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ALGORITHMS RELATED TO MARKOV CHAINS

Abstract. This paper is devoted to computational problems related to
Markov chains (MC) on a finite state space. We present formulas and bounds
for characteristics of MCs using directed forest expansions given by the Ma-
trix Tree Theorem. These results are applied to analysis of direct methods for
solving systems of linear equations, aggregation algorithms for nearly com-
pletely decomposable MCs and the Markov chain Monte Carlo procedures.

0. Introduction. This work is devoted to computational problems re-
lated to Markov chains (MC) on a finite state space. It is a shorten version
of the author’s Ph.D. thesis [Po 1]. In Section 1, using some combinato-
rial structures—directed forests—we present formulas and bounds for such
characteristics of MCs as the stationary distribution, mean hitting times
and eigenvalues of the transition matrix. These formulas and bounds have
the form of rational functions of elements of the transition matrix and fol-
low from the Matrix Tree Theorem. We apply these results to analyse four
groups of algorithms.

In Section 2 we study direct methods for computing characteristics of MC
which are solutions of systems of linear equations. We generalize Grassmann,
Taksar and Heyman’s version of the Gaussian elimination method. We give
bounds for the entrywise relative error of this algorithm.

Section 3 deals with aggregation algorithms for approximation of the
characteristics of perturbed MCs. Such algorithms are used to solve large
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and sparse linear systems induced by nearly completely decomposable MCs.
In this case we generalize the known algorithms for approximating a sta-
tionary distribution to other characteristics of MCs and to nonlinear per-
turbations.

The last two sections are devoted to the study of Markov chain Monte
Carlo algorithms (MCMC). In Section 4 we bound errors of a general class
of MCMC methods for estimating integrals. In Section 5 we characterize
asymptotic correctness of MCMC algorithms for finding a global minimum.

Due to space constraints, proofs have been omitted. They can be found
in [Po 1] and will be published elsewhere.
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1. Directed forests and Markov chains

1.1. Preliminaries. Let S be a given nonempty finite set and E ⊆ S×S.
For simplicity we assume that S = {1, . . . , s}. The (directed) graph with the
state set S and the edge set E is, by definition, the pair g := (S,E). A pair
g1 := (S1, E1) is called a subgraph of g if S1 ⊆ S and E1 ⊆ E ∩ (S1 ×S1). A
subgraph g1 is called spanning if S1 = S. A path from a state i to a state j
is, by definition, any finite sequence i0 = i, i1, . . . , ik = j such that im ∈ S
and (im, im+1) ∈ E for m = 1, . . . , k− 1. By a cycle we mean a path from i
to i.

A spanning subgraph without cycles in which from every state there is
at most one outgoing edge is called a spanning forest, f = (S,Ef ). The set
R ⊆ S of states of the forest f from which there is no outgoing edge is called
the root of f . It is easily seen that the root of f is nonempty and for every
state i ∈ S \R there is only one path from i to R. We denote by F (R) the
set of all forests in g with root R. For i 6∈ R and j ∈ R, we denote by Fij(R)
the subset of F (R) consisting of all forests with a path from i to j.

Let A = (aij)i,j∈S be an n × n complex matrix. The weighted graph

induced by A is, by definition, the matrix A together with the graph g(A) :=
(S,E), where E = {(i, j) ∈ S × S : aij 6= 0}. The (multiplicative) weight of
a forest f = (S,Ef ) in g(A) is defined to be

w(f) :=
∏

(i,j)∈Ef

(−aij)

(we set w((S, ∅)) := 1). The weight of a set F of forests in g(A) is defined
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to be

w(F ) :=
∑

f∈F

w(f) (w(∅) := 0).

If F = F (R) for some R ⊆ S, we write w(R) instead of w(F (R)), because
the set R determines the set of all forests with root R. Set w(i) := w({i}),
wjk(R, k) := w[Fjk(R∪{k})] and wkl(R) := w[Fkl(R)] for i ∈ S, j, k ∈ S\R,
l ∈ R.

A matrix L := (lij)
s
i,j=1, lij ∈ C, is said to be a laplacian matrix if

lii = −∑

j: j 6=i lij for i = 1, . . . , s. To explain the name we note that such
matrices appear in solving partial differential equations with the Laplace
operator (see for example [Mo]). Symmetric laplacian matrices are known
in combinatorics (e.g. [CvDoSa], [Mo]). Their eigenvalues are used to bound
some combinatorial parameters. Laplacian matrices have also been studied
in the theory of electrical networks under the name of “admittance matrices”
or “Kirchhoff matrices” (see [Che], [Mo]).

Let (Ω,F ,Pr) be a probability space and X = (Xt)t≥0 a Markov chain
(MC) defined on (Ω,F) and with state space S. Markov chains are usually
introduced by a transition probability matrix P = (pij)i,j∈S (when time
is discrete) or by a generator Q = (qij)i,j∈S (when time is continuous).
Let I denote the s × s identity matrix. It is easily seen that the matri-
ces L(P) = I − P and L(Q) = −Q are laplacian matrices induced by P

and Q.

