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NONPARAMETRIC ADAPTIVE CONTROL

FOR DISCRETE-TIME MARKOV PROCESSES WITH

UNBOUNDED COSTS UNDER AVERAGE CRITERION

Abstract. We introduce average cost optimal adaptive policies in a class
of discrete-time Markov control processes with Borel state and action spaces,
allowing unbounded costs. The processes evolve according to the system
equations xt+1 = F (xt, at, ξt), t = 1, 2, . . . , with i.i.d. R

k-valued random
vectors ξt, which are observable but whose density ̺ is unknown.

1. Introduction. We consider a class of discrete-time Markov control
processes (MCPs) of the form

(1) xt+1 = F (xt, at, ξt), t = 0, 1, . . . ,

where F is a known function, xt and at represent, respectively, the state and
control (action) at time t, taking values in Borel spaces, and {ξt} (the “driv-
ing process”) are independent and identically distributed random vectors in
R

k having an unknown density ̺. Assuming that realizations ξ0, ξ1, ξ2, . . .
of the driving process and the states x0, x1, x2, . . . are completely observ-
able, we introduce an optimal adaptive policy with respect to the long run
expected average cost with a possibly unbounded one-stage cost. These as-
sumptions are satisfied in some applied problems, for instance in production-
inventory systems, control of water reservoirs, certain controlled queueing
systems, etc. (see, for example, [2], [8] and references therein).

Since ̺ is unknown, to construct an adaptive policy in this paper, we in-
troduce first a suitable method of statistical estimation of ̺, and then apply
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the “principle of estimation and control” proposed by Mandl in [12]. This is
not easy because of unbounded cost. Indeed, the nice contractive operator
techniques do not work for the average criterion, and so we are forced to
impose Lippman-like conditions ([11], [14]) and ergodicity assumptions on
the class of MCPs considered, to be able to use the results in [4]. Moreover,
we need methods of statistical estimation of ̺ such that provide information
about the Lq-norm accuracy ‖̺t − ̺‖q of the estimators ̺t, t = 1, 2, . . .

Our work is motivated mostly by recent papers of Gordienko and
Minjárez-Sosa [5], [6], in which there were constructed, respectively, asymp-
totically discounted optimal and average cost optimal adaptive policies, for
the same class of processes (1), allowing unbounded one-stage cost.

The main difference between the results presented in this paper and those
in [6] concerns the restrictions on the control model and the approach used.

For instance, the assumptions on the set of densities that define the ad-
missible class of control processes for which the adaptive policy constructed
in [6] is applicable are more restrictive than our conditions (see Assump-
tions 2.1(c), (d), and condition (f) for densities used in [6]). In fact, to
prove the optimality of the adaptive policy constructed in this paper, we
only need to impose conditions that ensure the existence of a solution to an
optimality inequality, while in [6] average cost optimality equations play an
important role.

As regards the approach, the adaptive policy in [6] was defined by means
of an iterative procedure, which is an obvious advantage from the point of
view of its implementation. But this gain is rather limited since the proof
of the average optimality for that policy relies strongly on the convergence
of the so-called value iteration algorithm, for which a very restrictive ad-
ditional condition was imposed (see Proposition 3.4 in [6]). Instead, the
average optimality of the adaptive policy proposed here is studied by means
of a variant of the so-called vanishing discount factor approach [1] without
additional conditions.

This procedure consists in choosing an appropriate sequence {αt},
αt ր 1, of discount factors, then replace the unknown density ̺ by its esti-
mators ̺t, which are obtained using the procedure of statistical estimation
proposed in [5], [6], and finally exploit the corresponding αt-discounted op-
timality equations, taking the limit as t→ ∞.

The policy studied here was originally introduced in [3] and revised
in [10], both considering bounded one-stage cost.

