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ON APPROXIMATIONS OF NONZERO-SUM

UNIFORMLY CONTINUOUS

ERGODIC STOCHASTIC GAMES

Abstract. We consider a class of uniformly ergodic nonzero-sum stochas-
tic games with the expected average payoff criterion, a separable metric
state space and compact metric action spaces. We assume that the pay-
off and transition probability functions are uniformly continuous. Our aim
is to prove the existence of stationary ε-equilibria for that class of ergodic
stochastic games. This theorem extends to a much wider class of stochastic
games a result proven recently by Bielecki [2].

1. Introduction. The existence of stationary equilibria for discounted
or limiting average payoff stochastic games with uncountable state spaces is
still an open problem. Positive answers to this question are known only for
some special classes of stochastic games where the transition probabilities
satisfy certain very specific conditions. Some results concerning correlated
equilibria are also available. For a good survey of the existing literature the
reader is referred to [11, 12].

The existence of stationary ε-equilibria for discounted stochastic games
was first proved by Whitt [13] who considered a separable metric state space
model in which the daily payoff and transition probability functions are uni-
formly continuous. His proof is based on an approximation technique of the
original model by “smaller” models with countably many states for which
stationary equilibria are known to exist. Another ε-equilibrium theorem for
a class of discounted stochastic games with an abstract measurable state
space and the transition probability having a density function is included in
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our paper [9]. The proof in [9] is based on a completely different approxi-
mation method compared with Whitt’s technique [13]. (That is because the
state space need not be metric.) Some extensions of the result in [9] are
given in our recent paper with Altman [11] where unbounded (in the state
variable) daily payoff functions are allowable and the expected average pay-
off criterion is also considered.

Bielecki [2] extended Whitt’s theorem [13] to a class of limiting aver-
age payoff stochastic games satisfying a very strong ergodicity condition.
Stochastic games studied in [2] are in some sense equivalent to discounted
stochastic games [2, 3]. In this paper, we consider uniformly continuous
stochastic games as studied by Whitt [13] and Bielecki [2] but under a much
weaker ergodicity assumption. Using an extension of Ueno’s inequality given
in [10], we prove that any stochastic game with uniformly ergodic transition
structure can be approximated (in some sense) by games studied by Bielecki
[2]. This result combined with those of Bielecki [2] and Whitt [13] implies a
new existence theorem for stationary ε-equilibria for nonzero-sum stochastic
games with a separable metric state space.

2. The model and results. Let Y be a Borel space, i.e., a non-empty
Borel subset of a complete separable metric space. Let B(Y ) be the family
of all Borel subsets of Y.

An N -person nonzero-sum stochastic game is defined by the following
objects:

• S is a Borel space of states for the game,

• Xk is a non-empty compact metric space of actions for player k. We
put X = X1 × . . .×XN ,

• rk : S × X → R is a bounded Borel measurable payoff function for
player k.

• q is a Borel measurable transition probability from S ×X to S, called
the law of motion among states. If s is a state at some stage of the game and
the players select an x ∈ X, then q(· | s, x) is the probability distribution of
the next state of the game.

In this paper, we adopt the following conditions:

C1: The functions rk are uniformly continuous on S ×X.

C2: The function q(B|s, x) is uniformly continuous on S×X, uniformly
in B ∈ B(S).

The game is played in discrete time with past history as common know-
ledge for all the players. Suppose that at the beginning of each period n of
the game the players are informed of the outcome of the preceding period
and the current state sn. Then the information available to them at time n is
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a vector hn = (s1, x
1, . . . , sn−1, x

n−1, sn), where si ∈ S, xi = (xi
1
, . . . , xi

N ) ∈
X. We denote the set of such vectors by Hn and assume that it is endowed
with the Borel (or equivalently product) σ-algebra.

A strategy for player k is a sequence πk = (π1

k, π
2

k, . . .), where every πn
k

is a Borel measurable transition probability from Hn into Xk. A stationary

strategy for player k is a strategy πk = (π1

k, π
2

k, . . .) such that each πn
k de-

pends on the current state sn only. In other words, a strategy πk for player
k is called stationary if there exists a transition probability fk from S into
Xk such that for every period n of the game and each history hn ∈ Hn, we
have πn

k (· |h
n) = fk(· | sn). We put Πk(Fk) to denote the set of all strategies

(stationary strategies) for player k.