Many facts we consider here are the same for the discrete and continuous
case (see [Io], [KeSn] for more details about MCs). For that reason and
for simplicity of notation we will introduce MCs by Markov chain laplacian

matrices (MC laplacian matrices), i.e. laplacian matrices whose off-diagonal
elements are nonnegative.

1.2. Directed forest expansions for cofactors of a laplacian matrix. For
U,W ⊆ S and an s × s matrix A, denote by A(U |W ) the submatrix of
A obtained by deletion of the rows and columns indexed by U and W
respectively. The cofactor of A(U |W ) is, by definition, the number

CA(U |W ) := (−1)
∑

i∈U i+
∑

j∈W j detA(U |W ).

For simplicity of notation we write Aij instead of A({i} | {j}) and A(U)
instead of A(U |U). Let es and 0s denote the column vectors in which each
component is 1 and 0 respectively.

The following lemma allows one to represent many characteristics of MCs
in the form of directed forest expansions, i.e. rational functions of weights
of sets of forests in g(L). Without loss of generality we can assume that the
states are numbered so that R = {s− |R|+ 1, . . . , s}, where |R| denotes the
cardinality of R.
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Lemma 1.1. Let L be an s × s laplacian matrix , R ⊆ S and i, j 6∈ R.
Then:

(1) ([FieSe]) detL(R) = w(R);

(2) CL(R ∪ {j} |R ∪ {i}) = wij(R, j).

In the proof of the above lemma we use a general version of the “Matrix
Tree Theorem” [Che, prob. 4.16, Cha]. A simple consequence of Lemma 1.1
is the following.

Lemma 1.2. Let L be an s×s laplacian matrix and R ⊆ S. Suppose that

w(R) 6= 0. Then

L(R)−1 =

[

wij(R, j)

w(R)

]

i,j∈S\R

.

From these lemmas we obtain the following corollaries.

Corollary 1.1. Let A = (aij)
s−1
i,j=1 be an (s− 1) × (s− 1) matrix and

L :=

(

A l

0 . . . 0

)

, where l =
(

−
s−1
∑

j=1

a1j , . . . ,−
s−1
∑

j=1

as−1,j

)T

.

Moreover for i, j = 1, . . . , s− 1 and R ⊆ S let F (s), Fij(s, j) and F (S \R)
be the relevant sets of forests in the graph g(L). Then:

(1) ([BoMa]) detA = w(F (s));
(2) if w(F (s)) 6= 0, then

A−1 =

[

w(Fij(s, j))

w(F (s))

]s−1

i,j=1

.

Corollary 1.2. Let A = (aij)
s−1
i,j=1, x = (x1, . . . , xs−1)T , b = (b1, . . .

. . . , bs−1)T , x,b ∈ C
s−1. Set

L :=

(

A l

−bT b

)

, where

l :=
(

−
s−1
∑

j=1

a1j , . . . ,−
s−1
∑

j=1

as−1,j

)T

and b :=
s−1
∑

j=1

bj .

Moreover let F (i), i ∈ S, be the relevant sets of forests in the graph g(L).
Then:

(1) the system ATx = b has exactly one solution if and only if w(F (s))
6= 0;

(2) if w(F (s)) 6= 0, then xi = w(F (i))/w(F (s)).

1.3. Directed forest expansions for characteristics of Markov chains.

Many characteristics of MCs are solutions of the systems of linear equations
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(1.1) L(R)x = b

or

(1.2) LT (R)x = b,

where b is a nonnegative (s− |R|)-vector. From Lemma 1.2 or from Corol-
laries 1.1 and 1.2 we can easily obtain directed forest expansions for these
characteristics. We give simple examples.

By a stationary distribution of an MC induced by a laplacian matrix
L we mean a nonnegative, normalized vector π = (π1, . . . , πs)

T which is a
solution of the system

(1.3) πTL = 0T
s .

To solve (1.3) it is sufficient to solve the system

(1.4) LT
11a1 = −(l12, . . . , l1s)T ,

and then to normalize the vector aT := (1,aT1 ). Obviously (1.4) is an ex-
ample of (1.2).

A nonempty subset M of the state set S is called a closed set in the
graph g if there are no states i ∈M , j ∈ S \M so that (i, j) ∈ E. A closed

class in g is, by definition, any closed set in g which is minimal for the order
induced by inclusion. It is known that in every graph there is at least one
closed class. It is clear that w(f) > 0 in the graph g(L) if L is an MC
laplacian matrix. Moreover if MC has one closed class then there is at least
one state i ∈ S such that w(i) > 0.

Theorem 1.1 (Markov Chain Tree Theorem). If an MC has one closed

class, then

πi =
w(i)

∑

j∈S w(j)
for i ∈ S.

