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MASS TRANSPORT PROBLEM AND DERIVATION

Abstract. A characterization of the transport property is given. New
properties for strongly nonatomic probabilities are established. We study
the relationship between the nondifferentiability of a real function f and the
fact that the probability measure λf∗ := λ◦(f∗)−1, where f∗(x) := (x, f(x))
and λ is the Lebesgue measure, has the transport property.

1. Introduction and notations. The mass transport problem studied
in this paper finds its origin at the end of the 18th century with Monge’s
paper on “clearings and fillings” (cf. [22]). A modern formulation could be
as follows: let P and Q be two probabilities on E; can we find a measurable
function ϕ : E → E transporting P into Q and minimizing a given cost c?

The mass transport problem has attracted a lot of attention in recent
years and has found applications in mathematical sciences such as statistics,
economics and fluid mechanics (see [5], [23] and [25]).

Let us introduce a few notations. Let (E, d) be a complete separable
metric space, and M the set of all Borel probability measures defined on E.
For P,Q ∈ M, we denote by M(P,Q) the set of all probability measures
defined on E × E whose marginal distributions are, respectively, P and Q.
Another form of mass transport problem, formulated by Kantorovich (cf.
[16] and [17]), is to evaluate the functional

Kc(P,Q) := inf
{\

c(x, y) dµ : µ ∈ M(P,Q)
}
,

where the cost c(x, y) is a measurable function ≥ 0 on E×E. The functional
Kc(P,Q) is called the Kantorovich functional (or Kantorovich metric if c is
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the distance d). An important case is when c is the square of the Euclidean
distance on E = Rd; Kc(µ, ν)

1/2 is then the Lévy–Wasserstein metric.
Given two random variables X and Y defined on the probability space

(Ω,A,P) with distribution laws P and Q, we say that (X,Y ) is a c-optimal

coupling (c-o.c.) between P and Q with respect to P if\
c(X,Y ) dP = Kc(P,Q).

In recent years, the characterization of the solution, for particular cost
functions c(x, y), of the Monge–Kantorovich problem has been given in terms
of c-subgradients of generalized convex functions (cf. [18], [19], [4], [6], [24],
[28], [29], [9] and [13]).

It is natural to find a condition on P so that, for any other probability Q,
there should be a measurable function ϕ : E → E such that (X,ϕ(X)) is a
c-optimal coupling between P and Q.

When E is a Hilbert separable space, Cuesta-Albertos and Matrán in-
troduced in [8] the notion of strongly nonatomic probabilities, realizing the
above condition for a quadratic cost. Abdellaoui and Heinich have shown
in [1] that for such a probability P, we have P (∇F exists) = 1 for any convex
function F with P (F ∈ R) = 1.

More recently, McCann [20], Gangbo and McCann [13] have given an-
other class of probability satisfying the above condition, for more general
costs. This class is the set of probabilities on Rd which vanish on subsets
having Hausdorff dimension ≤ d− 1. A note from [13] says that the class of
probability which vanish on (c-c)-surfaces goes as well. McCann [21] con-
jectures and starts proving that this class is the only one that solves the
transport problem for a quadratic cost.

In the present paper, in order to simplify matters, we consider E = Rd

with the inner product 〈·, ·〉 and the quadratic cost. The article is organized
as follows: in the next section, we give a characterization of the probabilities
which have the transport property, preceded by the necessary definitions;
in Section 3, we introduce the notion of strongly nonatomic probabilities
and we investigate their properties. Finally, in Section 4, we examine the
relationship between the nondifferentiability of a real function f and the fact
that the probability measure λf∗ := λ ◦ (f∗)−1, where f∗(x) := (x, f(x))
and λ is the Lebesgue measure, has the transport property. For example,
we show that the probability λB∗ , where B is the Brownian motion, is
strongly nonatomic a.e.; on the other hand, if we take f(x) =

Tx
0
B(t) dt,

the probability λf∗ has the transport property a.e. but it is not strongly
nonatomic a.e.

2. Characterization of transport property. The purpose of this sec-
tion is to give a characterization of the probabilities which have the transport
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property. It is useful to review some facts of life concerning convex functions
F : Rd → R ∪ {∞}; the case of F identically ∞ is excluded by convention.
Rockafellar [26] provides the standard reference. Whenever F is finite at x,
its graph admits a supporting hyperplane: there is some ϕ(x) ∈ Rd such
that

(1) 〈y − x, ϕ(x)〉 + F (x) ≤ F (y) ∀y ∈ Rd.

In this case ϕ(x) is called a subgradient of F at x, motivating the following
definitions:

Definition 1. The subdifferential of a convex function F on Rd is the
subset ∂F ⊂ Rd × Rd of pairs (x, ϕ(x)) satisfying (1) for all y ∈ Rd.

