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SAMPLE PATH AVERAGE OPTIMALITY OF

MARKOV CONTROL PROCESSES WITH

STRICTLY UNBOUNDED COST

Abstract. We study the existence of sample path average cost (SPAC-)
optimal policies for Markov control processes on Borel spaces with strictly

unbounded costs, i.e., costs that grow without bound on the complement
of compact subsets. Assuming only that the cost function is lower semi-
continuous and that the transition law is weakly continuous, we show the
existence of a relaxed policy with “minimal” expected average cost and that
the optimal average cost is the limit of discounted programs. Moreover,
we show that if such a policy induces a positive Harris recurrent Markov
chain, then it is also sample path average (SPAC-) optimal. We apply our
results to inventory systems and, in a particular case, we compute explicitly
a deterministic stationary SPAC-optimal policy.

1. Introduction. We study the existence of sample path average cost

(SPAC-) optimal policies for Markov control processes on Borel spaces with
strictly unbounded costs, i.e., costs that grow without bound on the comple-
ment of compact subsets. There is a huge literature dealing with the expected
average cost (EAC) criterion [see Arapostathis et al. (1993), Hernández-
Lerma and Lasserre (1996) and the references therein], but in contrast, the
sample path (or pathwise) analysis is seldom carried out and, when it is done,
it is restricted either to the denumerable state space case [Borkar (1991),
Cavazos-Cadena and Fernández-Gaucherand (1995), Mandl and Laus-
manová (1991)] or to bounded one-step costs [Arapostathis et al. (1993)],
in any of these cases, under strong recurrence/ergodicity conditions. To the
best of our knowledge, the only works dealing with sample path optimality
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on Borel spaces and unbounded cost are the papers by Hernández-Lerma et

al. (1998) and Lasserre (1996). It is important to note that the approaches
in these papers differ from ours; in fact, roughly speaking, in the former a
“V -uniform ergodicity” assumption is used, whereas in the latter the control
problem is studied via (infinite-dimensional) linear programming.

In the present paper, assuming solely lower semicontinuity of the one-step
cost function and weak continuity of the transition law, we show that the
expected and sample path average control problems with strictly unbounded
costs are “well-behaved” in the sense that to prove, for every policy and
initial distribution, that the SPAC is bounded below by the minimum EAC
as well as to ensure the existence of a “relaxed” policy with “minimal”
EAC [see Theorems 3.4 and 3.6(a), respectively], it suffices to assume that
the EAC is finite for some policy and initial distribution. Moreover, we
show that if the relaxed policy with minimal cost induces a positive Harris
recurrent Markov chain, then it is also SPAC-optimal [Theorem 3.6(b)].

The remainder of the paper is organized as follows. Section 2 contains a
brief description of the relevant Markov control model and the assumptions.
In Section 3 we introduce the optimality criteria and state the main results
[Theorems 3.4–3.6]; their proofs are given in Sections 5 and 6. In Section 4
we discuss several examples from inventory theory and, in a specific case, we
compute explicitly a (deterministic) stationary policy which is both (strong)
EAC-optimal and SPAC-optimal [see Definition 3.2 below].

We shall use the following notation. Given a Borel space Y (i.e., a Borel
subset of some separable complete metric space), B(Y ) denotes its Borel
σ-algebra, and “measurable” will mean “Borel-measurable”. P(Y ) stands
for the class of all probability measures on Y . Moreover if Y and Z are
Borel spaces then a stochastic kernel on Y given Z is a function P (· | ·) such
that P (· | z) is a probability measure on Y for each z ∈ Z, and P (B | ·) is a
measurable function for each B ∈ B(Y ). The family of all stochastic kernels
on Y given Z is denoted by P(Y |Z). Finally, we denote by N (resp., N0)
the set of positive integers (resp., nonnegative integers).

2. The Markov model. Since theMarkov control model (X,A, {A(x) :
x ∈ A(x)}, Q,C) we are concerned with is quite standard, we only give
a brief description. For details see, for instance, Hernández-Lerma and
Lasserre (1996).

We assume that the state space X and the control space A are both
Borel spaces. For each x ∈ X, A(x) is a nonempty Borel subset of A and,
moreover, K := {(x, a) : a ∈ A(x), x ∈ X} is a Borel subset of the Cartesian
product X × A. Finally, the transition law Q is a stochastic kernel on X

given K and the one-step cost function C is a measurable function on K.
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Define

H0 := X and Ht := Kt ×X for t ∈ N.

An (admissible) control policy is a sequence δ = {δt} such that, for each
t ∈ N0, δt ∈ P(A |Ht) and it satisfies the constraint δt(A(xt) |ht) = 1 for
all ht = (x0, a0, . . . , xt−1, at, xt) ∈ Ht. A control δ = {δt} is said to be: (i)
relaxed (or randomized stationary) if there exists ϕ ∈ P(A |X) such that,
for each t, δt(· |ht) = ϕ(· |xt) for all ht ∈ Ht; (ii) (deterministic) stationary
if there exists a measurable function f : X → A such that f(x) ∈ A(x) for
all x ∈ X, and δt(· |ht) is concentrated at f(xt) for all ht ∈ Ht and t ∈ N0.