The paper is organized as follows. In Sections 2 and 3 we introduce the
Markov control model and the assumptions considered. Next, in Section 4
we list some preliminary results, which are used to prove the optimality of
the adaptive policy in Section 5.
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2. The control model. We consider a class of discrete-time Markov
control models (X,A,Rk, F, ̺, c) in which the state space X and the control
A are both Borel. The dynamics is defined by the system equations (1).
Here, F : X × A× R

k → X is a given (measurable) function, and {ξt} is a
sequence of independent and identically distributed (i.i.d.) random vectors
(r.v.’s) on a probability space (Ω,F , P ), with values in R

k and a common
unknown distribution with a density ̺ (unknown), that belongs to a given
class described in the next section.

With each x ∈ X, we associate a nonempty set A(x) whose elements are
the feasible controls (or actions) when the state of the system is x. The set

K = {(x, a) : x ∈ X, a ∈ A(x)}

is assumed to be a Borel subset of X × A, and the one-stage cost c is a
nonnegative real-valued measurable function on K, possibly unbounded.

Let Π be the set of all control policies and F ⊂ Π be the set of all
deterministic stationary policies [2]. As usual, every stationary policy π ∈ F

is identified with some measurable function f : X → A such that f(x) ∈
A(x) for every x ∈ X, taking the form π = {f, f, f, . . .}. In this case we use
the notation f for π and we write

c(x, f) := c(x, f(x)) and F (x, f, s) := F (x, f(x), s), x ∈ X, s ∈ R
k.

Given the initial state x0 = x, when using a policy π ∈ Π, we define the
total expected α-discount cost as

Vα(π, x) := Eπ
x

[ ∞∑

t=0

αtc(xt, at)
]
,

α ∈ (0, 1) being the so-called discount factor ; and the long run expected

average cost as

(2) J(π, x) := lim sup
n→∞

n−1Eπ
x

[ n−1∑

t=0

c(xt, at)
]
,

where Eπ
x denotes the expectation operator with respect to the probability

measure Pπ
x induced by the policy π, given the initial state x0 = x (see,

e.g., [2]).

A policy π∗ ∈ Π is said to be α-discounted optimal (α-optimal) if

Vα(x) := inf
π∈Π

Vα(π, x) = Vα(π
∗, x), x ∈ X.

Similarly, π∗ ∈ Π is called average cost optimal (AC-optimal) if

J(x) := inf
π∈Π

J(π, x) = J(π∗, x), x ∈ X.
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3. Assumptions. For a given measurable functionW : X → [1,∞), we
denote by L∞

W the normed linear space of all measurable functions u : X → R

with

(3) ‖u‖W := sup
x∈X

|u(x)|/W (x) <∞;

and for a density µ on R
k, Qµ(· | ·) is a stochastic kernel on X given K,

defined as

(4) Qµ(B |x, a) :=
\
Rk

1B [F (x, a, s)]µ(s) ds, B ∈ B(X), (x, a) ∈ K,

where 1B(·) stands for the indicator function of the set B, and B(X) is the
Borel σ-algebra of X.

Assumption 3.1. (a) For every x ∈ X, the function a 7→ c(x, a) is lower
semicontinuous (l.s.c.) and supa∈A(x) |c(x, a)| ≤W (x);

(b) for each x ∈ X, A(x) is a σ-compact set.

Now, we define a set of densities ̺ of the r.v.’s ξt in (1) that describes
an admissible class of control processes for which the adaptive policy con-
structed in this paper is applicable. For this, fix ε ∈ (0, 1/2) and a nonneg-
ative measurable function ̺ : Rk → R which is used as a known majorant
of the unknown densities ̺.

Setting q := 1 + 2ε, we define the set D0 = D0(̺, L, β0, b0, p, q,m,ψ, ψ)
to consist of all densities µ on R

k for which the following holds.

(a) µ ∈ Lq(R
k).

(b) There exists a constant L such that for each z ∈ R
k,

(5) ‖∆zµ‖Lq
≤ L|z|1/q ,

where ∆zµ(s) := µ(s + z) − µ(s) for s ∈ R
k and | · | is the Euclidean norm

in R
k.