Definition 2. A subset S ⊂ Rd×Rd is called cyclically monotone (c.m.)
if it satisfies

k∑

i=1

〈xi+1 − xi, yi〉 ≤ 0

for any finite number of points (x1, y1), . . . , (xk, yk) ∈ S, with xk+1 := x1.

Rockafellar’s main result in [26] exhibits the connection between gradi-
ents of convex functions and cyclically monotone sets: any cyclically mono-
tone set S ⊂ Rd × Rd is contained in the subdifferential of some convex
function on Rd.

A function ϕ : D ⊂ Rd → Rd is cyclically monotone if it has cyclically
monotone graph. As we have recalled, if P is a strongly nonatomic proba-
bility (see below) and Q another probability on Rd, having second moments,
there is a cyclically monotone function ϕ such that (X,ϕ(X)) is optimal for
(P,Q). The function ϕ is P -a.e. in a gradient of a convex function (cf. [1]
and [8]). The suppression of the moment condition leads to the transport
property and to the differentiation of convex functions.

The study of differentiation of convex functions leads Zaj́ıček (cf. [32])
to introduce the following definition.

Definition 3. We define M ⊂ Rd to be a (c-c)-surface of dimension k,
k < d, if there is a permutation σ of {1, . . . , n} and 2n−2k convex functions
fi, gi, k < i ≤ d, defined throughout Rk, such that M = (x1, . . . , xd), where
xσ(j) = yj , yi = fi(y1, . . . , yk)− gi(y1, . . . , yk) for k < i ≤ d. In other words,
M is the graph of a difference of convex functions.

Zaj́ıček’s main theorem in [32] gives a characterization of the set of all
points at which a continuous function is not differentiable.

Theorem 1 (cf. [32]). A subset M ⊂ Rd is a subset of the set of all

points at which a continuous convex function f is not differentiable in Rd if

and only if M can be covered by countably many (c-c)-surfaces.
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We can now introduce the transport property.

Definition 4. A Borel probability measure P on Rd has the transport

property (t.p.) if it can be mapped to any other Borel probability measure
by a cyclically monotone map.

For example, a probability which vanishes on Borel subsets having Haus-
dorff dimension ≤ d−1 has the transport property (cf. [20] and [13]). More
generally, our main result in this section is the following.

Theorem 2. The following assertions are equivalent for a Borel proba-

bility measure P on Rd:

(i) The probability P assigns zero to every (c-c)-surface.

(ii) For any convex function F , P (F ∈R)=1 implies P (∇F exists)=1.

(iii) The probability P has the transport property.

(iv) The probability P is nonatomic and , if (ϕn) is a sequence of cycli-

cally monotone functions which converges in law , then ϕn converges almost

everywhere.

P r o o f. (i)⇔(ii) is obvious by the previous Theorem 1 of Zaj́ıček.

(iv)⇒(iii). Let Q be a probability and (Qn) a sequence of nonatomic
probabilities which converges in law to Q. If P is a nonatomic probability,
there is, for each n, a cyclically monotone function ϕn such that P ◦ (ϕn)

−1

= Qn (cf. [1]). Now, suppose P satisfies (iv). Then ϕn converges a.e. to a
cyclically monotone function ϕ, and Q = P ◦ (ϕ)−1.

(iii)⇒(i). Assume that there exists a (c-c)-surface M such that P (M)
> 0. Theorem 1 provides a convex function F on Rd whose differentiability
fails throughout M . It is easy to ensure the differentiability of the Legendre
transform F ∗ of F .

Now, by Proposition 7 of the appendix, there exist two cyclically mono-
tone measurable functions τ+(x) and τ−(x) in ∂F (x) such that 〈τ+(x), e1〉 ≥
〈τ−(x), e1〉 P -a.e., where e1 := (1, 0, . . . , 0) ∈ Rd. If Q+ and Q− are the
images of P under τ+ and τ− respectively, then Q := (Q+ +Q−)/2 cannot
be attained as the image of P under any cyclically monotone map.

For a contradiction, we suppose that Q is the image of P under a cycli-
cally monotone map τ . Since s := ∇F ∗ is a continuous map such that
s(τ+(x)) = s(τ−(x)) = x, it is easy to prove, using the duality techniques
of Brenier [4] or Gangbo and McCann [13], that Q ◦ (s × id)−1 is the only

measure with cyclically monotone support having P and Q as its marginals.