The history of discovery of Theorem 1.1 remains mysterious. Aldous
[Al] wrote that it is “the most often rediscovered result in probability the-
ory”. Kohler and Vollmerhaus [KoVo] called it the “diagram method” and
attributed to Hill [Hi]. The Markov Chain Tree Theorem was proved inde-
pendently by Freidlin and Wentzell [FreWe 1] and Shubert [Sh]. Our proof
using the Matrix Tree Theorem seems to be new.

For R ⊆ S, ω ∈ Ω, A ∈ F , i, j 6∈ R, k ∈ R set:

• τR(ω) := inf{t ≥ 0 : Xt(ω) ∈ R}, the hitting time of the set R,
• Pri(A) := Pr(A |X0 = i),
• EiY :=

T
Ω
Y (ω) Pri(dω) for every measurable function Y : Ω → R,

• µij(R) = Ei[
∑

0≤t<τR
1(Xt = j)], the mean number of visits in j before

absorption by R,
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• mi(R) := EiτR, the mean hitting time of R,
• pik(R) := Pri{XτR(ω)(ω) = k}, the probability distribution in the

hitting time of R.

The last three characteristics may be computed by solving systems (1.1).
For example, the vector m(R) = (mi(R))i∈S\R is the solution of the system

L(R)m(R) = e.

Theorem 1.2. Let L be an MC laplacian matrix such that there exists

a forest with root R in the graph g(L). Then for i, j ∈ S \R and k ∈ R,

µij(R) =
wij(R, j)

w(R)
,(1)

pik(R) =
wik(R)

w(R)
,(2)

mi(R) =

∑

j 6∈Rwij(R, j)

w(R)
.(3)

Parts (2) and (3) of Theorem 1.2 were proved by Freidlin and Wentzell
in the case of discrete time [FreWen 1–2]. Part (1) seems to be new.

Theorems 1.1 and 1.2 provide directed forest expansions for the most
known characteristics of MCs. In the same way one can “expand” other
parameters, e.g. the limiting matrix, the fundamental matrix or higher
moments of the hitting time (see [Po 1]). The next application of directed
forest expansions is in bounding eigenvalues of an MC laplacian matrix and,
what is the same, of a transition probability matrix or a generator.

Let 0 = λ1, λ2, . . . , λs be the eigenvalues of an MC laplacian matrix L.
Suppose that they are all real (this assumption is satisfied for the interesting
reversible MCs—see Section 4) and numbered in increasing order: λ1 = 0 ≤
λ2 ≤ . . . ≤ λs. Set

F k :=
⋃

R⊆S, |R|=k

F (R) for k = 0, . . . , s.

Obviously w(F 0) = 0 and w(F s) = 1.

Theorem 1.3. Let L be an MC laplacian matrix with one closed class

which has only real eigenvalues. Then for k = 2, . . . , s,
(

s− 1

k − 2

)−1
w(F k−1)

w(F k)
≤ λk ≤

(

s− 1

k − 1

)

w(F k−1)

w(F k)
.

In the paper [Po2] there are related bounds between uncoupling measures
and eigenvalues of a general MC Laplacian matrix.

2. Direct methods for systems of linear equations related to

Markov chains. The directed forest expansions given in the previous sec-
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tion can be used to bounding the roundoff error of direct methods which
solve (1.1) or (1.2). This is interesting in some applications where accurate
computations are needed, for example in models of transmission of high-
definition television signals (see [HeRe], [O’C] for more details). To analyse
the error of the algorithms we will consider perturbations of an MC lapla-
cian matrix L and a nonnegative vector b caused by representation and
computing in floating-point arithmetic with unit roundoff error ε.

For a given k ∈ N, 0 < ε1 < 1, and functions A,B : (0, ε1) → R, the
notation A(ε) = 〈k〉B(ε) means that

(1 − ε)k ≤ A(ε)

B(ε)
≤ (1 − ε)−k for ε ∈ (0, ε1)

(cf. Stewart [St], p. 407).

A family {L(ε) : ε ∈ (0, ε1)} of MC laplacian s× s matrices is said to be
a relatively perturbed Markov chain (RPMC) induced by an MC laplacian
matrix L = (lij)i,j∈S if for every i, j ∈ S with i 6= j,

−lij(ε) = 〈1〉lij .
A family {b(ε) : ε ∈ (0, ε1)} of nonnegative u-vectors is called a relatively

perturbed nonnegative vector (RPNV) induced by a nonnegative vector b =
(bi)

u
i=1 if for every i = 1, . . . , u,

bi(ε) = 〈1〉bi.
Note that g(L(ε)) = g(L) for ε ∈ (0, ε1). It is easy to prove the following

proposition.

Proposition 2.1. Let {L(ε) : ε ∈ (0, ε1)} be an RPMC induced by a

laplacian matrix L. Set u := s− |R|. Then:

(1) w(f)(ε) = 〈u〉w(f) for f ∈ F (R),

(2) w(R)(ε) = 〈u〉w(R),

where w(f)(ε) and w(R)(ε) denote the weight of the forest f and the weight

of F (R) in g(L(ε)).