(c) µ(s) ≤ ̺(s) almost everywhere with respect to the Lebesgue measure.

(d) For every f ∈ F the Markov xft process with transition probability
Qµ(B |x, f), B ∈ B(X), is positive Harris-recurrent.

(e) There exists a probability measurem on (X,B(X)) and a nonnegative
number β0 < 1 and for every f ∈ F a nonnegative function ψf : X → R

such that for any x ∈ X and B ∈ B(X),

(i) Qµ(B |x, f) ≥ ψf (x)m(B);

(ii)
T
Rk W

p[F (x, f, s)]µ(s) ds ≤ β0W
p(x) + ψf (x)

T
X
W p(y)m(dy) for

some p > 1, and b0 :=
T
X
W p(y)m(dy) <∞;

(iii) inff∈F

T
X
ψf (x) m(dx) =: ψ > 0.
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Remark 3.2. The set D0 is more restrictive than the set of densities used
in [5] for the discounted criterion because in that work it was only necessary
to impose the conditions (a)–(c) together with

(6)
\
Rk

W p[F (x, f, s)]µ(s) ds ≤ β0W
p(x) + b0, x ∈ X, a ∈ A(x),

where p > 1, β0 < 1, b0 <∞. But, as was observed in ([6], Remark 2.2(b)),
the relation (6) follows from conditions (e)(i) and (e)(ii) using the same p,
β0 and b0.

Assumption 3.3. (a) The density ̺ belongs to D0.
(b) For every s ∈ R

k,

(7) ϕ(s) := sup
x∈X

[W (x)]−1 sup
a∈A(x)

W [F (x, a, s)] <∞.

(c)
T
Rk ϕ

2(s)|̺(s)|1−2ε ds <∞.

Remark 3.4. The function ϕ in (7) can be nonmeasurable. In this
case we suppose the existence of a measurable majorant ϕ of ϕ for which
Assumption 3.3(c) holds.

Assumptions 3.1 and 3.3 were used in [6], where an example of a queueing
system with a controllable service rate satisfying those assumptions was
given.

4. Preliminary results. In this section we state some preliminary
results, proved in previous works, that will be useful in the next sections.

Lemma 4.1 (see [5]). Suppose that Assumption 3.1(a) holds and ̺ satis-

fies the condition (6). Then:

(a) for every x ∈ X and a ∈ A(x),

(8)
\
Rk

W [F (x, a, s)]̺(s) ds ≤ βW (x) + b,

where β = β
1/p
0 and b = b

1/p
0 [see Remark 3.2];

(b) supt≥1E
π
x [W

p(xt)] <∞ and supt≥1E
π
x [W (xt)] <∞ for each π ∈ Π

and x ∈ X.

Lemma 4.2. Let α ∈ (0, 1) be an arbitrary but fixed discount factor.

Then:

(a) (see [9]) if ̺ satisfies the condition (6) or (8), then under Assump-

tion 3.1(a), we have Vα(x) ≤ CW (x)/(1−α) for some constant C > 0, and
Vα(·) satisfies the dynamic programming equation, i.e.,

(9) Vα(x) = inf
a∈A(x)

[
c(x, a) + α

\
Rk

Vα[F (x, a, s)]̺(s) ds
]
, x ∈ X;
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(b) under Assumption 3.1, for each δ > 0, there exists a policy f ∈ F

such that

(10) c(x, f) + α
\
Rk

Vα[F (x, f, s)]̺(s) ds ≤ Vα(x) + δ, x ∈ X.

From the fact that Q̺(· | ·) is a stochastic kernel [see (4)], it is easy to
prove that for a nonnegative function u ∈ L∞

W , and every r ∈ R, the set
{
(x, a) :

\
Rk

u[F (x, a, s)]̺(s) ds ≤ r
}

is Borel in K. Hence part (b) of Lemma 4.2 is a consequence of Corollary 4.3
in [13].

Lemma 4.3 (see [4]). Suppose that Assumption 3.1 holds and ̺ ∈ D0.