This uniqueness implies that P ◦ (id×τ)−1 is the same measure as
Q ◦ (s × id)−1, from which one deduces that s(τ(x)) = x holds P -almost
everywhere. In other words, after modifying τ on a set of measure zero, it
will be true that τ lies in the subgradient of F .
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Now, define τ ′ := (τ++τ−)/2, and divideM into two disjoint measurable
subsets M := M+ ∪M− by defining

M+ := {x ∈ M : 〈τ(x) − τ ′(x), e1〉 ≥ 0}.

Also, divide S := s−1(M) into disjoint measurable subsets S+ and S− given
by

S+ := {y ∈ S : 〈y − τ ′(s(y)), e1〉 ≥ 0}.

Finally, let Y := (s−1(M+) ∩ S+) ∪ (s−1(M−) ∩ S−). Then τ−1(Y ) =
M+ ∪M− = M , so P (τ−1(Y )) = P (M). On the other hand, since Q+(S−)
= 0 while Q−(S+) = 0, one sees that

2Q(Y ) = Q+(s−1(M+) ∩ S+) +Q−(s−1(M−) ∩ S−)

= P (M+) + P (M−) = P (M).

Since P (τ−1(Y )) = 2Q(Y ) = P (M) 6= 0, the probability Q cannot be the
image of P under τ , a contradiction.

(ii)⇒(iv). Let M0 be the set of probabilities satisfying (ii). For any
a ∈ Rd, we have

P ∈ M0 if and only if Pa ∈ M0,

where Pa(·) = P (· − a). Indeed, if Fa(x) = F (x+ a), we have P ◦ (Fa)
−1 =

Pa ◦ (F )−1 and P ◦ (∇Fa)
−1 = Pa ◦ (∇F )−1.

(a) Assume that the sequence (ϕn) of cyclically monotone functions con-
verges in law to a function ϕ. Then P (lim ‖ϕn‖ < ∞) = 1. By transla-
tion (see above) we can suppose that lim ‖ϕn(0)‖ < ∞. Choose convex
functions Fn so that Fn(0) = 0 and ϕn(x) ∈ ∂Fn(x). The inequalities
〈x, ϕn(0)〉 ≤ Fn(x) ≤ 〈x, ϕn(x)〉 show that

P (C := {limFn(x) ∈ R}) = 1.

For x ∈ C, there is a subsequence (nx
k)k such that Fnx

k
(x) converges. Take

a set D := {xp : p ∈ N, x0 = 0} which is dense in C and contained in
the support of P. There is a subsequence (n∗

k) so that Fn∗

k
(xp) → F (xp) :=

limFn(xp) for all p ∈ N. We deduce by Theorem 10.8 of Rockafellar (cf. [26])
that Fn∗

k
(x) → F (x) for all x ∈ C. As P (F ∈ R) = 1 and P ∈ M0, we have

∇Fn∗

k
→ ∇F a.e. (cf. [26], Theorem 25.7) and ∇F = ϕ in law.

(b) The previous argument remains valid if, from the beginning, we
substitute the initial sequence in (a) by a subsequence (ñk). We extract a
new subsequence (ñ∗

k) so that Fñ∗

k
→ F and we deduce that ∇F = ∇F

in law. Lemma 2 of [15] gives the equality ∇F = ∇F a.e. Therefore, we
have proved that ϕn converges in probability. This property is sufficient
to prove all equivalences of Theorem 1. Nevertheless, let us prove the a.e.
convergence.
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For any subsequence (ñk), let C̃ := {limFñk
(x) ∈ R}; we have C ⊂ C̃.

Then the sequence (xp) satisfies: there is a subsequence (ñ∗
k) ⊂ (ñk) such

that Fñ∗

k
(xp) converges for all p. For a point a, suppose Fñk

(a) → ∞ and a ∈
convex(x0, . . . , xj). There is a subsequence (ñ∗

k) such that Fñ∗

k
(xp) converges

and we obtain a contradiction, so P (supFn ∈ R) = 1. Write F = limFn

a.e.; we have seen that ∇F = ∇F a.e. The adaptation of Theorems 24.8
and 24.9 of Rockafellar [26] shows that all limit convex functions are equal
a.e. Thus F = F a.e. and, for all p, Fn(xp) converges. Indeed, let F and
G be two limits, so that, for one p, we have F (xp) < G(xp). There exist
ε > 0 and a ball B(xp, η) such that F (x) ≤ ε + G(x) for x ∈ B(xp, η) ∩ C.
We have a contradiction with the equality a.e., because xp is in the support
of P. We finally conclude that Fn converges a.e., and this completes the
proof of Theorem 2.

Remarks. (1) The implication (ii)⇒(iv) gives a new proof of the main
theorems in [31], [10], [15] and [2].