The next theorem says to what extent the entrywise relative error in L

and b affects the error of solutions of (1.1) and (1.2).

Theorem 2.1. Let {L(ε) : ε ∈ (0, ε1)} be an RPMC induced by L and

R ⊆ S. Furthermore let {b(ε) : ε ∈ (0, ε1)} be an RPNV induced by b of

order u := s − |R|. Assume that there exists a forest with root R in g(L).
Then:

(1) the solutions x = (xi)i∈S\R and x(ε) = (xi(ε))i∈S\R of the systems

L(R)x = b and L(R)(ε)x(ε) = b(ε)
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satisfy

xi(ε) = 〈2u〉xi for i ∈ S \R;

(2) the solutions x = (xi)i∈S\R and x(ε) = (xi(ε))i∈S\R of the systems

LT (R)x = b and LT (R)(ε)x(ε) = b(ε)

satisfy

xi(ε) = 〈2u〉xi for i ∈ S \R.
The proof of the above theorem uses directed forest expansions given in

Section 1. In the case of a stationary distribution we are led to the following
corollary.

Corollary 2.1. Let {L(ε) : ε ∈ (0, ε1)} be an RPMC induced by a

laplacian matrix L with one closed class. Then for i ∈ S,

πi(ε) = 〈2(s − 1)〉πi,
where πi(ε) are the components of the stationary distribution of an MC with

laplacian matrix L(ε).

O’Cinneide [O’C] obtained slightly weaker bounds without using directed
forest expansions. His example indicates that they are nearly best possible.

It is known that subtractions appearing in computing a stationary distri-
bution from the system (1.4) by Gaussian elimination can sometimes be the
major source of roundoff errors. Grassmann, Taksar and Heyman [GrTaHe]
introduced a procedure for this problem which involves no subtractions.
This method is commonly referred to as the GTH algorithm. In [Po 1] we
generalized the GTH algorithm for the systems (1.1) and (1.2). Theorem
2.2 below gives a bound on the entrywise relative error for these algorithms.
The proof relies on Theorem 2.1.

Let x, y be floating point numbers with unit roundoff error ε. Moreover,
let fl(x⋄y) for ⋄ ∈ {+,−, ∗, /}, denote the result of the operation “⋄” in
floating-point arithmetic. Suppose that

fl(x⋄y) = 〈1〉(x⋄y)

and that arithmetic operations do not produce overflow or underflow.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Then the vector

x(ε) = (xi(ε))i∈S\R computed by algorithm 3.1 (3.2) from [Po 1] satisfies the
relation

xi(ε) = 〈ψ(u)〉xi, where ψ(u) = 5u2 + 13u− 16.

If additionally ψ(u)ε ≤ 0.1, then

|xi(ε) − xi| ≤ 1.06ψ(u)xiε for i ∈ S \R.
It is surprising that the above bounds do not depend on the condi-

tion numbers. Theorem 2.2 is a generalization and a sharpened version of
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O’Cinneide’s result [O’C, Th. 3], because it deals not only with (1.4) and
there is no assumption that pivots are computed in double precision. In the
same manner we can prove bounds for a given characteristic of MCs.

3. Aggregation algorithms for powerly perturbed Markov

chains. Markov chains that appear in many applications (e.g. in queue-
ing network analysis) are large and sparse. Their laplacian matrices have
a nearly block structure. Such chains are referred to as nearly completely

decomposable MCs (NCDMCs) and may be defined in the simplest case as a
family {L(ε) : ε ∈ (0, ε1)} of irreducible MCs indexed by a small parameter
ε such that

L(ε) =









L1 0 . . . 0

0 L2 . . . 0
...

...
. . .

...
0 0 . . . Lm









+ εL′,

where L1, . . . ,Lm are irreducible MC laplacian matrices of order s1, . . . , sm,
respectively, and L′ is an MC laplacian matrix of order s = s1 + . . .+ sm.

For NCDMCs, direct methods can lead to immense fill-in during the
triangularization part of computation. Furthermore NCDMCs have eigen-
values close to 1. This implies that standard iterative algorithms converge
very slowly.

The idea of aggregation algorithms is to divide the problem into sub-
problems that can be solved nearly independently and then to link the sub-
problem solutions together (see Ch. 6 in [Ste-W] for more details).

NCDMCs have some generalizations. For example:
(1) The linearly perturbed MCs

L(ε) = L0 + εL1,

where L0 and L1 are MC laplacian matrices (see [HasHav], [Sch 1–3]).
(2) The polynomially or analytically perturbed MCs

L(ε) =

N
∑

n=0

εnLn,

where every Ln is an MC laplacian matrix, N ≤ ∞ (see [HasHav], [RoWi
1–2]).

Below we define a wider class of perturbed MCs.
For given functions A,B : R → R, the notation A(ε) ∼ B(ε) means that

lim
ε→0

A(ε)

B(ε)
= 1.

