[(Dn−1f)(y)− f(y)] dy.

Applying the Hölder inequality, and then using (3.2), we obtain (3.5). In
a similar way, we can conclude the former relation in (3.6). The latter is an
implication of Theorem 3 in Gonska and X.-D. Zhou (1995) that asserts

‖Dnf − f‖∞ ≤ M

n

[ 1/2\
n−1/2

ωϕ
2 (f, t)∞t−3 dt+E0(f)∞

]
.

Remark 4. One can consider f ∈ Lp[0, 1], 1 ≤ p ≤ ∞, such that either

ω1(f, h)p = O(hα), 0 < α ≤ 1,
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or

ωϕ
2 (f, h)p = O(hα), 0 < α ≤ 2,

(i.e. K(f, h)p = O(hβ), 0 < β ≤ 1, cf. (1.9) and (1.10)). We could also have

K∗(f, h)p = O(hα), 0 < α ≤ 2, 1 < p ≤ ∞,

(see (2.5)). All the above are various forms of Lipschitz type conditions
for f , and can simplify previous results when applicable. From DeVore and
Lorentz (1993, p. 327) we have

‖Dnf − f‖∞ ≤ 3ω1(f, (3/n)
1/2), n ∈ N, f ∈ C[0, 1],

where ω1 is the first (ordinary) modulus of continuity (see (1.7)). Therefore,
following the assumptions and notations of Theorem 9, we obtain

|EFMn(f, g)− µ(f, g, F )| ≤ ‖Dn−1f − f‖∞EF |g(X1)|(3.7)

≤ 3ω1(f, (3/n)
1/2)EF |g(X1)|.

Observe that the coefficients of the L-statistic in (3.3) can be expressed as

mi,n = Ef(Ui:n), 1 ≤ i ≤ n < ∞
(cf. (1.2)), where Ui:n, 1 ≤ i ≤ n, are the order statistics from a standard
uniform i.i.d. sample of size n, which can be easily generated. Therefore,
replacing the L-statistics by their randomized modifications

(3.8) M̃n(f, g) =

n∑

i=1

f(Ui:n)g(Xi:n), n ∈ N,

we preserve all the conclusions of Theorem 9 and formula (3.7). Also, (1.5)
may be substituted by randomized counterparts

(3.9) K̃n(f, g) =

n∑

i=1

f(Vi,n)g(Xi:n), n ∈ N,

with the same expectations, if Vi,n, 1 ≤ i ≤ n < ∞, are uniformly dis-
tributed on [(i− 1)/n, i/n]. In fact, it simply suffices to put Vi,n = (i− 1 +
U)/n for a single random variable uniformly distributed on [0, 1]. Formulae
(3.8) and (3.9) reveal numerous possibilities for nonstandard choice of ran-
domized coefficients with desired expectations. Below we present even more
general constructions, based on positive linear operators which generalize
the notion of the expectation operator.

Remark 5. Here we refer to Gavrea and Mache (1995). Let Tn,k :
C[0, 1] → R, n ∈ N, k = 0, 1, . . . , n, be positive linear functionals such that
Tn,k1 = 1. Then

(Anf)(x) =

n∑

k=0

Tn,kf · pn,k(x)
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is a positive linear operator acting on f ∈ C[0, 1]. Set

∆n(x) =

n∑

k=0

Tn,k(· − k/n)2 pn,k(x).

Notice that ∆n(x) ≥ 0. Write

∆̃2
hf(x) = f(x+ h)− 2f(x) + f(x− h), x ∈ [h, 1 − h], 0 < h < 1,

and define

ω∗
2(f, t) = sup

0<h≤t
sup

x∈[h,1−h]

|∆̃2
hf(x)|.

We need

Theorem 10 (Gavrea and Mache (1995)). Assume that ∆n(x) ≤ C/n2β

for some C > 0, 1 < β < 2 and all x ∈ [0, 1] (i.e. ∆n(x) = O(n−2β)). Then

|(Anf)(x)− f(x)| ≤ C{∆1/2
n (x) + [∆n(x) + n−1x(1− x)]β/2}

for all x ∈ [0, 1] iff ω∗
2(f, t) = O(tβ).