(2) Let Mt be the set of all probabilities with the transport property.
The following assertions are now easy to prove:

• For any probabilities P ∈ Mt and Q, we have the uniqueness (a.e.) of
the cyclically monotone function ϕ such that Q = P ◦ ϕ−1.

• If P ∈ Mt and Q is absolutely continuous with respect to P, then
Q ∈ Mt.

• Mt is an extremal convex set: let P and Q be two probabilities and
α ∈ ]0, 1[. Then αP + (1− α)Q ∈ Mt if and only if P and Q are in Mt.

• For a probability P, there exists a unique a.e. Borel set A such that
P |A ∈ Mt and P |Ac 6∈ Mt where P |A(·) = P (A ∩ ·)/P (A). This property
results from the fact that if, for a sequence (An), we have P |An

∈ Mt, then
P |⋃An

∈ Mt.

3. On strongly nonatomic probability. The notion of strongly non-
atomic probability, introduced by Cuesta-Albertos and Matrán (cf. [8]),
is bound to the choice of an orthonormal basis. Only such bases will be
considered in this study. In this section, we will provide some properties of
this class of probabilities.

A set G ⊂ Rd is a graph for a basis b = (e1, . . . , ed) if there exists a
Borel set A ⊂ e⊥d (the orthogonal space to Red) and a measurable function
f : A → Red such that G = {(x, f(x)) : x ∈ A}. We also write G = Gb. Let
b = (e1, . . . , ed) be a basis of Rd. For a probability measure P on Rd, Pe⊥i

is the marginal law of P on e⊥i ; and for Pe⊥i
-almost every y ∈ e⊥i , πy is the

conditional law P (· | y).
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Definition 5. A probability measure P on Rd is strongly nonatomic

(s.n.) if there exists a basis b = (e1, . . . , ed) such that ∀i ∈ {1, . . . , d}, πy(·)
is nonatomic Pe⊥i

-a.e.

By negation, P is not strongly nonatomic if, for any b = (e1, . . . , ed),
there exists i and a Borel set A ⊂ e⊥i , Pe⊥i

(A) > 0, such that πy has a
nonatomic component for all y ∈ A.

In [27] we can find a more general version of the next equivalence: Let
P be a probability measure on Rp ×Rq and P1 its marginal law on Rp. The
following assertions are equivalent:

(i) P1({x : πx has a nonatomic component}) > 0.

(ii) There exists a measurable function f : Rp → Rq such that

P ({(x, f(x)) : x ∈ Rp}) > 0.

This yields the following result.

Proposition 1. A probability measure P on Rd is strongly nonatomic if

and only if there is a basis b such that for any graph Gb, we have P (Gb)=0.

The next assertion is now obvious: if P is strongly nonatomic, then
every probability Q which is absolutely continuous with respect to P is also
strongly nonatomic.

The following property completes Lemma 1 of [15].

Proposition 2. A probability measure P on Rd is strongly nonatomic

for a basis b = (e1, . . . , ed) if and only if for every Borel set B, the set

EB := {x : x ∈ B, (∀ε = ±1) (∀i) (∃a sequence (un = un(x, ε, i)) > 0
converging to 0 and (x+ εunei)n ⊂ B} is P -a.e. equal to B.

P r o o f. The direct part is established in [15]. For the converse, if the
probability P is not strongly nonatomic, there exists a graph G in a basis b
such that P (G) > 0. This graph fails the relevant property.

Now, we are going to introduce a wider class of probabilities with similar
properties (cf. Theorem 4).

Definition 6. A probability measure P is quasi-strongly nonatomic

(q.s.n.) (respectively, purely not strongly nonatomic (p.n.s.n.)) if for ev-
ery A with P (A) > 0, the probability P |A is s.n. (resp. not s.n.).

We write Mq (resp. Mc
q) the set of quasi-strongly nonatomic (resp.

purely not strongly nonatomic) probabilities. We obtain the following di-
chotomy.

Proposition 3. For any probability measure P on Rd, there exists a

unique a.e. Borel set A such that P |A ∈ Mq and P |Ac ∈ Mc
q .
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The proof is a consequence of the stability under countable unions of the
set {B : P |B ∈ Mc

q}.
It is easy to deduce the following assertion: A probability measure P is

in Mq if and only if there is a Borel set A with P |A, P |Ac ∈ Mq.
The next property expresses the fact that Mq is an extremal convex set.

Proposition 4. Let P and Q be two probability measures on Rd and

α ∈ ]0, 1[. Then αP + (1− α)Q ∈ Mq if and only if P,Q ∈ Mq .