To unify the notation we set A(ε) ∼ 0 if there exists ε1 6= 0 such that
for every ε ∈ (−ε1, ε1), A(ε) = 0. Furthermore put 0

0 := 1.



404 P. Pokarowski

A family {L(ε) : ε ∈ (0, ε1)} of MC laplacian s × s matrices is said
to be a powerly perturbed Markov chain (PPMC) if there exist matrices
∆ = (δij)i,j∈S, D = (dij)i,j∈S with δij ≥ 0 and dij ∈ R∪{∞} such that for
every i, j ∈ S with i 6= j,

−lij(ε) ∼ δijε
dij .

A family {b(ε) : ε ∈ (0, ε1)} of nonnegative u-vectors is called a powerly

perturbed nonnegative vector (PPNV) if there exist vectors ζ = (ζi)
u
i=1 and

z = (zi)
u
i=1 with ζi ≥ 0 and zi ∈ R ∪ {∞} such that for every i = 1, . . . , u,

bi(ε) ∼ ζiε
zi .

From now on we identify a PPMC {L(ε) : ε ∈ (0, ε1)} with the matrices
∆ and D, and a PPNV {b(ε) : ε ∈ (0, ε1)} with the vectors ζ and z.

Set

g∗(D) := (S, {(i, j) ∈ S × S : dij <∞}).

Let f be a forest and F a set of forests in g∗(D), respectively. Let us
introduce some parameters of PPMCs:

d(f) :=
∑

(i,j)∈f

dij , δ(f) :=
∏

(i,j)∈f

δij ,

d(F ) := min
f∈F

d(f), δ(F ) :=
∑

f∈F :d(f)=d(F )

δ(f).

Moreover, let w(f)(ε) and w(F )(ε) denote the weight of the forest f and
the set F of forests in g(L(ε)).

It is easy to prove the following proposition.

Proposition 3.1. Let matrices ∆ and D be a PPMC. Furthermore let

f and F be a forest and a set of forests in g∗(D). Then:

(1) w(f)(ε) ∼ δ(f)εd(f);
(2) w(F )(ε) ∼ δ(F )εd(F ).

The following theorem describes the asymptotics of solutions of systems
(1.1) and (1.2) connected to PPMCs in terms of directed forest expansions.

Theorem 3.1. Let matrices ∆ and D be a PPMC and R ⊆ S. Moreover

let vectors ζ and z of order u := s − |R| be an PPNV. Suppose that there

exists a forest with root R in g∗(D). Then:

(1) the solution x(ε) = (xi(ε))i∈S\R of the system

L(R)(ε)x(ε) = b(ε)

satisfies

xi(ε) ∼ αiε
ai , for i ∈ S \R;
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(2) the solution x(ε) = (xi(ε))i∈S\R of the system

LT (R)(ε)x(ε) = b(ε)

satisfies

xi(ε) ∼ α′
iε

a′

i for i ∈ S \R,
where the coefficients αi, ai, α

′
i and a′i are some constants.

In the proof of the above theorem (see [Po 1]) we use Lemma 1.2 and
Proposition 3.1. The coefficients αi, ai, α

′
i and a′i are expressed by explicit

but complicated formulas in terms of the parameters d(F ) and δ(F ) for
some sets of forests in g∗(D) (see Th. 4.1 in [Po 1] for more details). In the
simplest case of stationary distribution we have the following corollary.

Corollary 3.1. Let {L(ε) : ε ∈ (0, ε1)} be a PPMC induced by matrices

∆ and D such that the graph g∗(D) has one closed class. Then

πi(ε) ∼ ηiε
hi for i ∈ S,

where

hi := d(F ({i})) − min
j∈S

d(F ({j})),

ηi := δ(F ({i}))
/

∑

j:hj=0

δ(F ({j})).

This corollary is similar to the results by Freidlin and Wentzell [FreWe 1–
2] and Hwang and Sheu ([HwSh 1–2]), where a broader family of perturbed
MCs is considered. However, the results there are less conclusive.

The formulas for αi, ai, α
′
i and a′i referred to above are not suitable

for computation due to exponential complexity. In [Po 1] we give effective
and accurate aggregation algorithms for these coefficients. They require
O(s3) comparisons and arithmetic operations (algorithms 4.3–4.6 therein).
In the proofs of correctness of the algorithms Theorem 4.1 is applied. Our
algorithms are generalizations of methods by:

• Schweitzer [Sch 1–2], who constructs an algorithm for a stationary
distribution of linearly perturbed, irreducible MCs;

• Hassin and Haviv [HasHav], who construct an algorithm for orders of
magnitude of mean hitting times for linearly perturbed, irreducible MCs;

• Desai, Kumar and Kumar [DeKuKu], who construct an algorithm for
orders of magnitude of a stationary distribution of special PPMCs.