Then there exist a constant j∗ and a function φ in L∞
W such that

(11) j∗ + φ(x) ≥ inf
a∈A(x)

[
c(x, a) +

\
Rk

φ[F (x, a, s)]̺(s) ds
]
,

and j∗ = infπ∈Π J(π, x) for all x ∈ X.

Remark 4.4. (a) In [4] it has been shown that j∗ = lim supαր1 jα where
j∗ is the optimal average cost and, for z ∈ X fixed, jα := (1 − α)Vα(z),
α ∈ (0, 1). Using the same arguments as in the proof of the last assertion,
we can also show that j∗ = lim infαր1 jα. Hence,

(12) lim
t→∞

jαt
= j∗

for any sequence {αt} of discount factors such that αt ր 1 (see also [3]).
In fact (j∗, φ), with φ(x) := limt→∞ φαt

(x), x ∈ X, satisfies the optimality
inequality (11), where φα(x) := Vα(x) − Vα(z). Furthermore, also in [4] it
was proved that

(13) sup
α∈(0,1)

‖φα‖W <∞.

(b) From the definition of jα and φα, it is easy to see that the equation (9)
and the inequality (10) are equivalent, respectively, to

(14) jα + φα(x)

= inf
a∈A(x)

[
c(x, a) + α

\
Rk

φα[F (x, a, s)]̺(s) ds
]
, x ∈ X, α ∈ (0, 1),

and

(15) c(x, f) + α
\
Rk

φα[F (x, f, s)]̺(s) ds

≤ jα + φα(x) + δ, x ∈ X, α ∈ (0, 1).
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A key point in the construction of the average cost optimal adaptive
policy in the next section is the use of the density estimation scheme pro-
posed originally in [5] for the discounted criterion and used again in [6]
(see Remark 3.2) to construct an average optimal iterative adaptive policy.
We present a shortened version of this estimation procedure.

Denote by ξ0, ξ1, . . . , ξt−1 the independent realizations (observed up to
time t− 1) of a r.v. with unknown density ̺ ∈ D0. Let ̺̂t := ̺̂t(s; ξ0, ξ1, . . .
. . . , ξt−1), s ∈ R

k, be an arbitrary estimator of ̺ belonging to Lq, such that
for some γ > 0,

(16) E‖̺− ̺̂t‖qp
′/2

q = O(t−γ) as t→ ∞,

where 1/p + 1/p′ = 1.

Then we estimate ̺ by the projection ̺t of ̺̂t on the set of densities
D := D1 ∩D2 in Lq where

(17)
D1 := {µ : µ is a density on R

k, µ ∈ Lq and µ(s) ≤ ̺(s) a.e.},

D2 :=
{
µ : µ is a density on R

k, µ ∈ Lq,\
W [F (x, a, s)]µ(s) ds ≤ βW (x) + b, (x, a) ∈ K

}

[see Lemma 4.1 for the constants β and b].

The existence (and uniqueness) of the estimator ̺t is guaranteed because
the set D is convex and closed in Lq ([5], [6]). In fact, we have

(18) ‖̺t − ̺̂t‖q = inf
µ∈D

‖µ− ̺̂t‖q , t ∈ N,

that is, the density ̺t ∈ D is a “best approximation” of the estimator ̺̂t on
the set D. Assumption 3.3(a) and Lemma 4.1(a) yield ̺ ∈ D0 ⊂ D.

In the rest of the paper we use densities ̺t(·) := ̺t(·; ξ0, ξ1, . . . , ξt−1),
t ∈ N, satisfying (16) and (18) as estimators of a density ̺. Examples of
estimators satisfying (16) are given in [7].

Now we define the pseudo-norm ‖ · ‖ (possibly taking infinite values) on
the space of all densities µ on R

k by setting

(19) ‖µ‖ := sup
x∈X

[W (x)]−1 sup
a∈A(x)

\
Rk

W [F (x, a, s)]µ(s) ds.