P r o o f. Let R = αP + (1 − α)Q, and assume that R ∈ Mq. Let A
be a Borel set with R(A) > 0. As P |A and Q|A are absolutely continuous
with respect to R|A, we deduce that P and Q are in Mq. Conversely, write
Q = Q1 + Q2, where Q1 is absolutely continuous with respect to P and
Q2 ⊥ P (i.e., P and Q2 are mutually singular). Let D be a Borel set
such that P (D) = 0 = Q2(D

c). For A ⊂ Dc, R|A = αP |A + (1 − α)Q1|A is
absolutely continuous with respect to P, thus R|A ∈ Mq. For A ⊂ D, R|A =
Q2|A = Q|A, thus R|A ∈ Mq. We conclude with the use of Proposition 3.

Finally, one can also show that Mq ⊂ Mt.

4. Transport and derivation. We limit this part to the probabilities
on R2 which have the form P = λ ◦ (f∗)−1 := λf∗ , where f∗(x) := (x, f(x))
and f is a real measurable function defined on a Borel set A such that
λ(A) = 1. We examine the relationship between the nondifferentiability of
the real function f and the fact that the probability measure λf∗ has the
transport property.

Proposition 2 shows that, if the probability P is strongly nonatomic,
then λ({x : f ′(x) exists}) = 0. This fact motivates the study.

Let us introduce the following vocabulary.

• Two bases bi = (ei1, e
i
2), i = 1, 2, are different if |〈e11, e

2
1〉| ∈ ]0, 1[.

• For a real function f defined on A with λ(A) > 0, we denote by fB
the restriction to B ⊂ A.

• The function f is purely nonderivable (p.n.d.) on A if for every Borel
set B ⊂ A with λ(B) > 0, fB is not almost everywhere derivable (i.e.,
λ({x : f ′

B exists}) = 0).
• For f defined on a Borel set A and x ∈ A, the Dini derivate numbers

are

D+f(x) = lim
u→x+

f(u)− f(x)

u− x
, D+f(x) = lim

u→x+

f(u)− f(x)

u− x
,

D−f(x) = lim
u→x−

f(u)− f(x)

u− x
, D−f(x) = lim

u→x−

f(u)− f(x)

u− x
.

We can now recall the Denjoy–Young–Saks Theorem (cf. [30]).
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Theorem 3 (cf. [30]). Let f be a real function defined on an interval I.
Then, with the possible exception of a null set , I can be decomposed into

four sets:

(1) {D+f = D+f = D−f = D−f ∈ R} (on which f has a finite deriva-

tive);

(2) {D+f = ∞, D−f = −∞, D+f = D−f ∈ R};
(3) {D+f = D−f ∈ R, D+f = −∞, D−f = ∞};
(4) {D+f = D−f = ∞, D+f = D−f = −∞}.

More generalizations and applications can be found in [3], [33], [14]
and [7].

The following result characterizes the strongly nonatomic probabilities
and shows these are independent of the basis choice.

Theorem 4. Let f : A ⊂ R → R, λ(A) = 1, be a measurable function.

Then the following assertions are equivalent :

(1) For any Borel set B ⊂ A with λ(B) > 0, all δ ∈ R, and a.e. x ∈ B,
the set δB(x) := {u ∈ B : f(u)− f(x) = δ(u − x)} is uncountable.

(2) For any Borel set B ⊂ A with λ(B) > 0, all δ ∈ R, and a.e. x ∈ B,
the set δB(x) is not finite.

(3) For all bases b which are different from the initial basis, λf∗ is

strongly nonatomic.

(4) The probability λf∗ is strongly nonatomic.

(5) The probability λf∗ is quasi-strongly nonatomic.

(6) The function f is purely nonderivable.

P r o o f. The assertion (2) shows that a Borel set B with λf∗(B) > 0
fails to be a graph in another basis. By Proposition 1, we have (2)⇒(3).

It is obvious that (3)⇒(1)⇒(2) and (3)⇒(4)⇒(5)⇒(6). The last impli-
cation is a consequence of Proposition 2.

(6)⇒(3). We suppose that, for a basis b (different from the initial basis),
there exists B ⊂ A such that λ(B) > 0 and the graph of (fB)

∗ is also a
graph in b. Then

λ({D−(fB) > −∞} ∪ {D+(fB) < ∞}) > 0.

The lemma of Saks [30] provides a subset C of B such that λ(C) > 0 and
fC is derivable, thus f is not purely nonderivable.

This theorem can be made precise when we consider the intermediate
value property, which is also called the Darboux Property.

For any interval I, we denote by DB1(I) the set of measurable functions
defined on I of the first class of Baire and which have the Darboux Property
(see [7]).
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Theorem 5. Let f ∈ DB1(I). Then the following assertions are equiv-

alent :

(1) λ({x : f ′(x) exists}) = 0.
(2) For any interval J ⊂ I and any δ ∈ R, J is the set of a.e. accumu-

lation points of δJ (x).
(3) We have D+f = D−f = ∞ and D+f = D−f = −∞ a.e.