The class of all control policies is denoted by ∆, while Φ and F stand for
the subclasses formed by the relaxed and stationary policies, respectively.

For each policy δ ∈ ∆ and initial distribution ν ∈ P(X), there exist a
stochastic process {(xt, at) : t = 0, 1, . . .} and a probability measure P δ

ν—
which governs the evolution of the process—both defined on the sample
space (Ω,F), where Ω := (X×A)

∞
and F is the corresponding product σ-

algebra. The expectation operator with respect to P δ
ν is denoted by Eδ

ν . We
will refer to xt and at as the state and control at time t, respectively. If the
initial probability measure ν is concentrated at an initial state x0 = x ∈ X,

we write P δ
x and Eδ

x instead of P δ
ν and Eδ

ν , respectively.
When using a relaxed policy ϕ ∈ Φ, the state process {xt} is a Markov

chain on X with time-homogeneous transition kernel

(1) Q(· |x, ϕ) :=
\
X

Q(· |x, a)ϕ(da |x), x ∈ X.

We also write

(2) C(x, ϕ) :=
\
X

C(x, a)ϕ(da |x).

For a deterministic stationary policy f ∈ F, (1)–(2) become

(3) Q(· |x, f) := Q(· |x, f(x)) and C(x, f) := C(x, f(x)).

We also suppose that the Markov control model has the following prop-
erties:

Assumption 2.1. (a) C is nonnegative and lower semicontinuous on K.
(b) C is strictly unbounded, i.e., there exists an increasing sequence of

compact sets Kn ↑K such that

lim
n→∞

inf{C(x, a) : (x, a) 6∈ Kn} = ∞.

(c) Q(· |x, a) is weakly continuous in (x, a) ∈ K, i.e.,
T
X
u(y)Q(dy |x, a)

is continuous in (x, a) ∈ K for every bounded continuous function u on X.

The property in Assumption 2.1(b) is also referred to by saying that C
is a moment or that C is a norm-like function on K. This assumption has
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nice consequences, which have been exploited in several contexts [see, for
instance, Hernández-Lerma (1993), Hernández-Lerma and Lasserre (1995,
1997), Meyn (1989, 1995), and references therein]. In fact, in Hernández-
Lerma (1993), it is shown that Assumptions 2.1 and 3.1 (below) guarantee
the existence of a “relaxed” policy which is a “minimum pair” [see Def-
inition 3.2(c) and Theorem 3.6(a) below]. We show this fact again, but
our proof exhibits another nice property of the EAC control problem with
strictly unbounded costs, namely, that the optimal average cost is the limit
of discounted programs [Theorem 3.6(a)]. Moreover, in Theorem 3.6(b),
we prove that if such a relaxed policy induces a positive Harris recurrent
Markov chain, then it is also SPAC-optimal [see Definition 3.2(d)].

3. Sample path and expected average cost. Our main interest is
to evaluate the stochastic control system when a policy δ ∈ ∆ is used, given
an initial distribution ν ∈ P(X), by means of the sample path average cost

(SPAC) defined as

(4) J0(δ, ν) := lim sup
n→∞

1

n

n−1∑

t=0

C(xt, at),

but we also consider the expected average cost (EAC) given by

(5) J(δ, ν) := lim sup
n→∞

1

n
Eδ

ν

n−1∑

t=0

C(xt, at).

Moreover, we define the optimal (minimum) average cost as

(6) j∗ := inf
ν

inf
δ
J(δ, ν).

To avoid a trivial problem we shall use the following assumption.

Assumption 3.1. There exists a policy δ∗ and an initial distribution ν∗
such that J(δ∗, ν∗) is finite.

The optimality criteria we are concerned with are the following.

Definition 3.2. Let δ∗ be a policy and ν∗ an initial distribution.

(a) δ∗ is said to be expected average cost (EAC-) optimal if

J(δ, x) ≥ J(δ∗, x) ∀x ∈ X, δ ∈ ∆.

(b) δ∗ is said to be strong expected average cost (strong EAC-) optimal if

lim inf
n→∞

1

n
Eδ

x

n−1∑

t=0

C(xt, at) ≥ J(δ∗, x) ∀x ∈ X, δ ∈ ∆.

(c) (δ∗, ν∗) is said to be a minimum pair if J(δ∗, ν∗) = j∗.
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(d) δ∗ is said to be sample path average cost (SPAC-) optimal if for every
δ ∈ ∆ and ν ∈ P(X),

(7) J0(δ
∗, ν) = j∗ P δ∗

ν -almost surely,

and, moreover,

(8) J0(δ, ν) ≥ j∗ P δ
ν -almost surely.

Next, we introduce several special classes of policies.

Definition 3.3. A relaxed policy ϕ ∈ Φ is said to be:

(a) stable if there exists an invariant probability measure µϕ ∈ P(X) for
the transition law Q(· |x, ϕ), i.e.,

µϕ(·) =
\
X

Q(· | y, ϕ)µϕ(dy),

which satisfies

J(ϕ, µϕ) =
\
X

C(y, ϕ)µϕ(dy) < ∞;

(b) Harris recurrent if there exists a nontrivial σ-finite measure λϕ on
X such that λϕ(B) > 0 implies

Pϕ
x [xt ∈ B, for some t] = 1 ∀x ∈ X;

(c) positive Harris recurrent if it is stable and Harris recurrent.