4. Markov chain Monte Carlo algorithms for estimating in-

tegrals. In this section we consider the problem of approximation of the
integral of a function f : S → R with respect to a probability distribution
π = (πi)i∈S , under the assumption that πi > 0 for all i ∈ S. This problem
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arises in statistical physics, for example when we estimate global character-
istics of the Ising model. The state space S is very large (e.g. 21000) and
direct summation is impossible. We use Monte Carlo algorithms which give
estimates based on a relatively small sample drawn from S. The best general
reference here is Sokal [So]. We are interested in the Markov chain Monte

Carlo (MCMC) algorithms which generate discrete time MCs X = (Xt)t≥0

with stationary distribution π. The sample mean

f t(ω) :=
1

t

t−1
∑

j=0

f(Xj(ω)), ω ∈ Ω,

is the “natural” estimator of πT f :=
∑

i∈S fiπi. Here and in the sequel, fi
and f(i) have the same meaning. The ergodic theorem leads one to believe
that, as the sample size t increases, the error of approximation becomes
vanishingly small, because

Pr{ lim
t→∞

f t = πT f} = 1.

To clarify the association with statistical mechanics, we write π in the
form of “Gibbs distribution”

πi(τ) :=
exp(−ui/τ)

∑

j∈S exp(−uj/τ)
, i ∈ S.

with a “potential” function u : S → R and with “temperature” τ . For
simplicity of notation we write ε := exp(−1/τ).

The best known of MCMC methods, the Metropolis algorithm [Me et al.],
is the following. Let ∆ = (δij)i,j∈S be a symmetric irreducible stochastic
matrix.

1) Let i be the state of the algorithm at time t, Xt = i. One chooses at
random a “neighbour” Yt = j of i, according to a probability distribution
δi· given by the ith row of ∆.

2) If uj ≤ ui, the state moves to j, Xt+1 := j. Otherwise, the state
moves to j with probability εuj−ui , or stays at i with probability 1−εuj−ui ,
Xt+1 := i.

The Metropolis algorithm generates the MC with the following transi-
tions:

Prε{Xt+1 = j |Xt = i} = δijε
(uj−ui)∨0 for j 6= i.

The Gibbs sampler demands a special structure of the state space. Let
S = KL, where L is a finite lattice and K is a finite set of “levels” with
|K| > 1. For a “site” x ∈ L and i ∈ S, let

Nx(i) = {j ∈ S : j(z) = i(z) for all z 6= x, z ∈ L}
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and N(i) =
⋃

x∈LNx(i). For i, j ∈ S, put

gεx(i, j) =
{

εuj/(
∑

k∈Nx(i)
εuk) if j ∈ Nx(i),

0 otherwise.

The transition probabilities of the Gibbs sampler (with random updating
scheme) are the following:

Prε{Xt+1 = j |Xt = i} =
1

|L|
∑

x∈L

gεx(i, j).

In most applications we are interested in the behaviour of errors of al-
gorithms as ε→ 0. To unify the analysis of MCMC methods, we introduce
the following definition.

A family {L(ε) : ε ∈ (0, ε1)} of MC laplacian s× s matrices is called Θ
powerly perturbed Markov chain (ΘPPMC) if there exist numbers c0, c1 > 0
and a matrix D = (dij)i,j∈S with dij ∈ R ∪ {∞} such that for all i, j ∈ S
with i 6= j,

c0ε
dij ≤ −lij(ε) ≤ c1ε

dij (ε∞ := 0).

Note that for the Metropolis algorithm and the Gibbs sampler we have,
respectively,

dij :=

{

(uj − ui) ∨ 0 if δij > 0,
∞ if δij = 0;

dij :=
{

uj − mink∈Nx(i) f(k) if j ∈ Nx(i) for some x ∈ L,
∞ otherwise.

It is clear that the family of ΘPPMC is larger than that of PPMC and has
similar properties. For example,

(c0/c1)s−1εhi ≤ πi(ε) ≤ (c1/c0)s−1εhi .

Let

vk := d(F k−1) − d(F k), where F k :=
⋃

R⊆S, |R|=k

F (R)

and d(F ) is defined in Section 3.

Theorem 1.3 allows us to bound eigenvalues of ΘPPMCs.

Theorem 4.1. Let {L(ε) : ε ∈ (0, ε1)} be a ΘPPMC which has only real

eigenvalues, induced by a matrix D. Then for k = 2, . . . , s,
(

s− 1

k − 2

)−1(
s

k

)−1

kss−k−1cs−k+1
0 ck−s

1 εvk ≤ λk(ε)

and

λk(ε) ≤
(

s− 1

k − 1

)(

s

k − 1

)

(k − 1)ss−kck−s
0 cs−k+1

1 εvk .
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This theorem is similar to the result by Wentzell [We], where a larger
family of chains than our ΘPPMC is considered. However, Wentzell’s con-
clusion is less precise. In that paper, a fact equivalent to Lemma 1.1(1) is
announced without proof. Chiang and Chow [ChiCho] proved that the coef-
ficients vk are the same for the Metropolis algorithm and the Gibbs sampler.
Ingrassia [In] bounded λ2(ε) for these procedures using the Poincaré inequal-
ity ([Al], [DiSt], [Si]). In comparison with the Ingrassia inequality, Theorem
3.1 gives worse constants for λ2, but allows us to bound all eigenvalues.