Let H = S × X × S × . . . be the space of all infinite histories of the
game, endowed with the product σ-algebra. For any multi-strategy π =
(π1, . . . , πN ) of the players and every initial state s1 = s ∈ S, a probability
measure Pπ

s and a stochastic process {σn, αn} are defined on H in a canon-
ical way, where the random variables σn and αn describe the state and the
actions chosen by the players, respectively, on the nth stage of the game
(cf. Chapter 7 of [1]). Thus, for each multi-strategy π = (π1, . . . , πN ), any
finite horizon T , and every initial state s ∈ S, the expected T -stage payoff

to player k is

JT
k (s, π) = Eπ

s

(

T
∑

n=1

rk(σn, αn)
)

.

Here Eπ
s is the expectation operator with respect to the probability measure

Pπ
s .

The expected average payoff per unit time for player k is defined as

Jk(s, π) = lim sup
T→∞

1

T
JT
k (s, π).

Let π∗ = (π∗
1
, . . . , π∗

N ) be a fixed multi-strategy for the players. For
any strategy πk of player k, we write (π∗

−k, πk) to denote the multi-strategy
obtained from π∗ by replacing π∗

k with πk.
Let ε ≥ 0. A multi-strategy π∗ = (π∗

1
, . . . , π∗

N ) is called an ε-equilibrium
for the average payoff stochastic game if and only if

ε+ Jk(s, π
∗) ≥ Jk(s, (π

∗
−k, πk))

for every player k and πk ∈ Πk. A 0-equilibrium is called a Nash equilibrium.

Before we formulate further assumptions and state our results, we adopt
some useful notation. Let F be the set of all stationary multi-strategies of
the players. For any f = (f1, . . . , fN ) ∈ F,

rk(s, f) =
\

X1

. . .
\

XN

rk(s, x1, . . . , xN )f1(dx1 | s) . . . fN(dxN | s)
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and

q(B | s, f) =
\

X1

. . .
\

XN

q(B | s, x1, . . . , xN )f1(dx1 | s) . . . fN (dxN | s)

for any B ∈ B(S).

The basic assumption made in this paper is:

C3 (Uniform geometric ergodicity): There exist scalars α ∈ (0, 1) and
γ > 0 for which the following holds: for any f ∈ F , there exists a probability
measure pf on B(S) such that

‖qn(· | s, f)− pf (·)‖ ≤ γαn for each n ≥ 1.

Here qn(· | s, f) is the n-step transition probability of the Markov chain
induced by q and f ∈ F , pf (·) is the unique invariant probability distribution
of this Markov chain, and ‖ · ‖ is the total variation norm in the space of
finite signed measures on B(S).

It is well known that C3 is equivalent to the following condition:

C4: There exist a positive integer m and a positive number c < 1 such
that

‖qm(· | s, f)− qm(· | z, f)‖ ≤ 2c for all s, z ∈ S and f ∈ F .

Clearly C3 implies C4. C4 implies C3 by Ueno’s inequality [10]. For
details consult pages 275 and 276 of [4]. Condition C3 (or C4) is rather
difficult to check. Much easier to verify are assumptions implying C3 which
can be formulated on the basis of a recent result by Meyn and Tweedie (see
Theorem 2.3 of [7]).

C5 (“Drift inequality”): There exist a bounded Borel measurable func-
tion w : S → [1,∞) and a set C ∈ B(S) such that for some λ ∈ (0, 1) and
η > 0, we have \

S

w(t)q(dt | s, x) ≤ λw(s) + η1C(s)

for each (s, x) ∈ S ×X. Here 1C is the characteristic function of the set C.

C6: There exist b ∈ (0, 1) and a probability measure p concentrated on
the Borel set C such that

q(D | s, x) ≥ bp(D)

for each D ∈ B(C), x ∈ X and s ∈ C.

For a further discussion of uniform geometric ergodicity of Markov chains
consult Theorem 16.0.2 in [6].

In a recent paper Bielecki [2] considered stochastic games under the
following strong assumption:
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M (Minorization property): There exist a constant b ∈ (0, 1) and a
probability measure p on B(S) such that

q(D | s, x) ≥ bp(D)

for every D ∈ B(S), x ∈ X and s ∈ S.

It is easy to prove that M implies C3 (see page 185 in Neveu [8]). Note
that M is much stronger than C6 and if it is satisfied then C5 holds trivially
with η = sups∈S w(s).

Let G (resp. GM ) be the class of nonzero-sum stochastic games satisfying
condition C3 (resp. M). Every game G ∈ GM is said to satisfy a strong

ergodicity condition. Using some ideas from Chapter 7 of [3] Bielecki showed
that the problem of finding a stationary ε-equilibrium in any game G ∈
GM which satisfies C1 and C2 can be reduced to finding a stationary εβ-
equilibrium in some β-discounted stochastic game with a new transition
probability and β = 1 − b < 1 (see Theorem 2.1 of [2]). In other words,
stationary ε-equilibria can be constructed in any game G ∈ GM by using
the approximation technique developed for discounted stochastic games by
Whitt [13]. In this paper, we prove that any game G ∈ G can be in some
sense approximated by games from the class GM .