We denote by ΦS the class of (relaxed) stable policies and by ΦR the
class of relaxed policies which are Harris recurrent, while ΦP stands for the
class of positive Harris recurrent polices. Note that ΦP = ΦS ∩ ΦR.

We suppose throughout the following that Assumptions 2.1 and 3.1 hold.

We now state one of our main results. The proof is given in Section 5.

Theorem 3.4. For each policy δ ∈ ∆ and measure ν ∈ P(X),

(9) lim inf
n→∞

1

n

n−1∑

t=0

C(xt, at) ≥ j∗ P δ
ν -almost surely.

In the next theorem, we obtain as direct consequences of Theorem 3.4
some interesting relations between the concept of minimum pair and the
sample path and expected average costs. Part (c) of this theorem was al-
ready proved in Hernández-Lerma (1993), but its proof is included here for
completeness.

Theorem 3.5. (a) A policy δ∗ ∈ ∆ is EAC-optimal if and only if it is

strong EAC-optimal.
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(b) If (δ, ν) is a minimum pair , with δ ∈ ∆ and ν ∈ P(X), then

lim inf
n→∞

1

n

n−1∑

t=0

C(xt, at) = j∗ P δ
ν -almost surely.

(c) Let ϕ ∈ ΦS and µϕ an associated invariant probability measure. Then

(ϕ, µϕ) is a minimum pair if and only if J(ϕ, x) = j∗ for (µϕ-) almost all

x ∈ X.

The first part of the next theorem state the existence of a minimum
pair (ϕ∗, µ∗) with ϕ∗ being a stable policy and µ∗ an associated invariant
probability measure. This result was already proved in Hernández-Lerma
(1993), but his approach differs from ours in that his analysis relies on the
well-behavior of the expected average cost whereas our analysis is based
on the discounted cost. Roughly speaking, our proof of the existence of
a minimum pair yields, at the same time, that the optimal average cost
may be approximated by discounted programs, which exhibits another nice
property of the control problem with strictly unbounded cost. In the second
part of the theorem, we show that if the policy ϕ∗ is positive Harris recurrent
then it is SPAC-optimal. To state precisely these facts, we introduce the
following notation.

For each α ∈ (0, 1), the (expected) α-discounted cost under a policy
δ ∈ ∆, given the initial distribution measure ν ∈ P(X), is defined by

(10) Vα(δ, ν) := Eδ
ν

∞∑

t=0

αtC(xt, at),

and the α-discounted optimal value is given by

(11) mα := inf
ν

inf
δ
Vα(δ, ν).

Theorem 3.6. (a) There exists a stable policy ϕ∗ ∈ ΦS [with invariant

probability measure µ∗] such that (ϕ∗, µ∗) is a minimum pair ; hence, from
Theorem 3.5(c),

(12) J(ϕ∗, x) = j∗ for µ∗-almost all x ∈ X.

Moreover ,

(13) j∗ = lim
α→1−

(1− α)mα.

(b) If the policy ϕ∗ is positive Harris recurrent , then it is SPAC-optimal.

4. Examples. In this section we discuss some examples from inven-
tory theory to illustrate the potential of the approach used in this paper; in
fact, in Example B we compute explicitly a (deterministic) stable stationary
policy which is both strong EAC- and SPAC-optimal. In Hernández-Lerma



Sample path average optimality 369

(1993), Hernández-Lerma and Lasserre (1997) and Meyn (1995) other inter-
esting examples are given, including the LQ control problem, which satisfy
the assumptions in Theorems 3.4–3.6.

We consider an inventory system with a single product and infinite stor-
age and production capacities, for which the excess demand is not back-
logged. Denote by xt and at the inventory level and the amount of product
ordered (and immediately supplied) at the beginning of each decision period
t = 0, 1, . . . , respectively. The product demand during period t is denoted by
wt, which is assumed to be a nonnegative random variable. The inventory
level evolves in X = [0,∞) according to

(14) xt+1 = (xt + at − wt)
+, t = 1, 2, . . . ; x0 = x ∈ X,

where (y)+ := max(y, 0), and we assume that the production variables {at}
take values in A = [0,∞) irrespective of the stock levels, that is, A =
A(x) := [0,∞) for all x ∈ X. Moreover, throughout this section we also
suppose that the following holds.

Assumption 4.1. (a) The demand process {wt} is formed by i.i.d. ran-
dom variables. The common cumulative distribution is denoted by G(·).

(b) G(y) < 1 for all y ≥ 0.

Remark 4.2. Note that Assumption 4.1(a) implies Assumption 2.1(c),
while Assumption 4.1(b) guarantees that any relaxed stable policy is irre-
ducible and Harris recurrent (hence, positive Harris recurrent) with respect
to the measure λ(B) := IB(0), B ∈ B(X), where IB(·) denotes the indicator
function.

In what follows, E denotes the expectation with respect to the joint
distribution of the random variables w0, w1, . . .