Lemma 4.5 (see [5], [6]). Suppose that Assumption 3.3 holds. Then

E‖̺t − ̺‖p
′

= O(t−γ) as t → ∞.

5. Adaptive policy as a limit of discounted programs. Let ν
be an arbitrary real number such that 0 < ν < γ/(3p′) where γ and p′

are from (16). We fix an arbitrary nondecreasing sequence {αt} of discount
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factors such that 1− αt = O(t−ν) as t→ ∞, and

(20) lim
n→∞

κ(n)/n = 0,

where κ(n) is the number of changes of value of {αt} on [0, n].
To construct the adaptive policy, we will use similar ideas to [5], [6]

and [10]. For this purpose we need to extend some assertions of the previous
sections to the densities ̺t ∈ D.

For a fixed t, let V
(̺t)
αt (π, x) := Eπ,̺t

x [
∑∞

n=0 α
n
t c(xn, an)] be the total

expected αt-discount cost for the process (1) in which all the r.v.’s ξ1, ξ2, . . .

have the same density ̺t, and V
(̺t)
αt (x) := infπ∈Π V

(̺t)
αt (π, x), x ∈ X, be

the corresponding value function. For these, we define [see Remark 4.4] the

sequences φ
(̺t)
αt (·) and j

(̺t)
αt . Thus [see (14)],

(21) j(̺t)
αt

+ φ(̺t)
αt

(x)

= inf
a∈A(x)

[
c(x, a) + αt

\
Rk

φ(̺t)
αt

[F (x, a, s)]̺t(s) ds
]
, x ∈ X, t ∈ N,

where the minimization is done for every ω ∈ Ω. In the following, we
suppose that the minimization of a term including the estimator ̺t is done
for every ω ∈ Ω.

For each t∈N and µ ∈D, define the operator Tµ,αt
≡ Tµ : L∞

W → L∞
W as

(22) Tµu(x)

:= inf
a∈A(x)

{
c(x, a) + αt

\
Rk

u[F (x, a, s)]µ(s) ds
}
, x ∈ X, u ∈ L∞

W .

The proof of Lemmas 4.1 and 4.2 (partly given in [9]) shows that the
following assertions hold true (because only (8) is used here).

Proposition 5.1. (a) Suppose that Assumption 3.1(a) holds and ̺ sat-

isfies (6) or (8). Then, for each t ∈ N, T̺Vαt
= Vαt

, T̺t
V

(̺t)
αt = V

(̺t)
αt

and

(23) Vαt
(x) ≤

C

1− αt
W (x), V (̺t)

αt
(x) ≤

C

1− αt
W (x), x ∈ X.

(b) Under Assumption 3.1, for each t ∈ N and δt > 0, there exists a

policy f̂t ∈ F such that

(24) c(x, f̂t) + αt

\
Rk

V (̺t)
αt

[F (x, f̂t, s)]̺t(s) ds ≤ V (̺t)
αt

(x) + δt, x ∈ X,

or [see Remark 4.4(b)]

(25) c(x, f̂t) + αt

\
Rk

φ(̺t)
αt

[F (x, f̂t, s)]̺(s) ds

≤ j(̺t)
αt

+ φ(̺t)
αt

(x) + δt, x ∈ X.
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For t ∈ N, we set ht := (x0, a0, s0, . . . , xt−1, at−1, st−1, xt), the history
up to time t, where (xn, an) ∈ K, sn ∈ R

k, n = 0, 1, . . . , t− 1 and xt ∈ X.

Definition 5.2. Let {δt} be an arbitrary sequence of positive numbers

and {f̂t} be a sequence of functions (selectors) satisfying ( 24) or (25) for
each t ∈ N. The adaptive policy π̂ = {π̂t} is defined as π̂t(ht) = π̂t(ht; ̺t) :=

f̂t(xt), t ∈ N, where π̂0(x) is any fixed action.