To establish bounds on errors of MCMC algorithms, we will use a recent
result of Dinwoodie.

An MC with a laplacian matrix L is called reversible if it has a stationary
distribution π = (πi)i∈S such that for all i, j ∈ S,

πilij = πj lji.

Both the Metropolis algorithm and the Gibbs sampler generate reversible
MCs. One can easily prove that the eigenvalues of reversible L are real. Let
us number them in increasing order λ1 = 0 ≤ λ2 ≤ . . . ≤ λs ≤ 2.

Lemma 4.1 (Dinwoodie [Din]). Let f : S → R. Assume that 0 ≤ f ≤ 1.
Then for every δ ∈ [0, (8λ2 + 16)−3] and i ∈ S,

Pri{f t − πT f ≥ δ} ≤
[

1 +
9δ(λ2 + 2)√

πi

]

exp(−tλ2δ2/2).

The following theorem yields bounds for errors of estimation of an inte-
gral by a sample mean for ΘPPMCs. The main advantages of this result
are: large generality and explicit dependence on parameters of ΘPPMCs, ε
and t.

Theorem 4.2. Let {L(ε) : ε ∈ (0, ε1)} be a reversible and irreducible

ΘPPMC induced by a matrix D and constants c0, c1. Let π(ε) be the station-
ary distribution of a MC laplacian matrix L(ε). Moreover , let f : S → R,
i ∈ S, p > 0 and t ∈ N. Set

r(f) := max
i∈S

fi − min
i∈S

fi.

Then:

(1) for δ ∈ [0, r(f)(8C1(c0, c1)εv2(D) + 16)−3],

Prεi{|f
ε

t − πT (ε)f | ≥ δ}
≤ C2((c0/c1)s−1εhi(D)) exp[−tC0(c0, c1)εv2(D)δ2/(2r2(f))];

(2) (Eε
i |f

ε

t − πT (ε)f |p)1/p

≤ C3(p, (c0/c1)s−1εhi(D), r(f))/
√

tC0(c0, c1)εv2(D),

where C0, C1, C2, C3 are some constants.
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Theorem 4.2 and the results by Chiang and Chow [ChiCho] mentioned
above support the empirical experience that the Metropolis algorithm and
the Gibbs sampler have asymptotically equivalent behavior for low temper-
atures.

5. Markov chain Monte Carlo algorithms for finding a global

minimum. In this section we investigate stochastic algorithms for searching
a minimum of a function f : S → R. These algorithms generate MCs
and are applied when S is a large set (for example in the area of VLSI
design). One of them, the Simulated Annealing (SA) algorithm, generates
a nonhomogeneous MC with transition probabilities

Pr{Xt+1 = j |Xt = i} = δijε
(fj−fi)∨0
t for j 6= i,

where (εt)t≥0 is a sequence decreasing to 0. We refer to [KiGeVe] and
[RomSa] for a general exposition and applications of this method. It is easily
seen that SA is a nonhomogeneous version of the Metropolis algorithm.
Similarly we can modify the Gibbs sampler.

We are interested in asymptotic correctness of minimization algorithms,
that is, in convergence of min0≤s≤t f(Xs) to mini∈S f(i) with probability
one. To unify the analysis we introduce the following definitions.

Let (Xt)t≥0 be a nonhomogeneous Markov chain with discrete time on
a finite state space S. Suppose that for every i ∈ S, Pr{X0 = i} > 0. This
condition is not particularly restrictive but it will allow us to omit some
tedious details and concessions.

For simplicity of notation, write

{A ult.} := {ω ∈ Ω : ∃N≥0∀t≥N Xt(ω) ∈ A},
{A i.o.} := {ω ∈ Ω : ∀N≥0∃t≥N Xt(ω) ∈ A},
{j i.o.} := {{j} i.o.},

for all A ⊆ S and j ∈ A.
A state j ∈ S is called recurrent if Pr{j i.o.} > 0. Otherwise j is

transient.
The asymptotically closed class (ACC) of a nonhomogeneous MC is, by

definition, the subset R of S satisfying the following conditions:

(1) {R i.o.} 6= ∅ a.s.;
(2) {R i.o.} = {R ult.} a.s.;
(3) R is a set with properties (1) and (2) which is minimal with respect

to inclusion.

The proposition below expresses the basic features of ACCs.

Proposition 5.1. Let R1, . . . , Rm be all ACCs of a nonhomogeneous

MC. Moreover , let T := S \⋃i≤mRi. Then:
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(1) m ≥ 1;
(2) the sets R1, . . . , Rm, T are a partition of S;
(3) {T i.o.} = ∅ a.s.;
(4) {R1 ult.} ∪ . . . ∪ {Rm ult.} = Ω a.s.