Furthermore, any one of these assertions implies that λf∗ ∈ Mt.

P r o o f. In order to simplify the notations, we only consider the case
δ = 0. The function g(x) = f(x)− δx gives the general case. We write #(A)
for the cardinality of a set A.

Let f ∈ DB1(I). Then

(2) {x : f ′(x) exists}

= ess sup
δ,J

{x : x is not an accumulation point of δJ (x)− {x}},

where δ ∈ R and J is a subinterval of I. First, we prove that

{x : #(J ∩ f−1f(x)) < ∞} ⊂ {x : f ′(x) exists}.

Let B := {x : J ∩ f−1f(x) = x} and let x1, x2 be two points of B such
that x1 < x2 and, for example, f(x1) < f(x2). If, for u ∈ [x1, x2], we have
f(u) > f(x2), the Darboux Property shows that the line f(x2) cuts the
graph of f at a point with abscissa in ]x1, u[, which is contradictory. So, for
all u ∈ ]x1, x2[, we have f(x1) < f(u) < f(x2). This fact also shows that f
is strictly nondecreasing on E∩ [x1, x2]. There exists a negligible set N such
that B ∩ [x1, x2] ⊂ D := {x : f ′(x) exists} a.e.

We will give an elementary proof. For u ∈ [x1, x2] let g(u) :=
supx∈B∩[x1,u]

f(x) and h(u) := infx∈E∩[u,x2] f(x). The functions g and h
are nondecreasing on [x1, x2] and g(u) ≤ f(u) ≤ h(u). Furthermore, g and
h are equal to f on E∩ [x1, x2]. For x ∈ B∩ [x1, x2] and u ∈ [x1, x2] we have

g(u) − g(x)

u− x
≤

f(u)− f(x)

u− x
≤

h(u) − h(x)

u− x

if x < u, and the reverse inequalities if u < x. As g and h are derivable a.e.
on [x1, x2], we have

g′(x) ≤ lim
u→x+

f(u)− f(x)

u− x
= D+f(x)

≤ lim
u→x+

f(u)− f(x)

u− x
= D+f(x) ≤ h′(x).

The reverse inequalities give

h′(x) ≤ D−f(x) = lim
u→x−

f(u)− f(x)

u− x
≤ D−f(x) ≤ g′(x).

Thus we have the result.
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In fact, we have shown that for all δ ∈ R, and for any subinterval J, the
set δJ1 := {x : δJ (x) = x} is a.e. included in D. Thus ess supJ,δ δ

J
1 ⊂ D.

Now, we assume that x is not an accumulation point of δI(x), i.e. x 6∈

δI (x). There exists an interval J such that x ∈ δJ1 . Then, a.e.,

ess sup
J,δ

{x : x is not an accumulation point of δJ (x)} ⊂ D.

Notice that we can choose J as an open interval with rational ends. Con-
versely, if x ∈ D, there exist δ ∈ Q and J such that x ∈ δJ1 . Finally, we have
a.e.

{x : f ′(x) exists} = ess sup
J,δ

{x : x is not an accumulation point of δJ (x)}.

The proof of Theorem 5 is now clear. For (1)⇒(2), if λ({x : f ′(x) exists})
= 0, then almost every x is an accumulation point of δ(x) for each δ. (3)⇒(1)
is obvious and (2)⇒(3) results from the Denjoy–Young–Saks Theorem.

The transport property can be established by showing that, for any
rectifiable curve S, we have λf∗(S) = 0. This can also be established as
a consequence of the following proposition.

Proposition 5. Let f be a function such that f ∈ DB1(I), λ(I) = 1
and λ(f ′ exists) = 0. The following assertions are equivalent and both hold :

(a) The probability λf∗ is nonatomic, i.e. (∀y) λ({x : f(x) = y}) = 0.

(b) For all continuous functions g on I if λ({x : g′(x) exists}) > 0, then
λ(f = g) = 0.

Before proving this proposition, we finish the proof of Theorem 5.

It is sufficient to take two convex functions for f and g; then the function
h := f − g is in DB1(I) and satisfies λ({x : h′(x) exists}) = 0. Then, from
Proposition 5, λ(h = 0 = f − g) = 0, which proves Theorem 5.

Proof of Proposition 5. First, we show that if f ∈ DB1(I), then |f | ∈
DB1(I); furthermore, if λ(f ′ exists) = 0, then λ(|f |′ exists) = 0.