Example A. The one-step cost function has the form

(15) C(x, a) = F1(x+ a) + F2(a),

where F1(·) and F2(·) are functions from [0,∞) into itself satisfying:

Assumption 4.3. (a) F1(·) and F2(·) are lower semicontinuous functions
bounded from below.

(b) There exist increasing unbounded sequences {y1n} and {y2n} of posi-
tive numbers such that

lim
n→∞

inf
y>yi

n

Fi(y) = ∞ for i = 1, 2.

(c) EF2(min(y,w0)) < ∞ for all y ≥ 0.

Note that Assumption 4.3 is general enough to include problems with
a set-up cost, that is, a fixed cost for placing orders [Bertsekas (1987), Lee
and Nahmias (1993)].
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Remark 4.4. (a) A policy fK ∈ F is said to be a K-threshold policy if
fK(x) = K − x for 0 ≤ x ≤ K and fK(x) = 0 for x > K. For this policy,
direct computations yield

(16) J(fK , x) = F1(K) +EF2(min(K,w0)) < ∞ ∀x ∈ X;

thus, Assumption 3.1 holds.
(b) Note that, under Assumption 4.1,

µK(B) :=
\
B

(K − w)+ G(dw), B ∈ B(X),

is the unique invariant probability measure for the policy fK .

Theorem 4.5. If Assumptions 4.1 and 4.3 hold , then there exists a

relaxed policy ϕ∗ ∈ ΦP which is SPAC-optimal and , moreover , J(ϕ∗, x) = j∗

for µ∗-almost all x ∈ X.

P r o o f. It is easy to check that Assumptions 4.1(a) and 4.3 imply As-
sumption 2.1. Thus, from Remarks 4.2, 4.4 and Theorems 3.5 and 3.6, we
see that the assertions in Theorem 4.5 hold.

Example B. We now consider a particular case of (15) in which we are
able to compute explicitly a (deterministic) stationary stable policy which
is strong expected and sample path average optimal. We take F2(y) = by,

y ≥ 0, where b is a nonnegative constant, so that (15) becomes

(17) C(x, a) = F1(x+ a) + ba ∀(x, a) ∈ K.

Instead of Assumption 4.3, we now assume that the following hypothesis
holds.

Assumption 4.6. (a) F1(·) is a convex function bounded from below.
(b) limy→∞ F1(y) = ∞.

Note that, for the specific function F2(·) we are considering here, As-
sumption 4.6 implies Assumption 4.3. Hence, under Assumptions 4.1 and
4.6, the results in Theorem 4.5 hold. Next we show that a threshold-type
policy is strong expected and sample path average cost optimal. To do this,
we define

(18) L(y) := F1(y) + bEmin(y,w0) for y ≥ 0 and ̺∗ := inf
y≥0

L(y).

Remark 4.7. (a) Simple computations yield that for each K ≥ 0, the
K-threshold policy satisfies

L(K) = J(fK , x) ∀x ∈ X.

(b) Moreover, there exists K∗ ≥ 0 such that L(K∗) = ̺∗ = infy≥0 L(y);
indeed, this follows from the continuity of L(·) and the fact that limy→∞ L(y)
= ∞.
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Theorem 4.8. Suppose that Assumptions 4.1 and 4.6 hold. Then the

K∗-threshold policy is strong expected and sample path average cost optimal ,
where K∗ is as in Remark 4.7(b).

P r o o f. We require some results on discounted-cost control problems.
For each α ∈ (0, 1), recall from (10) that

Vα(δ, x) = Eδ
x

∞∑

t=0

αtC(xt, at), x ∈ X, δ ∈ ∆,

and define

(19) Vα(x) := inf
δ∈∆

Vα(δ, x), x ∈ X.

Now, from (12), there exists a stable policy ϕ∗ with invariant probability
measure µ∗ such that

J(ϕ∗, µ∗) = j∗ for µ∗-almost all x ∈ X;

thus, from a well-known Abelian Theorem [see Hernández-Lerma and Las-
serre (1996), Lemma 5.3.1, p. 84],

j∗ = lim
α→1−

(1−α)Vα(ϕ, x) ≥ lim sup
α→1−

(1−α)Vα(x) for µ∗-almost all x ∈ X.

Then, since Vα(·) ≥ mα for all α ∈ (0, 1), we see from this and (13) that

(20) j∗ = lim
α→1−

(1− α)Vα(x) for µ∗-almost all x ∈ X.

Then, to conclude that the K∗-threshold policy is strong EAC- and
SPAC-optimal, it suffices to prove that

(21) ̺∗ = lim
α→1−

(1− α)Vα(0).