Supposing that δ := limt→∞ δt <∞, we state our main result:

Theorem 5.3. Suppose that Assumptions 3.1 and 3.3 hold. Then the

adaptive policy π̂ is δ-average cost optimal , i.e., for each x ∈ X, J(π̂, x) ≤
j∗ + δ, where j∗ is the optimal average cost as in Lemma 4.3. In particular ,
if δ = 0 then the policy π̂ is average cost optimal.

The proof of this theorem is based on the following lemma:

Lemma 5.4. Under Assumptions 3.1 and 3.3, for each x ∈ X and π ∈ Π,
as t→ ∞,

(a) Eπ
x‖φαt

− φ(̺t)
αt

‖p
′

W → 0, (b) Eπ
x [‖φαt

− φ(̺t)
αt

‖WW (xt)] → 0.

P r o o f. (a) Observing that ‖φαt
− φ

(̺t)
αt ‖W ≤ 2‖Vαt

− V
(̺t)
αt ‖W it is

sufficient to prove

(26) lim
t→∞

Eπ
x ‖Vαt

− V (̺t)
αt

‖p
′

W = 0, x ∈ X, π ∈ Π.

For each t ∈ N, we define θt := (1 + αt)/2 ∈ (αt, 1), and Wt(x) :=
W (x) + dt, x ∈ X, where dt := b(θt/αt − 1)−1. Let L∞

Wt
be the space of

measurable functions u : X → R with the norm

‖u‖Wt
:= sup

x∈X
|u(x)|/Wt(x) <∞, t ∈ N.

Using the fact that dt ≤ 2b/(1 − αt), t ∈ N, it is easy to see that

‖u‖Wt
≤ ‖u‖W ≤ lt‖u‖Wt

, t ∈ N,

where lt := 1 + 2b/[(1 − αt) infx∈X W (x)]. Thus, (26) will be proved if we
show

(27) lp
′

t E
π̂
x ‖Vαt

− V (̺t)
αt

‖p
′

Wt
→ 0 as t→ ∞.

A consequence of Lemma 2 in [14] is that, for each t ∈ N and µ ∈ D,
the inequality

T
Rk W [F (x, a, s)]µ(s) ds ≤ W (x) + b implies that the opera-

tor Tµ defined in (22) is a contraction with respect to the norm ‖ · ‖Wt
with

constant θt, i.e.,

(28) ‖Tµv − Tµu‖Wt
≤ θt‖v − u‖Wt

, v, u ∈ L∞
W , t ∈ N.

Hence, from (28) and Proposition 5.1(a) we can see that

‖Vαt
− V (̺t)

αt
‖Wt

≤ ‖T̺Vαt
− T̺t

Vαt
‖Wt

+ θt‖Vαt
− V (̺t)

αt
‖Wt

,
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which implies that

(29) lt‖Vαt
− V (̺t)

αt
‖Wt

≤
lt

1− θt
‖T̺Vαt

− T̺
t
Vαt

‖Wt
, t ∈ N.

On the other hand, from definition (19), (23) and the fact that [Wt(·)]
−1

< [W (·)]−1, t ∈ N, we obtain

(30) ‖T̺Vαt
− T̺

t
Vαt

‖Wt

≤ αt sup
x∈X

[Wt(x)]
−1 sup

a∈A(x)

\
Rk

Vαt
[F (x, a, s)]|̺(s) − ̺t(s)| ds

≤
Cαt

1− αt
sup
x∈X

[W (x)]−1 sup
a∈A(x)

\
Rk

W [F (x, a, s)]|̺(s) − ̺t(s)| ds

≤
C

1− αt
‖̺− ̺t‖.

Now, observe that [see definition of αt and θt]

(31)
1

(1− θt)(1− αt)2
= O(t3ν) as t→ ∞.

Combining (29)–(31) and using the definition of lt we get

(32) lp
′

t ‖Vαt
− V (̺t)

αt
‖p

′

Wt

≤ Cp′

[
1

(1− θt)(1− αt)
+

2b

(1− θt)(1− αt)2 infx∈X W (x)

]p′

‖̺− ̺t‖
p′

= Cp′

O(t3p
′ν)‖̺− ̺t‖

p′

as t→ ∞.