Indeed, let x < y, let a ∈ [|f |(x), |f |(y)], and assume that f(x) = |f |(x)
and −f(y) = |f |(y). There exists u ∈ [x, y] such that f(u) = −f(x). Thus
there exists v ∈ [u, y] such that f(v) = −a and |f |(v) = a. We have proved
that |f | satisfies the Darboux Property.

Assume now that λ({x : f ′(x) exists}) = 0, and that Theorem 5(3) is
satisfied. For x 6∈ N with λ(N) = 0, there is a sequence (xn) → x+ such
that

f(xn)− f(x)

xn − x
→ ∞;
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if f(x) > 0, then

f(xn)− f(x)

xn − x
≤

|f |(xn)− |f |(x)

xn − x
→ ∞,

which shows that |f | is not derivable at the point x. The other cases are
similar.

To show that (b)⇒(a), it suffices to take g ≡ y.
(a)⇒(b), one sees that the function h = f − g is in DB1(I), and from

(a) we have

λ(h = 0 = f − g) = 0.

To complete the proof, we show that (a) holds. Let

N := {x : f ′ and |f |′ exist}.

The set N is negligible. The first part of Theorem 5 shows that for a.e. x,
|f |+(x) = ∞, and |f |+(x) = −∞. If furthermore f(x) = 0, we have a
contradiction, and {x : f(x) = 0} is a negligible set. By translation we have
λ({x : f = y}) = 0.

Examples. Let B(t), t ∈ [0, 1], be the standard Brownian motion.

(1) The probability λB∗ is strongly nonatomic on R2 for a.e. ω. Indeed,
the function t 7→ B(t) is continuous and not derivable for a.e. ω. And, for
all δ, the set of accumulation points of δ[0,1](x) has no isolated point. Thus
it is uncountable and we have Theorem 4(1).

(2) Let f(x) =
Tx
0
B(t) dt. The probability λf∗ is in Mt, but it is not

strongly nonatomic. The function f is derivable, so from Theorem 4, λf∗

is not strongly nonatomic. Furthermore, if on a set A with λ(A) > 0, we
have f = g − h, where g and h are two convex functions, then B(t) is of
bounded variation on A, which is contradictory. Thus λf∗ has the transport
property.

A contrario, we have the following proposition.

Proposition 6. Let f be a continuously differentiable function on [0, 1].
Then there is a nonatomic probability on the graph of f which does not have

the transport property.

P r o o f. We can assume, without loss of generality, f([0, 1]) ⊂ [0, 1]. Let
G be the graph of f, and let E = [0, 1]× [0, 1]. Let pG be the projection on
the graph: pG(z) := {g : g ∈ G, d(z, g) = d(z,G)}. It is easy to verify the
following assertion: If F is a compact ⊂ Gc ∩ E such that λ ⊗ λ(F ) > 0,
then pG(F ) is uncountable.

This last point ensures the existence of a probability measure ν which
is nonatomic on [0, 1] and such that P = νf∗ and P (pG(G

c)) = 1. This
probability is not in Mt.
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For g ∈ pG(G
c), let zg ∈ E be the farthest point on the normal Ng

(oriented from the positive axis) and such that g ∈ pG(z). Let Ig := [g,Mg [.
We define on pG(G

c)⊗ B(Gc) the kernel

N(g,B) :=
1

λ(Ig)
λ(B ∩ Ig).

Let Q be the probability defined by

Q(B) :=
\

pG(Gc)

N(g,B) dP (g).

We have P = Q ◦ p−1
G and

inf
{\

d2(x, y) dµ : µ ∈ M(P,Q)
}
=
\
d2(z, pG(z)) dQ(z).

By negation, we suppose P ∈ Mt. Then there exists a cyclically monotone
function ϕ such that Q = P ◦ ϕ−1 and

inf
{\

d2(x, y) dµ : µ ∈ M(P,Q)
}
=
\
d2(z, ϕ(g)) dP (g).

So, P -a.e. we have ϕ(g) ∈ [zg , g]. As {ϕ(pG(G
c))∩ Ig} = {ϕ(g)}, we obtain

Q(ϕ ◦ pG(G
c)) =

\
pG(Gc)

1

λ(Ig)
λ(Gc ∩ Ig) dP (g) = 0,

which is absurd.

Remarks. (1) From Theorem 2, there is a function h which is the
difference of two convex functions such that ν(f = h) > 0.

(2) The results of Section 4 can be generalized by considering a nonato-
mic probability η on R instead of the Lebesgue measure λ and by replacing
the ordinary derivation, related to λ, by that related to η (see [12]).

5. Appendix. Given a convex function F on Rd, in this appendix we
prove the existence of a measurable function in ∂F (x) with certain proper-
ties. We note that the existence of a Borel function, with different properties,
in a more general setting can be found in [11].