In order to do this, first note that

Vα(x) ≤ Vα(fK , x), 0 ≤ x ≤ K,

where fK is the K-threshold policy; then, taking K large enough we see
that Vα(·) < ∞ for all α ∈ (0, 1). Now, using Assumption 4.6, it is easy to
prove that Vα(·) is a convex function; thus, the function

Tα(y) := F1(y) + by + αEVα[(y − w0)
+], y ≥ 0,

is convex and limy→∞ T (y) = ∞, which implies that there exists a constant
Kα ≥ 0 such that Tα(Kα) = infy≥0 Tα(y). Hence, for each α ∈ (0, 1), Vα(·)
satisfies the α-Discounted Cost Optimality Equation [Hernández-Lerma and
Muñoz-de-Osak (1992)]

(22) Vα(x) = min
a∈A

[F1(x+ a) + ba+ αEVα[(x+ a− w0)
+]] ∀x ∈ X,
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and the Kα-threshold policy attains the minimum on the right-hand side of
(22), that is, for all x ∈ X,

(23) Vα(x) = F1(x+ fα(x)) + bfα(x) + αEVα[(x+ fα(x)− w0)
+],

where, for each α ∈ (0, 1), fα denotes the Kα-threshold policy.
Then standard arguments yield

(24) Vα(x) = Vα(fα, x) ∀x ∈ X, α ∈ (0, 1).

Moreover, simple computations show that for all α ∈ (0, 1),

(25) (1− α)Vα(fα, 0) = F1(Kα) + αEmin(Kα, w0) + b(1− α)Kα.

Now define

Lα(y) := F1(y) + αEmin(y,w0) + b(1− α)y, y ≥ 0, α ∈ (0, 1),

and note that, from (24)–(25), Lα(Kα) = infy≥0 Lα(y) for each α ∈ (0, 1),
and also that Lα(·)↓L(·) as α↑1, where L(·) is the function in (18). From
these facts, we see that

Lα(K
∗) ≥ Lα(Kα) ≥ L(Kα) ≥ L(K∗) ∀α ∈ (0, 1),

where K∗ is as in Remark 4.7(b). Thus, from Remark 4.7(b), we also obtain

̺∗ = L(K∗) = lim
α→1−

Lα(Kα) = lim
α→1−

(1− α)Vα(0).

Therefore, the K∗-threshold policy is strong EAC- and SPAC-optimal. In
fact,

j∗ = ̺∗ = L(K∗) = J(fK∗ , x) ∀x ∈ X.

Remark 4.9. In Vega-Amaya and Montes-de-Oca (1997) the EAC-opti-
mal control problem with the one-step cost function (17) is solved using the
vanishing discount factor approach and, instead of Assumption 4.1(b), the
following:

Assumption 4.1(b′). The demand variable w0 has a bounded continuous
density function.

In that paper it is shown, under Assumptions 4.1(a) and 4.1(b′), that

J(fK∗ , x) = ̺∗ = lim
α→1−

(1− α)Vα(x) ∀x ∈ X.

Thus, proceeding as in the proof of Theorem 4.8, one can conclude that
̺∗ = j∗ and fK∗ is strong EAC-optimal and SPAC-optimal.

Example C. An alternative to measure the inventory system perfor-
mance is to consider quadratic holding and production costs, that is,

(26) C(x, a) = R(x− x)2 + S(a− a)2, (x, a) ∈ K,

where R and S are positive constants, and x ∈ X and a ∈ A denote the
target inventory and production levels, respectively. We now suppose:
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Assumption 4.10. The second moment of the demand variables is finite,
that is,

T∞
0

y2 G(dy) < ∞.

For the cost function (26), Assumption 2.1(a)–(b) trivially holds, while
Assumption 4.10 ensures that j∗ is finite. Indeed, consider the stationary
policy f(x) = 0, x ∈ X, and compute its average cost to obtain

J(f, x) = x2 + a2 ∀x ∈ X.

These facts yield the following result:

Theorem 4.11. Suppose that Assumptions 4.1 and 4.10 hold. Then there

exists a positive Harris recurrent policy ϕ∗ ∈ ΦP which is SPAC-optimal.

Example D. Parlar and Rempa/la (1992) study a finite horizon control
problem for an inventory system considering a variant of (26), in which there
is a “cost free interval” containing the target stock level. More precisely,
they take as the holding cost the function

C(y) :=





R1(y − α)2 if 0 ≤ y < α,
0 if α ≤ y ≤ β,
R2(y − β)2 if y > β,

where 0 < α < β and R1, R2 are positive constants, and the one-step cost
function is given as

(27) C(x, a) = EC(x+ a−w0) + S(a− a)2, (x, a) ∈ K.

As in Example C, it is easy to establish the following results.

Theorem 4.12. Suppose that Assumptions 4.1 and 4.10 hold. Then there

exists ϕ∗ ∈ ΦP which is SPAC-optimal.

5. Proof of Theorems 3.4 and 3.5. Before the proofs, we introduce
some notation and preliminary results, including a useful lemma concerning
a class of “approximating” functions.

Let (Y,T ) be a separable metrizable space. Denote by Cb(Y ) the space
of continuous bounded functions defined on Y with the supremum norm.
For each metric d on Y , Ud(Y ) stands for the class of functions in Cb(Y )
which are uniformly continuous with respect to d. We take Ud(Y ) to have
the relative topology of Cb(Y ).

The following lemma has an important role in the proof of Theorem 3.4.

Lemma 5.1. Let (Y,T ) be a separable metrizable space. Then there exists

a metric d∗ on Y consistent with T such that :

(a) the subspace Ud∗(Y ) is separable;
(b) for each u ∈ Cb(Y ) there exist sequences {v0n} and {v1n} in Ud∗(Y )

such that v0n ↑u and v0n ↓ u as n → ∞.
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The proof of Lemma 5.1 is given in Bertsekas and Shreve (1978) [see
Corollary 7.6.1, Proposition 7.9 and Lemma 7.7, on pp. 113, 116 and 125,
respectively].