Before we state our results we point out that for any multi-strategy
f ∈ F the expected average payoff Jk(s, f) to player k is under condition
C3 independent of the initial state s ∈ S and therefore it will be denoted
by Jk(f). Clearly, C3 implies that

Jk(f) =
\
S

rk(s, f) pf (ds).

Our approximation result is formulated as follows:

Theorem 1. For any ε > 0 and any game G ∈ G there exists a game

Gε ∈ GM such that

max
1≤k≤N

sup
f∈F

|Jk(f)− Jε
k(f)| ≤ ε/2

where Jε
k(f) is the expected average payoff to player k in Gε, f ∈ F .

P r o o f. Assume that G ∈ G. Then C4 holds with some positive integer
m and c ∈ (0, 1). Choose any probability measure p on B(S). For any
δ ∈ (0, 1) define

qδ(· | s, f) = (1− δ)q(· | s, f) + δp(·)

where s ∈ S and f ∈ F . Clearly, qδ satisfies condition M for any δ ∈ (0, 1).
It is easy to show that

(1) qmδ (· | s, f) = (1− δ)mqmδ (· | s, f) +

m−1
∑

n=0

δ(1 − δ)npqnf (·)
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where pq0f := p and

pqnf (·) =
\
S

q(· | s, f) p(ds)

for n = 1, . . . ,m− 1. Note that

(1− δ)m +

m−1
∑

n=0

δ(1 − δ)n = 1.

Using this and (1), we obtain

‖qm(· | s, f)− qmδ (· | s, f)‖ ≤
m−1
∑

n=0

δ(1− δ)n‖pqnf (·) − qm(· | s, f)‖

≤ 2

m−1
∑

n=0

δ(1 − δ)n = 2[1− (1− δ)m]

for every s ∈ S and f ∈ F. Put ξ = 2[1− (1− δ)m]. By the Theorem of [10],
we have

(2) ‖qmn(· | s, f)− qmn
δ (· | s, f)‖ ≤ ξ(1 + c+ . . .+ cn−1) + 2cn

for each s ∈ S, f ∈ F and n ≥ 1. Hence

(3) ‖pf − pδf‖ ≤
ξ

1− c

for each f ∈ F , where pδf is the invariant probability distribution for the
Markov chain induced by qδ and f.

Put

K = max
1≤k≤N

sup
s∈S,x∈X

|rk(s, x)|.

Using (3) we obtain

|Jk(f)− Jδ
k(f)| ≤

∣

∣

∣

\
S

rk(s, f) pf (ds)−
\
S

rk(s, f) p
δ
f (ds)

∣

∣

∣

≤ K‖pf − pδf‖ ≤ K
ξ

1− c

for all f ∈ F. Let ε > 0 be fixed. Choose any δε ∈ (0, 1) with Kξ/(1− c) =
K[1 − (1 − δε)

m]/(1 − c) ≤ ε/2. The game Gε ∈ GM we are looking for is
simply the stochastic game with the transition probability qδε .

Theorem 2. Any nonzero-sum stochastic game satisfying conditions

C1–C3 has a stationary ε-equilibrium for any ε > 0.

P r o o f. Let ε > 0. Consider a game that satisfies C1–C3. By Corollary
2.1 of [2] and Theorem 1 there exists some f∗ ∈ F such that

(4) ε+ Jk(s, f
∗) ≥ Jk(s, (f

∗
−k, fk))
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for every player k and any stationary strategy fk ∈ Fk. From standard
results in dynamic programming [5], it follows that

(5) sup
fk∈Fk

Jk(s, (f
∗
−k, fk)) = sup

πk∈Πk

Jk(s, (f
∗
−k, πk))

for every player k. Clearly, (4) and (5) complete the proof.

3. Concluding remarks. In this paper, we obtain stationary ε-equilib-
ria for uniformly continuous ergodic nonzero-sum stochastic games with a
separable metric state space using a simple approximation of any such game
by stochastic games (from the class GM ) studied in [2] with strongly ergodic
transition structure. Our result is based on an extension of Ueno’s inequal-
ity given in [10]. We point out that Whitt’s approximation technique [13]
(which is in fact applied in [2]) makes use of the separability of the state
space. The approach taken in [9] and further extended in [11] is based on
a different idea. In [11] we make weaker ergodicity assumptions than C1,
allow for unbounded daily payoff functions but assume that the transition
probability has a density function. In [11], we approximate the original game
by games with countably many states having analogous ergodic properties.
In the present case, we approximate uniformly ergodic stochastic games by
games having the same state space but satisfying a much stronger ergodicity
condition.
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