Lemma 1. Let D = (xn) be a dense sequence in a metric space (E, d),
and let ϕ : D → Rd. Then ϕ can be extended to a measurable function

ϕ : E → Rd and there exists a map from E into NN, denoted by y 7→ ny
k,

such that ϕ(y) = limk ϕ(xny
k
).

P r o o f. With each y ∈ E, we associate the sequence (ñy
k)k where ñy

k :=
inf{n : d(xn, y) < 1/k}. Let ϕk(y) := ϕ(xñy

k
) and Np := {q : ϕ(xq) =

ϕ(xp)}. Then
⋃

q∈Np

{y : ñy
k = q} = {y : ϕk(y) = ϕ(xp)}.
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Indeed, if ñy
k = q for q ∈ Np, then ϕk(y) = ϕ(xp). Conversely, if ϕk(y) =

ϕ(xp), the integer q = ñy
k is in Np, which shows the equality. Since every

{y : ñy
k = p} is a Borel set, the function ϕ := lim fk is Borel on Rd. For each

i, one has ñxi

k = i when k is large enough, thus ϕ(xi) = ϕ(xi).

To prove the second statement, let

ny
k := inf{i : sup(d(xi, y), |ϕ(y)− ϕ(xi)|) < 1/k}.

The number ny
k is well defined, because d(xny

k
, y) → 0 and ϕ(y) = limϕ(xny

k
).

For each y ∈ E, we have ϕ(y) = limϕ(xny
k
), which proves Lemma 1 in the

one-dimensional case.

For higher dimensions, it is enough to treat the R2 case. Let g be a
second function defined on D such that the map y 7→ gk(y) = g(xny

k
) is

Borel. Finally, the coupling (f, g) can be extended to (f, g) satisfying the
conditions lemma.

Remark. Let ϕ be a cyclically monotone function defined on a countable
set D ⊂ Rd. Then the above extension is cyclically monotone on D. Indeed,
take m points from D, and, with the previous notations, set xi

k := x
nyi

k

. For

every i ∈ {1, . . . ,m}, we have xi
k → yi and ϕ(xi

k) → ϕ(yi) as k → ∞. By
the hypotheses, we have

m∑

k=0

〈xi+1
k − xi

k, ϕ(x
i
k)〉 ≥ 0.

Letting k → ∞, we get the expected result.

Proposition 7. If F < ∞ is a convex function on Rd, then there exists

a measurable function ϕ defined on domF with ϕ(x) ∈ ∂F (x). Furthermore,
if P is a Borel probability on Rd such that P (F is not differentiable) > 0,
then there exist two measurable functions τ+(x) and τ−(x) in ∂F (x) such

that P (〈τ+(x), e1〉 ≥ 〈τ−(x), e1〉) = 1, where e1 = (1, 0, . . . , 0) ∈ Rd.

P r o o f. Let E be the set where ∇F exists and let D ⊂ E be a dense
countable subset of domF . If the interior of domF is empty, we can restrict
ourselves to a subspace generated by domF and apply Theorem 25.5 of
Rockafellar [26].

From Lemma 1, there exists a measurable map ϕ : Rd → Rd such that
ϕ(x) ∈ ∂F (x) for x ∈ domF . Indeed, for every xn ∈ D we have 〈y −
xn,∇F (xn)〉+F (xn) ≤ F (y). For x ∈ domF we take a suitable subsequence
denoted by (x∗

n) ⊂ D such that x∗
n → x and ∇F (x∗

n) converges to F (x). It
follows that 〈y − x, ϕ(x)〉 + F (x) ≤ F (y).

By using Lemma 1 and Zaj́ıček’s theorem, we can prove the second
statement of the proposition.
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[12] A. Faure, Sur le théorème de Denjoy–Young–Saks, C. R. Acad. Sci. Paris 320

(1995), 415–418.
[13] W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta

Math. 177 (1996), 113–161.
[14] K. M. Garg, Applications of Denjoy analogue. II : Local structure of level sets and

Dini derivates. III : Distribution of various typical level sets, Acta Math. Acad.
Sci. Hungar. 14 (1963), 183–195.

[15] H. Hein ich et J. C. Lootgieter, Convergence des fonctions monotones, C. R.
Acad. Sci. Paris 322 (1996), 869–874.

[16] L. V. Kantorov ich, On the translocation of masses, C. R. (Doklady) Acad. Sci.
URSS (N.S.) 37 (1942), 199–201.

[17] —, On a problem of Monge, Uspekhi Mat. Nauk 3 (1948), 225–226 (in Russian).
[18] M. Knott and C. S. Smith, On the optimal transportation of distributions, J.

Optim. Theory Appl. 52 (1987), 323–329.
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