Lemma 5.2. Let X and Y be Borel spaces and γ a probability measure

on X × Y . Then there exist a stochastic kernel ϕ(· | ·) on Y given X and a

measure µ on X such that

(28) γ(B ×D) =
\
B

ϕ(D |x) µ(dy) ∀D ∈ B(Y ), B ∈ B(X);

hence,

µ(B) = γ(B × Y ) ∀B ∈ B(X).

The measure µ in (28) is called the marginal distribution or projection

measure of γ on X. For the proof of this result see, for instance, Bertsekas
and Shreve (1978), Corollary 7.27.2, p. 139, or Hinderer (1970), Theorem 2,
p. 189.

Remark 5.3. Let ν and νn, n ∈ N, be measures on X × Y and denote
by µ and µn, n ∈ N, the corresponding marginal distributions. It is easy to
verify that if {νn} converges weakly to ν, then {µn} converges weakly to µ.

We now proceed to prove Theorem 3.4.

Proof of Theorem 3.4. Let δ ∈ ∆ and ν ∈ P(X) be arbitrary but fixed
and define the random variable

Ĵ := lim inf
n→∞

1

n

n−1∑

t=0

C(xt, at).

Observe that if for some realization of the process {(xt, at)} generated by

δ and ν we have Ĵ = ∞, then the assertion in Theorem 3.4 trivially holds.
Thus, we can assume without loss of generality that Ĵ is a finite random
variable. Now define the empirical measures

γn(Γ ) :=
1

n

n−1∑

t=0

IΓ (xt, at), Γ ∈ B(X×A), n ≥ 1,

where IΓ (·) denotes the indicator function of Γ . Observe that the measures
{γn(·)} are concentrated on K and also that

∞ > Ĵ = lim inf
n→∞

\
K

C(x, a) γn(d(x, a)).

The proof is divided into two parts. In the first one, we prove that for
each ω ∈ Ω, there exists a measure γω(·) ∈ P(K) such that

(29) Ĵ(ω) ≥
\
K

C(x, a) γω(d(x, a)).
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Thus, decomposing the measure γω(·) (see Lemma 5.2) as

(30) γω(B ×D) =
\
B

ϕω(D |x)µω(dx), B ×D ∈ B(X×A),

where ϕω ∈ P(A |X) and µω ∈ P(X), we obtain

(31) Ĵ(ω) ≥
\
K

C(x, ϕω)µω(dx).

In the second part, we prove that (P δ
ν -almost surely) µω(·) is an invariant

probability measure for the transition law Q(· | ·, ϕω), that is, ϕω(· | ·) is a
relaxed stable policy. From this and (31), we conclude that

(32) Ĵ(ω) ≥ J(ϕω, µω) ≥ j∗.

Part 1. Fix ω ∈ Ω, and choose a sequence {nk} such that

Ĵ(ω) = lim
k→∞

\
K

C(x, a) γω
nk
(d(x, a));

thus,

sup
k

\
K

C(x, a) γω
nk
(d(x, a)) < ∞.

From Assumption 2.1(b), the latter fact is equivalent to the tightness of the
sequence {γω

nk
(·)} [Meyn and Tweedie (1993), Lemma D.5.3(i)]. Thus, by

Prokhorov’s Theorem [Billingsley (1968), p. 37], we can pick a subsequence
{mk} such that {γmk

(·)} converges weakly to a probability measure γω(·) ∈
P(K), that is,

(33)
\
K

v(x, a) γω
mk

(d(x, a)) →
\
K

v(x, a) γω(d(x, a)) ∀v ∈ Cb(K).

From this and Assumption 2.1(a), we obtain (29); hence, using (30), we
conclude that (31) holds.

Part 2. Let d∗ be as in Lemma 5.1 and U a countable dense subset of
Ud∗(X) [see Lemma 5.1(a)]. Define, for each u ∈ U , the function

Lu(x, a) :=
\
X

u(y)Q(dy |x, a)− u(x), (x, a) ∈ K,

and also the process

(34)

M0(u) := u(x0),

Mn(u) := u(xn)−

n−1∑

t=0

Lu(xt, at), n ≥ 1.

Observe that for each u ∈ U , Lu ∈ Cb(K) and also that {Mn(u)} is
a P δ

ν -martingale with respect to the filtration {σ(hn, an)}. Then the Law
of Large Numbers for martingales [Hall and Heyde (1980), Theorem 2.18]
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yields that for each u ∈ U there exists a measurable subset Uu of Ω such
that P δ

ν (Uu) = 1 and

lim
n→∞

1

n
Mn(u) = 0 on Uu,

which implies that

lim
n→∞

\
K

Lu(x, a) γω
n (d(x, a)) = 0 ∀ω ∈ Uu.

Then

lim
n→∞

\
K

Lu(x, a) γω
n (d(x, a)) = 0 ∀u ∈ U and ω ∈ U :=

⋂

u∈U

Uu.