Corollary 1. If ∆n(x) ≤ C/n2β for some C > 0, 1 < β < 2 and all

x ∈ [0, 1], and ω∗
2(f, t) = O(tβ) for f ∈ C[0, 1], then

‖Anf − f‖∞ ≤ C

[
C1/2

nβ
+

(
C

n2β
+

1

4n

)β/2]
, n ∈ N.

Since

EF g(Xi:n) = n

1\
0

g(F−1(y))pn−1,i−1(y) dy,

EF

n∑

i=1

(Tn−1,i−1f)g(Xi:n) = n

1\
0

g(F−1(y))(An−1f)(y) dy, f ∈ C[0, 1],

we can generally define L-statistics Tn(f, g), n ∈ N \ {1}, with coefficients
ti,n = n−1Tn−1,i−1f , i = 1, . . . , n, which satisfy

EFTn(f, g) =

1\
0

g(F−1(y))(An−1f)(y) dy,

and

(3.10) EFTn(f, g)− µ(f, g, F ) =

1\
0

g(F−1(y))[(An−1f)(y)− f(y)] dy.

Therefore we have

Theorem 11. Let Xi, i ∈ N, be i.i.d. random variables with a com-

mon distribution function F , and f ∈ C[0, 1]. Assume that EF |g(X1)|
< ∞, ∆n(x) ≤ Cn−2β for some C > 0, 1 < β < 2, and all x ∈ [0, 1],
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and ω∗
2(f, t) = O(tβ), using the notions and notations of Remark 5.

Then

|EFTn(f, g)− µ(f, g, F )|
≤ ‖An−1f − f‖∞EF |g(X1)|

≤ C

[
C1/2

(n− 1)β
+

(
C

(n− 1)2β
+

1

4(n − 1)

)β/2]
EF |g(X1)|.

P r o o f. By (3.10), we get

|EFTn(f, g)− µ(f, g, F )| ≤
1\
0

|g(F−1(y))| · |(An−1f)(y)− f(y)| dy

≤ ‖An−1f − f‖∞
( 1\

0

|g(F−1(y))| dy
)

= ‖An−1f − f‖∞EF |g(X1)|.
Applying Corollary 1, we complete the proof.

Remark 6. Here we follow Mache (1995). We recall the notion of Beta
function:

B(p, q) =

1\
0

xp−1(1− x)q−1 dx, p, q > 0,

Let a, b > −1, α ≥ 0 and c = cn = [nα] for n ∈ N. Define positive linear
functionals Tα,k,n : C[0, 1] → R, k = 0, . . . , n, as follows:

(3.11) Tα,k,nf =

T1
0
f(t)tck+a(1− t)c(n−k)+b dt

B(ck + a+ 1, c(n − k) + b+ 1)
.

We also define positive linear operators

(3.12) (Mα
n f)(x) =

n∑

k=0

Tα,k,nf · pn,k(x), n ∈ N, α ≥ 0.

When a = b = 0, we obtain the so-called Durrmeyer operators with Legendre
weights. If, moreover, α = 0, we have the standard Bernstein–Durrmeyer
operators. In (3.11) and (3.12), we ignore in notation the dependence of
the defined notions on a and b, because these do not affect the rates of
approximation presented below.

Theorem 12 (Mache (1995)). (i) (Durrmeyer operators with Jacobi
weights) For α = 0, we get

‖Mα
n f − f‖∞ ≤ Cn−1

[ 1/2\
n−1/2

ωϕ
2 (f, t)∞t−3 dt+ ‖f‖∞

]
.
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(ii) For 0 < α < 1, we obtain

‖Mα
n f−f‖∞ ≤ C

{
n−1−α

[ 1/2\
n−1/2

ωϕ
2 (f, t)∞t−3 dt+‖f‖∞

]
+ωϕ

2 (f, n
−1/2)∞

}
.

(iii) For α ≥ 1, we have

‖Mα
n f − f‖∞ ≤ C[n−1−α‖f‖∞ + ωϕ

2 (f, n
−1/2)∞].

(iv) (Bernstein operators) For α → ∞,

‖Mα
n f − f‖∞ ≤ Cωϕ

2 (f, n
−1/2)∞,

where C > 0 is independent of n, α and f .

We also use

Theorem 13 (Mache (1995)). Let α ≥ 1 and 0 < β < 1. Then

‖Mα
n f − f‖∞ = O(n−β) iff ωϕ

2 (f, t)∞ = O(t2β).