Finally, taking the expectation Eπ
x on both sides of (32) and observing that

Eπ
x ‖̺ − ̺t‖

p′

= E‖̺ − ̺t‖
p′

(since ̺t does not depend on x and π), we
obtain (27) by virtue of Lemma 4.5 and the fact 3νp′ < γ [see definition of
αt]. This proves (a).

(b) Defining C := (Eπ
x [W

p(xt)])
1/p < ∞ [see Lemma 4.1(b)], applying

Hölder’s inequality and (a), we have

(33) Eπ
x ‖φαt

− φ(̺t)
αt

‖WW (xt)

≤ C(Eπ
x [‖φαt

− φ(̺t)
αt

‖p
′

W ])1/p
′

→ 0 as t→ ∞.

This completes the proof of Lemma 5.4.

Proof of Theorem 5.3. Let {kt} :={(xt, at)} be a sequence of state-action
pairs corresponding to applications of the adaptive policy π̂. We define

Lt := c(kt) + αt

\
Rk

φαt
[F (kt, s)]̺(s) ds − jαt

− φαt
(xt)(34)

= c(kt) + αtE
π̂
x [φαt

(xt+1) | kt]− jαt
− φαt

(xt).
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Hence, for n ≥ k ≥ 1,

(35) n−1Eπ̂
x

[ n∑

t=k

c(kt)− jαt

]

= n−1Eπ̂
x

[ n∑

t=k

(φαt
(xt)− αtφαt

(xt+1))
]
+ n−1Eπ̂

x

[ n∑

t=k

Lt

]
.

On the other hand, from (13), Lemma 4.1(b) and the fact |u(x)| ≤
‖u‖WW (x), u ∈ L∞

W , x ∈ X, we have Eπ̂
x [φα(xt)] < C ′, α ∈ (0, 1), for a

constant C ′ < ∞. Thus, denoting by α∗
1, . . . , α

∗
κ(n), n ≥ 1, the different

values of αt for t ≤ n, and using the fact that {αt} is a nondecreasing
sequence we have [see condition (20) and the definition of φα]

(36) n−1Eπ̂
x

[ n∑

t=k

(φαt
(xt)− αtφαt

(xt+1))
]

= n−1Eπ̂
x

[ n∑

t=k

(φαt
(xt)− αtφαt

(xt))
]

+ n−1Eπ̂
x

[ n∑

t=k

αt(φαt
(xt)− φαt

(xt+1))
]

≤ (1− αk)C
′ + n−12C ′

κ(n)∑

i=1

α∗
i

≤ (1− αk)C
′ + 2C ′κ(n)n−1, x ∈ X.

Now, from (34) and (14) we have

Lt = c(kt) + αt

\
Rk

φαt
[F (kt, s)]̺(s) ds

− inf
a∈A(xt)

[
c(xt, a) + αt

\
Rk

φαt
[F (xt, a, s)]̺(s) ds

]

≤
∣∣∣αt

\
Rk

φαt
[F (kt, s)]̺(s) ds − αt

\
Rk

φ(̺t)
αt

[F (kt, s)]̺(s) ds
∣∣∣

+
∣∣∣αt

\
Rk

φ(̺t)
αt

[F (kt, s)]̺(s) ds − αt

\
Rk

φ(̺t)
αt

[F (kt, s)]̺t(s) ds
∣∣∣

+
∣∣∣c(kt) + αt

\
Rk

φ(̺t)
αt

[F (kt, s)]̺t(s) ds

− inf
a∈A(xt)

[
c(xt, a) + αt

\
Rk

φαt
[F (xt, a, s)]̺(s) ds

]∣∣∣

=: |I1(t)|+ |I2(t)|+ |I3(t)|.
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Using the fact that |u(x)| ≤ ‖u‖WW (x), u ∈ L∞
W , x ∈ X, and (8) gives

|I1(t)| ≤ αt

\
Rk

|φαt
[F (kt, s)]− φ(̺t)

αt
[F (kt, s)]|̺(s) ds(37)

≤ αt‖φαt
− φ(̺t)

αt
‖W [βW (xt) + b].