Next, for each ω ∈ U , choose a sequence {mk} = {mk(ω)} as in (33).
Thus, \

K

Lu(x, a) γω(d(x, a)) = 0 ∀u ∈ U ,

Hence, using the fact that L is a difference of two monotonic operators and
standard “limit” arguments, from Lemma 5.1(b) we see that\

K

Lu(x, a) γω(d(x, a)) = 0 ∀u ∈ Cb(X),

which yields, after decomposing the measure γω(·) as in (30),\
X

u(x)µω(dx) =
\
X

\
X

u(y)Q(dy |x, ϕω)µω(dx) ∀u ∈ Cb(X).

This implies that µω(·) is an invariant probability measure for Q(· | ·, ϕω).
Finally, combining this fact with (31), we conclude that

Ĵ(ω) ≥ J(ϕω , µω) ≥ j∗ ∀ω ∈ U,

which completes the proof, since the subset U has probability one with
respect to P δ

ν .

Proof of Theorem 3.5. (a) To prove this part, note that it only remains
to show that any EAC-optimal policy is strong EAC-optimal. Thus, sup-
pose that δ∗ is EAC-optimal. Now observe, from Theorem 3.4 and Fatou’s
Lemma, that

(35) J(δ, x) ≥ lim inf
n→∞

1

n
Eδ

x

n−1∑

t=0

C(xt, at) ≥ j∗ ∀δ ∈ ∆, x ∈ X.

Then, putting δ = δ∗ in (35), we have

J(δ∗, x) = lim
n→∞

1

n
Eδ∗

x

n−1∑

t=0

C(xt, at) = j∗ ∀x ∈ X,

which combined with (35) proves that δ∗ is strong EAC-optimal.
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(b) Suppose that (δ, ν) is a minimum pair, i.e., J(δ, ν) = j∗. Then, from
Theorem 3.4 and Fatou’s Lemma, we see that

j∗=J(δ, ν) ≥ lim inf
n→∞

1

n
Eδ

ν

n−1∑

t=0

C(xt, at)≥Eδ
ν

[
lim inf
n→∞

1

n

n−1∑

t=0

C(xt, at)

]
≥j∗;

hence,

Eδ
ν

[
lim inf
n→∞

1

n

n−1∑

t=0

C(xt, at)

]
= j∗,

which, jointly with Theorem 3.4, implies that

lim inf
n→∞

1

n

n−1∑

t=0

C(xt, at) = j∗ P δ
ν -almost surely.

(c) Let ϕ ∈ ΦS and µϕ an associated invariant probability measure.
The Individual Ergodic Theorem [Hernández-Lerma and Lasserre (1996),
Theorem E.13, p. 189; Dudley (1989), Theorem 8.4.1, p. 209] yields

(36) J(ϕ, x) = lim
n→∞

1

n
Eϕ

x

n−1∑

t=0

C(xt, at) for µϕ-almost all x ∈ X,

and

(37)
\
X

J(ϕ, x)µϕ(dx) =
\
X

C(x, ϕ)µϕ(dx).

Suppose that (ϕ, µϕ) is a minimum pair. Then, from (37),

j∗ =
\
X

J(ϕ, x)µϕ(dx).

Next consider the set B := {x ∈ X : J(ϕ, x) > j∗} and observe that
j∗µϕ(B) =

T
B
J(ϕ, x)µϕ(dx), which implies that µϕ(B) = 0, i.e., J(ϕ, x) =

j∗ for µϕ-almost all x ∈ X.
Now suppose that J(ϕ, x) = j∗ for µϕ-almost all x ∈ X. Then, from

(37), we see that (ϕ, µϕ) is a minimum pair.

6. Proof of Theorem 3.6. For the proof of Theorem 3.6 we require
some preliminary results which are collected in Remarks 6.1 and 6.2.

Remark 6.1. (a) Let δ ∈ ∆, ν ∈ P(X) and α ∈ (0, 1) be fixed but
arbitrary. Define

(38) γ(Γ ) := (1− α)
n−1∑

t=0

αtP δ
ν [(xt, at) ∈ Γ ], Γ ∈ B(X×A).

Observe that γ(·) is a probability measure on X×A and it is concentrated
on K. Moreover, for any measurable function v on K,
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(39)
\
K

v(x, a) γ(d(x, a)) = (1− α)

∞∑

t=0

αtEδ
νC(xt, at);

in particular,

(40)
\
K

C(x, a) γ(d(x, a)) = (1− α)Vα(δ, ν).

(b) Denote by µ(·) the marginal distribution of γ(·), that is,

µ(B) := γ(B ×A), B ∈ B(X).

One can check that the measures µ(·), γ(·) and ν(·) satisfy the following “dis-
counted equation” [Hernández-Lerma and Lasserre (1996), Remark 6.3.1,
p. 133]:

(41) µ(B) = (1− α)ν(B) + α
\
K

Q(B |x, a) γ(d(x, a)) ∀B ∈ B(X).

Remark 6.2. (a) Define

̺ := lim inf
α→1−

(1− α)mα.

From a well-known Abelian Theorem [Hernández-Lerma and Lasserre (1996),
Lemma 5.3.1, p. 84], we have

(42) ̺ ≤ lim sup
α→1−

(1− α)mα ≤ j∗.