Formula (3.12) describes a large parametric class of generalized L-stati-
stics

Mα
n (f, g) = n−1

n∑

i=1

Tα,i−1,n−1f · g(Xi:n), n ∈ N \ {1},

with coefficients defined by specific positive linear functionals (3.11). The
L-statistics can be determined randomly by means of a probabilistic model
of generalized uniform order statistics introduced by Kamps (1995). Setting
α = 0, we obtain the so-called fractional order statistics with nonintegral
sample sizes, studied in Stigler (1977), and Rohatgi and Saleh (1988). For
some choices of parameters, they have practical interpretations as sequential
order statistics and certain records (see Kamps (1995)).

Observe that

EFM
α
n (f, g) =

1\
0

g(F−1(y))(Mα
n−1f)(y) dy

so that

(3.13) EFM
α
n (f, g)− µ(f, g, F ) =

1\
0

g(F−1(y))[(Mα
n−1f)(y)− f(y)] dy.

Now we are ready to present

Theorem 14. Let Xi, i ∈ N, be i.i.d. random variables with a common

distribution function F and f ∈ C[0, 1]. Assume that EF |g(X1)| < ∞, and
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use the notions and notations of Remark 6. Then

(3.14) |EFM
α
n (f, g)− µ(f, g, F )|

≤ ‖Mα
n−1f − f‖∞

1\
0

|g(F−1(y))| dy

≤ C





(n− 1)−1
[ 1/2\
(n−1)−1/2

ωϕ
2 (f, t)∞t−3 dt+ ‖f‖∞

]
(α = 0)

{
(n− 1)−1−α

[ 1/2\
(n−1)−1/2

ωϕ
2 (f, t)∞t−3dt+ ‖f‖∞

]

+ ωϕ
2 (f, (n− 1)−1/2)∞

}
(0<α< 1)

[(n− 1)−1−α‖f‖∞ + ωϕ
2 (f, (n− 1)−1/2)∞] (α≥ 1)

ωϕ
2 (f, (n− 1)−1/2)∞ (α → ∞)





× EF |g(X1)|.

P r o o f. From (3.13) we obtain

|EFM
α
n (f, g)− µ(f, g, F )| ≤

1\
0

|g(F−1(y))| |(Mα
n−1f)(y)− f(y)| dy

≤ ‖Mα
n−1f − f‖∞

1\
0

|g(F−1(y))| dy.

Then we apply Theorem 12.

Theorem 15. Under the assumptions of Theorem 14 with ωϕ
2 (f, t)∞ =

O(t2β) for some 0 < β < 1, we have

|EFM
α
n (f, g)− µ(f, g, F )| = O((n− 1)−β).

P r o o f. Use (3.14) and Theorem 13.

Remark 7. Here we refer to Gonska and Meier (1984). For f ∈ C[0, 1],
m ∈ N, and 0 ≤ β ≤ γ, we define the Stancu-type positive linear operators

(L
〈0βγ〉
m0 f)(x) =

m∑

k=0

f

(
k + β

m+ γ

)
pm,k(x), x ∈ [0, 1].
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We shall apply the following theorem:

Theorem 16 (Gonska and Meier (1984)). For f ∈ C[0, 1], h > 0,
0 ≤ β ≤ γ, m ∈ N and x ∈ [0, 1] we have

(3.15) |(L〈0βγ〉
m0 f)(x)− f(x)|

≤
[
3 + max

{
1

h2
, 1

}
(γ2 −m)x2 +mx+ β2

(m+ γ)2

]
ω2(f, h)

+
2|β − γx|
m+ γ

max

{
1

h
, 1

}
ω1(f, h).

Maximizing the right-hand side of (3.15), we obtain

Corollary 2. For sufficiently large m ∈ N,

‖L〈0βγ〉
m0 f − f‖∞

≤
[
3 +

m3 + 4m2β(β − γ)

4(m− γ2)(m+ γ)2

]
ω2(f,m

−1/2) +
2(β + γ)m1/2

m+ γ
ω1(f,m

−1/2).