Taking Eπ̂
x on both sides of (37) and using Lemma 5.4, we get

(38) Eπ̂
x |I1(t)| → 0 as t→ ∞.

To show that Eπ̂
x |I2(t)| → 0, first we have, from the definition of αt and

(23),

‖φ(̺t)
αt

‖W ≤ 2‖V (̺t)
αt

‖W ≤
2C

1− αt
= O(tν).

Thus, from definition (19),

|I2(t)| ≤ αt

\
Rk

φ(̺t)
αt

[F (kt, s)]|̺(s) − ̺t(s)| ds(39)

≤ αtW (xt)‖φ
(̺t)
αt

‖W ‖̺− ̺t‖.

Hence, taking expectation and applying Hölder’s inequality we get

Eπ̂
x |I2(t)| ≤ ([O(tν)]p

′

Eπ̂
x‖̺− ̺t‖

p′

)1/p
′

(40)

= [O(tνp
′−γ)]1/p

′

→ 0 as t→ ∞,

since ν < γ/p′ [see definition of αt].

For the term |I3(t)|, from the definition of the policy π̂ combined with
(25) and (21),

|I3(t)| ≤
∣∣∣c(kt) + αt

\
Rk

φ(̺t)
αt

[F (kt, s)]̺t(s) ds

− inf
a∈A(xt)

{
c(xt, a) + αt

\
Rk

φ(̺t)
αt

[F (xt, a, s)]̺t(s) ds
}∣∣∣

+
∣∣∣ inf
a∈A(xt)

{
c(xt, a) + αt

\
Rk

φ(̺t)
αt

[F (xt, a, s)]̺t(s) ds
}

− inf
a∈A(xt)

{
c(xt, a) + αt

\
Rk

φαt
[F (xt, a, s)]̺(s) ds

}∣∣∣

≤ δt + αt sup
a∈A(xt)

∣∣∣
\
Rk

φ(̺t)
αt

[F (xt, a, s)]̺t(s) ds

−
\
Rk

φαt
[F (xt, a, s)]̺(s) ds

∣∣∣.

Hence, from definition (19),
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|I3(t)| ≤ δt + αt sup
a∈A(xt)

\
Rk

φ(̺t)
αt

[F (xt, a, s)]|̺(s) − ̺t(s)| ds

+ αt sup
a∈A(xt)

\
Rk

|φ(̺t)
αt

[F (xt, a, s)]− φαt
[F (xt, a, s)]|̺(s) ds

≤ δt + αtW (xt)‖φ
(̺t)
αt

‖W ‖̺− ̺t‖+ αt‖φαt
− φ(̺t)

αt
‖W [βW (x) + b].

Hence, from (37)–(40), we get Eπ̂
x |I3(t)| → δ as t→ ∞. Therefore

(41) Eπ̂
x [Lt] → δ as t→ ∞.

Finally, from (35), (36) and (41), for any k ≥ 1 and n→ ∞ we have

n−1Eπ̂
x

[ n∑

t=k

c(kt)− jαt

]
= (1− αk)C

′ + o(1) + δ, x ∈ X.

Hence, from (12), the fact that limt→∞ αt = 1 and (2),

J(π̂, x) ≤ j∗ + δ, x ∈ X.

This completes the proof of the theorem.

Comments. We have presented a construction of an average optimal
adaptive policy, the basic idea being to use the so-called vanishing discount
factor approach, and ensure the existence of δ-minimizers. On the other
hand, it is well known (see, for instance, [4], [9]) that an optimal stationary
policy exists if the minimum on the right-hand side of (11) is attained for
each x ∈ X. Therefore, it can happen that under the assumptions made in
this paper, such a policy does not exist for the process (1) with a known
density ̺.
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