(b) For each ε > 0 and α ∈ (0, 1), there exist δα ∈ ∆ and να ∈ P(X)
such that Vα(δα, να) ≤ mα + ε. Thus,

(43) ̺ = lim inf
α→1−

(1− α)mα = lim inf
α→1−

(1− α)Vα(δα, να).

Proof of Theorem 3.6. (a) By (43) we can pick a sequence {(δα(n), να(n))}
such that

(44) ̺ = lim
n→∞

(1− α(n))Vα(n)(δα(n), να(n)).

Now, for each n ∈ N, define

γn(Γ ) := (1− α(n))
∞∑

t=0

[α(n)]tP
δα(n)
να(n)

[(xt, at) ∈ Γ ], Γ ∈ B(X×A).

Next, from (40), observe that

(1− α(n))Vα(n)(δα(n), να(n)) =
\
K

C(x, a) γn(d(x, a)).

Thus, from (42) and (44),

̺ = lim
n→∞

\
K

C(x, a) γn(d(x, a)) ≤ j∗ < ∞,



Sample path average optimality 379

which implies that

sup
n

\
K

C(x, a) γn(d(x, a)) < ∞.

Then the sequence {γn(·)} of measures is tight. Hence, by Prokhorov’s
Theorem, there exists a subsequence of {γn(·)}, which we denote again by
{γn(·)} to avoid cumbersome notation, that converges weakly to a proba-
bility measure γ∗(·) ∈ P(X), that is,

(45)
\
K

v(x, a) γn(d(x, a)) →
\
K

v(x, a) γ∗(d(x, a)) ∀v ∈ Cb(K).

Thus, since C(·, ·) is lower semicontinuous on K, we have

(46) j∗ ≥ lim
n→∞

\
K

C(x, a) γn(d(x, a)) ≥
\
K

C(x, a) γ∗(d(x, a)).

We shall prove in the following that there exists a relaxed stable policy
ϕ∗ with invariant probability measure µ∗(·) such that

(47)
\
K

C(x, a) γ∗(d(x, a)) =
\
X

Cϕ∗(x)µ∗(dx) = J(ϕ∗, µ∗),

from which, combined with (46), we conclude that

j∗ = lim
α→1−

(1− α)mα = J(ϕ∗, µ∗).

To prove (47), first note, from Lemma 5.2, that there exist relaxed poli-
cies (or stochastic kernels on A given X) ϕn, ϕ

∗ and measures µn, µ ∈ P(X)
such that for all B ×D ∈ B(X×A) and n ∈ N,

γn(B ×D) =
\
B

ϕn(D |x)µn(dx) and γ∗(B ×D) =
\
B

ϕ∗(D |x)µ∗(dx).

Moreover, the weak convergence of {γn(·)} to γ∗(·) implies (see Remark 5.3)
the weak convergence of {µn(·)} to µ∗(·), that is,

(48)
\
X

v(x)µn(dx) →
\
X

v(x)µ∗(dx) ∀v ∈ Cb(X).

On the other hand, from Remark 6.1(b),

µn(B) = (1− α(n))να(n)(B) + α(n)
\
K

Q(B |x, a) γn(d(x, a)) ∀B ∈ B(X),

which implies\
X

v(x)µn(dx) = (1− α(n))
\
X

v(x) να(n)(dx)(49)

+ α(n)
\
K

\
X

v(y)Q(dy |x, a) γn(d(x, a))

for all v ∈ Cb(X).
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Now observe that for each v ∈ Cb(X), the sequence
T
X
v(x) να(n)(dx),

n ∈ N, is bounded, and also that the function
T
X
v(y)Q(dy | ·, ·) is in Cb(K).

Thus, from (45) and (48), letting n go to infinity in (49) we obtain\
X

v(x)µ∗(dx) =
\
K

\
X

v(y)Q(dy |x, a) γ∗(d(x, a)) ∀v ∈ Cb(X),

which is equivalent to\
X

v(x)µ∗(dx) =
\
X

\
X

v(y)Q(dy |x, ϕ∗)µ∗(dx) ∀v ∈ Cb(X).

Then µ∗(·) is an invariant probability measure for the transition probability
Q(· | ·, ϕ∗), that is, ϕ∗ is a stable policy. Hence, (47) holds, that is,\

K

C(x, a) γ∗(d(x, a)) =
\
X

Cϕ(x)µ
∗(dx) = J(ϕ∗, µ∗) ≥ j∗.

Therefore, j∗ = J(ϕ∗, µ∗) = limα→1−(1− α)mα.
(b) Suppose that the policy ϕ∗ in (a) is positive Harris recurrent. Thus,

by the Law of Large Numbers for Markov chains [Meyn and Tweedie (1993),
Theorem 17.01, p. 411], for all initial distributions ν ∈ P(X),

J0(ϕ
∗, ν) = lim

n→∞

1

n

n−1∑

t=0

C(xt, at) = j∗ Pϕ∗

ν -almost surely.

This and Theorem 3.4 show that ϕ∗ is SPAC-optimal.
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Universidad de Sonora
Blvd. Transversal y Rosales s/n
C.P. 83000
Hermosillo, Sonora, México
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