An ACC R is a recurrent class if it satisfies additionally the following
condition:

{R i.o.} =
⋂

j∈R

{j i.o.}.

In general, an ACC is not necessarily a recurrent class but for homoge-
neous MCs, both these notions reduce to the notion of a closed class (see
Section 2.5 of [Io]).

A nonhomogeneous Markov chain (Xt)t≥0 on the state space S is said
to be a chain with powerly diminishing transitions (PDTC) if for all i, j ∈ S
with i 6= j,

cε
dij

t ≤ Pr{Xt+1 = j |Xt = i} ≤ Cε
dij

t ,

where C, c > 0, 0 < εt+1 ≤ εt < 1 for t ≥ 0, limt→0 εt = 0, 0 ≤ dij ≤ ∞,
ε∞t := 0.

The family of PDTC contains MCs generated by SA if we set, for i 6= j,

dij :=
{

(uj − ui) ∨ 0 if δij > 0,
∞ otherwise.

In the sequel we will consider only PDTCs.
The recurrence order of i, denoted by αi, is defined to be the number

αi := sup
{

c ≥ 0 : Pr
{

ω ∈ Ω :
∑

t≥0

εct1(Xt(ω) = i) = ∞
}

> 0
}

, i ∈ S

(we set sup ∅ = −∞).
Note that a state i ∈ S of a PDTC is recurrent if and only if αi ≥ 0.

Furthermore αi ≤ ̺, where ̺ := sup{c ≥ 0 :
∑

t≥0 ε
c
t = ∞}. Suppose that

(5.1)
∑

t≥0

ε̺t = ∞.

To state the main result of this section, Theorem 5.1, it will be convenient
to modify definitions of a directed forest and its parameters, given in Sections
1 and 3.

A forest on a domain A ⊆ S, A 6= ∅, is a subgraph f = (A,Ef ) of g(L)
without cycles, in which from every state i ∈ A there is at most one outgoing
edge. Let FA(R) be the set of all forests in g(L) on the domain A with root
R ⊆ A. Similarly to the definitions given in Section 3, we introduce dA(f)
and dA(FA(R)). For simplicity, we write dA(i) in place of dA(FA({i})) for
i ∈ A. The analogues of the coefficients hi in Corollary 3.1 are

hA(i) := dA(i) − min
j∈A

dA(j).
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For ∅ 6= A ⊂ S, let

V (A) := min
i∈R, j∈S\A

[hA(i) + dij ]

(we set min ∅ := ∞, V (S) := ∞ and ∞−∞ = ∞).

A cup in the graph g∗(D) is a minimal set A ⊂ S such that V (A) ≥ ̺.

It can be proved that in every graph g∗(D) there is at least one cup and
that two different cups in g∗(D) are disjoint.

The main result of this section decribes recurrent classes and recurrent
orders of PDTCs in terms of directed forest expansions.

Theorem 5.1. (1) For every A ⊆ S, A is a recurrent class if and only

if A is a cup.

(2) For every i ∈ S, if i belongs to some cup, then αi = ̺ − hA(i);
otherwise αi = −∞.

The results of Connors and Kumar and their method of solving “balance
equations” for similar recurrence orders

βi := sup
{

c ≥ 0 :
∑

t≥0

εctPr(Xt = i) = ∞
}

were a starting point of the paper [NiPo]. In this paper the tail σ-field of a
PDTC was characterized in terms of the recurrence orders

γi(ω) := sup
{

c ≥ 0 :
∑

t≥0

εct1(Xt(ω) = i) = ∞
}

.

The γis and cups were expressed there by balance equations, without using
directed forest expansions. Moreover, we proved that the solutions of the
balance equations are unique. Borkar [Bo], using a similar technique, derived
balance equations for γi. Niemiro [Ni] applied the description of the tail
σ-field to analyse convergence in probability for PDTCs generated by SA
algorithms. It is worth noting that, unlike βi, the recurrence orders αi are
uniquely determined and can be efficiently computed.

If assumption (5.1) is not satisfied, to prove Theorem 5.1 it is sufficient
to replace the condition “V (A) ≥ ̺” by “V (A) > ̺” in the definition of a
cup.

The theorem leads to an explicit criterion of reachability (a.s.) of every
set A for PDTCs.

Corollary 5.1. For a PDTC and every A ⊆ S, the following conditions

are equivalent :

(1) Pr{A i.o.} = 1.

(2) Pr{∃t≥0Xt ∈ A} = 1.

(3) In every cup there is a state which belongs to A.



412 P. Pokarowski

Application of this corollary to MCs generated by the SA algorithm and
to the set S∗ := {i ∈ S : ∀j∈S ui ≤ uj} of global minima yields Connors
and Kumar’s theorem [ConKu].
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