Finally, we consider some generalizations of (1.4). Many authors studied
modifications of the L-statistics that consist in replacing arguments of the
weight function in the coefficients li,n = n−1f((i − 1)/(n − 1)). The most
popular choices were i/n and i/(n + 1). These two and many other cases
can be examined simultaneously if we define

Lβγ
n (f, g) = n−1

n∑

i=1

f

(
i− 1 + β

n− 1 + γ

)
g(Xi:n),

and apply the statements of Remark 7. Observe that

EFL
βγ
n (f, g) =

1\
0

g(F−1(y))(L
〈0βγ〉
n−1,0f)(y) dy

and

(3.16) EFL
βγ
n (f, g)− µ(f, g, F ) =

1\
0

g(F−1(y))[(L
〈0βγ〉
n−1,0f)(y)− f(y)] dy.

Therefore

Theorem 17. Suppose that Xi, i ∈ N, are i.i.d. random variables with

a common distribution function F . Let f ∈ C[0, 1] and EF |g(X1)| < ∞.

Then for sufficiently large n, we have
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|EFL
βγ
n (f, g)− µ(f, g, F )|

≤ ‖L〈0βγ〉
n−1,0f − f‖∞

1\
0

|g(F−1(y))| dy

≤
{[

3 +
(n− 1)3 + 4(n − 1)2β(β − γ)

4(n − 1− γ2)(n − 1 + γ)2

]
ω2(f, (n− 1)−1/2)

+
2(β + γ)(n − 1)1/2

n− 1 + γ
ω1(f, (n− 1)−1/2)

}
EF |g(X1)|.

P r o o f. Use (3.16) and Corollary 2.

4. Concluding remarks. We conclude the paper with discussing rates
of convergence to (1.6) of the expectations of the L-statistics (1.4), (1.5),
and (3.3) for various classes of weight functions. These rates coincide with
the rates of convergence of the Bernstein, Kantorovich and Bernstein–Durr-
meyer operators, respectively, to the identity in Lp-norms, 1 ≤ p ≤ ∞. In
general, n−1/2 is the best rate for these operators (see Knoop and Zhou
(1992), DeVore and Lorentz (1993, formula (7.3)), Gonska and X.-L. Zhou
(1995), and Gonska and D.-X. Zhou (1995), respectively).

Remark 8. For sufficiently large n, (1.4) has a better constant of ap-
proximation than the ones presented in Theorem 1. Namely, the right-hand
side of (2.3) can be replaced by ω2(f, (n − 1)−1/2)E|g(X1)|, which is also
optimal (see Paltanea (1998)).

Remark 9. Since Bn reproduces linear functions, Bnf − f = 0 for
linear f . This means that (1.4) provides unbiased estimates for linear weight
functions. The sample mean and Gini mean difference are classical examples
here.

Remark 10. If f ∈ C2[0, 1], then

‖Bnf − f‖∞ = O(n−1)

(see Gonska and Meier (1984)), and

‖Knf − f‖∞ = O(n−1),

‖Dnf − f‖∞ = O(n−1)

(see Cao and Gonska (1989) and Gonska and Kovacheva (1994)).

Remark 11. Since defining the Bernstein operators for discontinuous
functions does not make sense, we have Lp-norm estimates, p < ∞, for
the Kantorovich and Bernstein–Durrmeyer operators only. Writing Ln for
either Kn or Dn, we have the following statements:
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Theorem 18 (see Totik (1984), Ditzian and Ivanov (1989)). Let

1 ≤ p < ∞. Then for 0 < α < 2, we have

‖Lnf − f‖p = O(n−α/2) iff ωϕ
2 (f, t)p = O(tα).

Here the Ditzian–Totik modulus of smoothness

ωϕ
2 (f, t)p = sup

0≤h≤t
‖∆̃k

hϕ(·)(f, ·)‖p, f ∈ Lp[0, 1],

is defined analogously to (1.10). For the saturation case, we have

Theorem 19 (see Maier (1978a,b), Riemenschneider (1978), Totik
(1983), Heilmann (1988)). We have

‖Lnf − f‖p = O(n−1), 1 ≤ p < ∞,

iff either

ωϕ
2 (f, t)p = O(t2)

for 1 < p < ∞, or

f(x) = K +

x\
y

h(t)

t(1− t)
dt a.e. on [0, 1]

for p = 1 with y ∈ (0, 1), h ∈ BV [0, 1] and h(0) = h(1) = 0.
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